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Abstract We construct spherically symmetric thin-shell
wormholes supported by a generalized Chaplygin gas in
Born–Infeld electrodynamics coupled to Einstein gravity,
and we analyze their stability under radial perturbations.
For different values of the Born–Infeld parameter and the
charge, we compare the results with those obtained in a pre-
vious work for Maxwell electrodynamics. The stability re-
gion in the parameter space reduces and then disappears as
the value of the Born–Infeld parameter is modified in the
sense of a larger departure from Maxwell theory.

1 Introduction

Traversable Lorentzian wormholes are theoretical objects
which have received great attention in the last two decades.
These objects have a throat that connects two regions of the
same universe or two different universes [1, 2] and, in gen-
eral relativity, they are characterized by being threaded by
matter that violates the null energy condition [1–5] in order
to allow material systems travel through them. The amount
of this exotic matter can be made arbitrary small [6], but at
the expense of large pressures at the throat [7]. Traversable
wormholes can be constructed [2] by using the well known
thin-shell formalism—commonly employed to model layers
in different physical contexts, including modern cosmology
(e.g. braneworlds) and gravastars—, consisting in the cut
and paste of two manifolds to form a new one, with a shell at
the joining surface corresponding the throat, where the ful-
fillment of the flare-out condition is required. These worm-
holes are of particular interest for their simplicity, which
facilitates the stability analysis, and because the presence
of exotic matter is confined to the shell. For these reasons,
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they are widely studied in the literature. Models of worm-
holes with a continuous energy-stress tensor at the throat
usually also require a cut and paste procedure to confine the
exotic matter and/or obtain a suitable asymptotic behavior.
Stability studies of spherically symmetric thin-shell worm-
holes, with a linearized equation of state at the throat, have
been performed under radial perturbations ([8–14] and ref-
erences therein). Plane and cylindrical thin-shell wormholes
were also considered in recent years (see, for example, Refs.
[14–16]).

Born–Infeld electrodynamics [17] is a non-linear the-
ory proposed in order to avoid the infinite self energies
of charged point particles arising in Maxwell theory, and
it is the only non-linear theory without birefringence. The
spherically symmetric solution in general relativity cou-
pled to Born–Infeld electrodynamics was obtained by Hoff-
mann [18]; this solution failed to be a suitable model for
the electron, corresponding instead to a black hole. Born–
Infeld type actions have appeared in low energy string the-
ory [19–23], leading to an increase in the interest of non-
linear electrodynamics. Maxwell and Born–Infeld theories
have electric-magnetic duality invariance [24], property not
shared with other electromagnetic theories. The geodesic
structure of Einstein–Born–Infeld black holes was studied
in Ref. [25]. The linearized stability of spherical shells
and thin-shell wormholes under radial perturbations was re-
cently considered within this theory [26–28].

In the framework of general relativity, the accelerated ex-
pansion of the Universe violates the strong energy condi-
tion. Several models of exotic matter, proposed in cosmol-
ogy [29–31], have been also adopted in wormhole space-
times. One of them, the Chaplygin gas [32–36] was used
as the exotic matter supporting wormholes [37–47]. In par-
ticular, a generalized Chaplygin gas was taken as the exotic
matter at the throat of thin-shell wormholes in Refs. [46, 47].

In the present work, we construct thin-shell wormholes
with a generalized Chaplygin gas in Einstein–Born–Infeld
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theory, and we analyze their stability under perturbations
that conserve the symmetry. As in Ref. [46], we adopt the
generalized Chaplygin gas equation of state at the throat
mainly because of its interest in modern cosmology. This
fluid introduces two parameters and non trivial compli-
cations in the equations. Here we extend to Born–Infeld
electrodynamics the analysis performed previously using
Maxwell theory [46]. We compare the new results with those
obtained in Ref. [46]. The main outcome of our paper is that
the stability region reduces in size and finally fades away as
the Born–Infeld parameter takes values in the direction of a
larger deviation from Maxwell electrodynamics. The paper
is organized as follows: in Sec. 2, the wormhole construc-
tion is done; in Sec. 3, the stability of static configurations
is analyzed; finally, in Sec. 4 a summary is presented.

