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Abstract We present numerical predictions for the shape of the pairing fluctuations
in harmonically trapped atomic °Li with two spin projections, based on the fluiddy-
namical description of cold fermions with pairing interactions. In previous works it
has been shown that when the equilibrium of a symmetric mixture is perturbed, the
linearized fluiddynamic equations decouple into two sets, one containing the sound
mode of fermion superfluids and the other the pairing mode. The latter corresponds
to oscillations of the modulus of the complex gap and is driven by the kinetic energy
densities of the particles and of the pairs. Assuming proportionality between the heat
flux and the energy gradient, the particle kinetic energy undergoes a diffusive behav-
ior and the diffusion parameter is the key parameter for the relaxation time scale.
We examine a possible range of values for this parameter and find that the shape of
the pairing oscillation is rather insensitive to the precise value of the transport coef-
ficient. Moreover, the pairing fluctuation is largely confined to the center of the trap,
and the energy of the pairing mode is consistent with the magnitude of the equilib-
rium gap.
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1 Introduction

Recently, we presented a fluiddynamical formulation for the motion of trapped
fermions with two spin species, starting from the equations of motion (EOM’s) of
the particle field operators driven by a Hamiltonian that includes a zero range inter-
action between the different spins. The above EOM’s are then applied to the deriva-
tion of a coupled system of dynamical equations for the density fields associated to
particle number, current and kinetic energies of each species, plus those associated
to pair, pair current and pair kinetic energy, within the mean field approach [1-4]. It
is interesting to note that the fluiddynamical description is not a mere reformulation
of standard quantum hydrodynamics (see i.e., Ref. [5]), where the leading quantities
are the particle density and the gradient of the phase of the condensate wave function.
The rigorous derivation of the hierarchy of moments of the particle and pair densities,
together with the tools to truncate at any desired level, has been reviewed in Ref. [6]
(hereafter denoted as I). The EOM’s become a closed system called the Extended
Superfluid Thomas—Fermi approximation (ESTF), after selecting a local equation of
state (EOS) to represent the higher order moment whose microscopic description has
been resigned.

In that previous work we have examined the dynamics of fluctuations in homo-
geneous fermion matter, showing that the fluiddynamical frame contains the charac-
teristic modes put forward by Anderson [7] and Bogoliubov [8], discussed e.g., by
Leggett in Ref. [9]. These modes are (1) the gapless sound mode of fermion super-
fluids and (2) the nonpropagating pairing vibration, with energy at zero momentum
close to the pairing gap. Since the latter involves the internal dynamics of the pairs,
it cannot be reached within the traditional hydrodynamical treatment of superfluids
that yields phonons as unique longwavelength excitations.

In general, the fluiddynamical description consists of six coupled equations in par-
tial derivatives and, consequently, is rather complex to apply to large amplitude dy-
namics of trapped fermions. By contrast, small amplitude oscillations can be boarded
at a moderate computational cost, since the linearized EOM’s decouple into two sets,
each with three equations, one containing the propagation of sound and the other the
pairing oscillation. In I we have studied, in addition to the equilibrium densities and
gap profiles for an unpolarized fermion system, the nature of the sound mode and its
associated new magnitude, the pair current, shown to be clearly different from the
superfluid current that derives from the gradient of the superfluid order parameter.

In this work we discuss typical results for the pairing fluctuations described by the
second system of EOM’s.

2 Abridged Formalism of Fermion Fluiddynamics

Let us briefly recall the derivation of fermion fluiddynamics (FD) as described in
detail in I. We propose a zero—temperature grand potential operator for fermions with
different spin projections ¢ = = interacting with a zero range force, in numbers N,
subject to harmonic potentials V (r)
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In terms of the s-wave scattering length a, the strength of the two body coupling is
g=4nh*a/m.

The one-body density, current and kinetic energy matrices for each fermion
species are expectation values in the many-body state,

o (0.1) = 0o (1) = (9 () o ) @
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K2
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The pair density is
i(r,r') = (P (mw_(r)) ®)

with the pair current and pair kinetic energy operators j, and 7, defined as above
with gradients operating upon « (r, r’). The coupled EOM’s for the above matrices
are derived starting from

IV, (r) [ h?

th ryamb —%V%r[Va(l‘)—Mo]-l-ngg(l‘)‘I’—a(l‘)}l’a(l‘) (6)

and its Hermitian conjugate. In order to reach a description in terms of space—time
fields, we select the diagonal terms of the matrices, in other words we take the limit
for r —> r’. Keeping in mind that the pair density diverges in this limit, one has to
select the regular part « (r) on the diagonal of the matrix and introduce the gap field
as A(r) = —gk(r). The FD scheme in terms of the particle, momentum and kinetic
energy densities of the fermion species, and of the order parameter « and its first two
moments can be found in I, as well as the criterion to truncate the hierarchy at the ki-
netic energy level and the evaluation of the unknown higher moment by using a local
density approximation. Here we only mention that as in classical hydrodynamics, the
EOM for the particle kinetic energy contains the divergence of the heat flow j.. We
shall come back to this point in Sect. 3.

We have analyzed the fluctuations in an homogeneous, unpolarized fermion mix-
ture and compared with the earlier predictions derived in the spirit of the Random-
Phase Approximation (RPA) [7]. We have shown that the linearized EOM’s can be
rearranged in terms of a closed block for ép, §j and §j,, containing the sound mode
of superfluids w; = csk, being ¢; = +/p(01/3p)/m the usual sound velocity, and a
mode that involves the relative motion within a single pair, plus an enslaved set that
contains, in addition to the former, the perturbations of the pair density and the ki-
netic energies. For §p = §t = 0, one of the eigenmodes of the second set is a real
gapped mode with energy of order A. The energy of this pairing vibration is strongly
dependent on the particle kinetic energy in equilibrium, which in turn introduces the

@ Springer



J Low Temp Phys (2013) 171:362-368 365

equilibrium gap to the leading order; this origin explains the impossibility of the tradi-
tional hydrodynamics of fermion superfluids as described e.g., in Ref. [5] to account
for these massive modes.

3 Pairing Vibrations in a Trap

When the superfluid is confined by a harmonic trap, the linearized FD EOM’s must
be solved numerically. Expressing the departure from equilibrium of any field f (r, t)
as 8f(r, 1) =8f T (1)e! @t +8f~(r)e '?% | the collective fluctuations in the confined
superfluid can be separated as before in density modes and pure pairing fluctuations.
In this case, the latter correspond to setting §p = §j = §j, equal to zero as well as the
equilibrium currents, and linearizing around the equilibrium values of the six fields.
The resulting eigenvalue equations read

4
+iwstt = -V - 5jF + ;glm (k8T7% + 778K F)

h
— 8m (k* V26 E + Vi) %)
m
h2
+hosk® = <_EV2 +V - ,U,>8/<i +28cF )

hZ
+hostE = <_EV2 +V+gp— M)Sr,(i — g(v8k* + k87*)

hZ
- E[v2(v + gp)sk*t — gpV2sic*] 9)

Here p, v, V and u correspond to the total quantities (summation over both
species). Moreover, we choose to substitute the flux contribution —V - j, entering
the dynamics of the particle kinetic energy, where j; is the kinetic energy current,
by a diffusion term of the form K V27, under the assumption that the above current
is proportional to the gradient of the kinetic energy, with strength K. Note that K is
not the thermal conductivity that relates the heat flux to the gradient of the tempera-
ture field in standard transport theory; since the systems here considered are at zero
temperature, the origin of diffusion is strictly quantal. In our local description, « (r)
represents the number of pairs at position r in the equilibrium cloud at zero tempera-
ture, thus 8« (r) is the number of pairs that are locally excited above the Fermi surface.
This excitation demands a local diffusive flow of kinetic energy d8j,, which to low-
est order should be linear in the fluctuation of the latter, with a somehow important
strength, here represented by K.

A realistic calculation of this coefficient for trapped gases as a function of the
scattering length, in a frame equivalent to the well-known one of transport theory at
finite temperature, is beyond the scope of our work, so we have examined possible
scenarios within a wide range of values of the diffusion parameter. In what follows,
every nonfluctuating field in the linearized EOM’s has been previously computed in
equilibrium in the trapped fluid, by setting the time derivatives in the ESTF EOM’s
given in I equal to zero. Characteristic profiles for the equilibrium gap and for both
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Fig. 1 Equilibrium configuration for A, 7, and t for a = —114 nm (solid lines) and —50 nm (dashed
lines). apo = [R/ (mwosc)]]/ 2 is the harmonic oscillator size

kinetic energy densities are shown in Fig. 1 to illustrate the dependence with the
scattering length a. It is clear that pairing effects are considerably dampened away
as the interaction weakens, while the kinetic energy shows an important decrease at
the center of the trap following the behavior of the density profile, and its tail reflects
the slight enlargement of the cloud size. These calculations have been performed for
a symmetric mixture of N = 1.7 x 10* SLi atoms in a trap with frequency wosc =
817 Hz.

All fluctuations are written as 8g(r) = g(r) Y, (7) with Yy, a spherical harmonic
function; the threedimensional eigenvalue equations are then formulated as a set
of onedimensional coupled equations for the radial amplitudes of a given multipo-
larity /. We have chosen to compute, for each physical quantity f, the quantities
Sfeven =8f T + 8f ", 8fodd = Sf T — 8f, that represent straightforwardly the real
and imaginary part of §f. In Fig. 2 we show, for a = —114 nm and for two values of
the diffusion K—chosen to qualitatively reproduce the expected behavior of the pair-
ing frequency—the pairing and particle kinetic energy fluctuations for the two lowest
energy levels, corresponding to / = 0 and with energies iiw = 0.5hAwpsc, 5.5hwgg for
K =10?h/m, and 1.1hwosc, 1.4hwose for K = 10%h/m.

The strong oscillations of the pair density, with sizable amplitudes near the trap
center (see insets), contrast with the smooth behavior of the particle kinetic energy,
largely sensitive to the magnitude of the diffusion parameter. However, the shape
of the amplitude of the pair fluctuations remains rather independent of K. In other
words, the kinetic energy flow affects the eigenfrequencies of modes but it seems to
be unimportant in the evolution of the pairs, at least in the small amplitude regime.
This statement is more strongly illustrated in Fig. 3, where the whole kinetic energy
fluctuation is removed, without any noticeable modification in the overall aspect of
8k . Moreover, all scenarios show that the pair fluctuations smooth away within the
scale of the trap, r & apo, whereas the equilibrium profiles occupy the full size of the
cloud. On the other hand, the right panel of Fig. 2 shows that Vit becomes negli-
gible as K increases, indicating that the system reacts to arbitrarily large diffusion
by smoothing away the energy flow, so as to prevent an ultraviolet catastrophe in the
spectrum.

Previous results on the pairing modes of the superfluid trapped atomic Fermi gas
with attractive interaction in the RPA approximation [10, 11] have shown that for
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Fig. 2 Fluctuations of pair density and particle kinetic energy for the two lowest energy levels with zero
multipolarity (upper and lower panels, respectively), for diffusion K = 104 (solid lines) and 10% (dashed
lines) in units of ii/m (Color figure online)
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Fig. 3 Same as Fig. 2 with vanishing 7 (Color figure online)

oK
even |
— o odd
0.5
0
-0.5
0.5 1 1.5
2 4 6 8
r/a
ho

moderate values of the scattering length a and/or of the number of trapped atoms, the
value of the lowest pairing mode is of the order of the gap A. This result was obtained
in the intrashell regime, where Cooper pairs are formed only between atoms with the
same radial quantum number, when the coherence length is much shorter than the
system size. For our trap configuration and number of particles, we found that for
a more negative than —50 nm our system is not in the intrashell regime; although
the frequencies provided by our fluiddynamical scheme depend on the exact value
of K, for the less interacting systems the lowest pairing mode is consistent with the

intrashell model.
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Finally, we mention here that the energies of these pairing modes fora = —114 nm
for not too large values of K are comparable to the energy scale hwqg.. This is due
to the relatively high value of a and the presence of the trapping potential, which
imposes a clear energy scale for the collective modes of the system. For sizable K—
above 10*h/m—these energies become comparable to twice the gap magnitude at
the trap center.

4 Conclusions

The present study aims at shedding light on the pairing dynamics of a trapped Fermi
superfluid in the weak coupling regime, in the spirit of mean field theory, here mapped
onto a an extended hydrodynamical scheme, that contains the first three moments
of the pair density together with those of the particle density. Our approach differs
largely from e.g., the study of large amplitude pairing correlations in an homoge-
neous, unitary Fermi gas, where the pairing modes are included [12]. Within our
fluiddynamical description we can clarify the role of the particle kinetic energy in an
equilibrated cloud, that enters the eigenvalue equation at the same level as the energy
eigenvalue (cf. Egs. (7) to (9)), and the kinetic energy fluctuations, that apparently
play a minor role in the pair dynamics, at least for small amplitude oscillations and
for the lowest-lying modes. Since the main features of the structure and energetics
of the pair fluctuations are reproduced setting the kinetic energy oscillations equal to
zero, it is possible to interpret that we are in the presence of an intrinsic, pure pairing
mode, that expresses aspects of the internal dynamics of the pairs which are absent in
the standard formulation of syperfluid hydrodynamics.
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