2 Wormhole construction: general equations

The action of Born–Infeld electrodynamics coupled to Ein-
stein gravity is given by (in units such as G = c = 1)

S =
∫

d4x
√

g

(
1

16π
R + L

)
, (1)

where R is the scalar of curvature, g = det|gμν |, and L de-
pends on the electromagnetic tensor in a non-linear form:

L = 1

4πb2

(
1 −

√
1 + 1

2
FσνFσνb2 − 1

4
∗FσνFσνb4

)
, (2)

with Fσν = ∂σ Aν −∂νAσ the electromagnetic tensor, ∗Fσν =
1
2
√−g εαβσνF

αβ the Hodge dual of Fσν , and εαβσν the
Levi-Civita symbol. The parameter b indicates how much
Born–Infeld and Maxwell electrodynamics differ; b−1 is
the maximum of the electric field. In the limit b → 0, the
Maxwell Lagrangian is recovered.

The field equations, obtained from the action (1), have
the vacuum spherically symmetric solution [24, 25]:

ds2 = −ψ(r) dt2 + ψ(r)−1 dr2

+ r2(dθ2 + sin2 θ dφ2), (3)

where r > 0 is the radial coordinate, 0 ≤ θ ≤ π and 0 ≤ ϕ <

2π are the angular coordinates, and ψ has the form:

ψ(r) = 1 − 2M

r
+ 2

3b2

{
r2 −

√
r4 + b2Q2

+
√|bQ|3

r
F

[
arccos

(
r2 − |bQ|
r2 + |bQ|

)
,

√
2

2

]}
, (4)

with M the mass, Q the charge, and F(γ, k) the ellip-
tic integral of the first kind: F(γ, k) = ∫ sinγ

0 [(1 − z2)(1 −
k2z2)]−1/2 dz = ∫ γ

0 (1 − k2 sin2 φ)−1/2 dφ. The geometry
is singular at r = 0; the position of the horizons, deter-
mined by the zeros of ψ(r), have to be calculated numer-
ically. The Schwarzschild metric is recovered if Q = 0 and

the Reissner–Nordström geometry is obtained by taking the
limit b → 0 (for more details, see Ref. [25]).

We start from the metric showed in Eq. (3) to construct
thin-shell wormholes by using the Darmois–Israel formal-
ism [48–50]. We need to take a radius a larger than the event
horizon rh in order to avoid the presence of the singularity
and the horizons. We cut two identical copies of the region
with r ≥ a:

M± = {
Xα = (t, r, θ, ϕ)/r ≥ a

}
, (5)

and paste them at the hypersurface

Σ ≡ Σ± = {
X/F(r) = r − a = 0

}
, (6)

to create a new geodesically complete manifold M = M+∪
M−. If this construction satisfies the flare-out condition,
the manifold represents a wormhole with two regions con-
nected by a throat of radius a, which corresponds to the
surface of minimal area. The flare-out condition is satis-
fied in our case, because ψ ′(a) = 2a > 0. A global ra-
dial coordinate can be defined on M by using the proper
radial distance: l = ± ∫ r

a

√
1/ψ(r) dr , the signs ± corre-

spond, respectively, to M+ and M−, and the throat is lo-
cated in l = 0. At the throat Σ we can define the coordi-
nates ξ i = (τ, θ,ϕ), with τ the proper time on the shell. The
throat radius is a function of time: a(τ). A Birkhoff theo-
rem holds for the metric adopted in the construction [24], so
the geometry remains static outside the throat and no grav-
itational waves are present. Adopting the orthonormal basis
{eτ̂ = eτ , eθ̂

= a−1eθ , eϕ̂ = (a sin θ)−1eϕ}, it is easy to ob-
tain the second fundamental forms (or extrinsic curvature)
associated with the two sides of the shell:

K±
θ̂ θ̂

= K±
ϕ̂ϕ̂

= ±1

a

√
ψ(a) + ȧ2, (7)

and

K±
τ̂ τ̂

= ∓ ψ ′(a) + 2ä

2
√

ψ(a) + ȧ2
, (8)

where a prime represents a derivative with respect to r and
the dot with respect to τ . With the following definitions:
[K

ı̂ĵ
] ≡ K+

ı̂ ĵ
−K−

ı̂ ĵ
, K = tr[Kı̂ĵ ] = [Kı̂

ı̂
] and with the surface

stress-energy tensor S
ı̂ĵ

= diag(σ,p
θ̂
,pϕ̂), where σ is the

surface energy density and p
θ̂
, pϕ̂ are the transverse pres-

sures, the Einstein equations on the shell can be reduced to
Lanczos equations:

−[Kı̂ĵ ] + Kgı̂ĵ = 8πSı̂ĵ ; (9)

then we have

σ = −
√

ψ(a) + ȧ2

2πa
, (10)

and

p = p
θ̂

= pϕ̂ =
√

ψ(a) + ȧ2

8π

[
2

a
+ 2ä + ψ ′(a)

ψ(a) + ȧ2

]
. (11)
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It can be seen from Eq. (10) that σ < 0, which indicates the
presence of exotic matter. Here we model this exotic matter
with a generalized Chaplygin gas on the shell Σ . In this gas,
the pressure has opposite sign to the energy density. Then,
the equation of state at the throat can be written in the fol-
lowing form:

p = A

|σ |α , (12)

where A > 0 and 0 < α ≤ 1 are constants. When α = 1 the
ordinary Chaplygin gas equation of state p = −A/σ is re-
covered. The dynamical evolution of the wormhole throat
can be obtained by replacing Eqs. (10) and (11) into Eq.
(12):
{[

2ä + ψ ′(a)
]
a2 + [

ψ(a) + ȧ2]2a
}[2a]α

− 2A
[
4πa2]α+1[

ψ(a) + ȧ2](1−α)/2 = 0. (13)

In this way, we have found a differential equation that should
be satisfied by the radius of throat for thin-shell wormholes
in Einstein–Born–Infeld theory, threaded by exotic matter
with the equation of state of a generalized Chaplygin gas.

3 Stability of static solutions

In the case of static wormholes, from Eqs. (10) and (11), the
surface energy density and pressure are given by

σ0 = −
√

ψ(a0)

2πa0
, (14)

and

p0 =
√

ψ(a0)

8π

[
2

a0
+ ψ ′(a0)

ψ(a0)

]
. (15)

If static solutions exist for a given set of parameters, they
should satisfy Eq. (13) evaluated in a0:

(2a0)
α
[
ψ ′(a0)a

2
0 + 2ψ(a0)a0

]
− 2A

[
4πa2

0

]α+1
ψ(a0)

(1−α)/2 = 0. (16)

From Eqs. (10) and (11) it is easy to verify the conservation
equation:

d

dτ
(σ A) + p

dA
dτ

= 0, (17)

where A = 4πa2 is the area of the wormhole throat. In
Eq. (17), the first term represents the internal energy change
of the throat and the second the work done by the internal
forces of the throat. We can rewrite Eq. (17) in the form

σ̇ = −2(σ + p)
ȧ

a
, (18)

which can be integrated to give

ln
a

a(τ0)
= −1

2

∫ σ

σ(τ0)

dσ

σ + p(σ)
. (19)

This equation can be formally inverted to obtain σ = σ(a).
Then we replace σ(a) in Eq. (11) to find the equation that
determines completely the dynamics of the throat:

ȧ2 = −V (a) = −{
ψ(a) − [

2πaσ(a)
]2}

, (20)

where V (a) can be interpreted as a potential, which can be
expanded in a second order Taylor series around the radius
a0 of the static solution, in order to analyze the stability:

V (a) = V (a0) + V ′(a0)(a − a0)

+ V ′′(a0)

2
(a − a0)

2 + O(a − a0)
3. (21)

The first and second derivatives of V (a) are given by

V ′(a) = ψ ′(a) + 8aπ2σ(a)
[
σ(a) + 2p(a)

]
, (22)

V ′′(a) = ψ ′′(a) − 8π2
{[

σ(a) + 2p(a)
]2

+ 2σ(a)
[
σ(a) + p(a)

][
1 + 2

αp(a)

|σ(a)|
]}

, (23)

where we have used aσ ′ = −2(σ + p). By replacing
Eqs. (14) and (15) in Eqs. (20), (22), and (23), we have
V (a0) = V ′(a0) = 0, and

V ′′(a0) = ψ ′′(a0) + (α − 1)[ψ ′(a0)]2

2ψ(a0)
+ ψ ′(a0)

a0

− 2(α + 1)ψ(a0)

a2
0

. (24)

From this last equation we obtain the stability condition for
perturbations conserving the spherical symmetry of the ge-
ometry: the wormhole is stable if and only if V ′′(a0) > 0.

By using Eq. (16), we can find the possible throat radii
a0, for different values of the Born–Infeld parameter b, the
constant A, the exponent α, the mass M and the charge Q.
Since the inequality V ′′(a0) > 0, which determines whether
the solution with radius a0 is stable, is very complicated
from an algebraic point of view, the results (obtained nu-
merically) are presented graphically in Figs. 1, 2, 3, 4, 5
and 6, in which standard software was used and we have
chosen the most representative figures. The stable solutions
are shown with solid lines, while the dotted lines correspond
to unstable configurations. The regions that have no physical
meaning are shaded in gray. The results present an impor-
tant change around Qc/M , where Qc is the critical charge,
corresponding to the value of charge from which the orig-
inal metric used in the construction has no horizons. The
quotient Qc/M only depends on the parameter b/M . For a
fixed value of b/M , the event horizon has a radius which
decreases as |Q|/M grows, and it fades out for values of
|Q|/M larger than Qc/M . The values of Qc/M are those
for which ψ(rh) = 0 and ψ ′(rh) = 0 (i.e., double root of
ψ(r)), to be obtained numerically.

From Figs. 1 to 6, we see that:
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Fig. 1 Stability of wormholes with parameters b/M = 1 and α = 0.2.
In this case, Qc/M = 1.02526. Solid (dotted) curves represent static
stable (unstable) solutions with throat radius a0. Gray zones are non-
physical

Fig. 2 Same as Fig. 1 with b/M = 1 and α = 1. In this case,
Qc/M = 1.02526

• As discussed above, for b = 0 (then Qc/M = 1), the
Born–Infeld electrodynamics reduces to Maxwell theory,
so that the Reissner–Nordström solution is used in the
construction of the wormholes, and we recover the results
obtained in Ref. [46].

Fig. 3 Same as Fig. 1 with b/M = 2 and α = 0.2. In this case,
Qc/M = 1.10592.

Fig. 4 Same as Fig. 1 with b/M = 2 and α = 1. In this case,
Qc/M = 1.10592

• If 0 < b/M ≤ 1 the behavior of the solutions is similar to
what shown in Figs. 1 and 2, for b/M = 1 (then Qc/M =
1.02526):
– When 0 < α < 1 (for example, α = 0.2):

∗ For 0 ≤ |Q| < Qc and |Q| not very close to Qc ,
there is one unstable solution for each value of
AMα+1, and this behavior continues when this pa-
rameter grows.
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Fig. 5 Same as Fig. 1 with b/M = 5 and α = 0.2. In this case,
Qc/M = 1.48468

Fig. 6 Same as Fig. 1 with b/M = 5 and α = 1. In this case,
Qc/M = 1.48468

∗ For |Q| � Qc, a small range in the values of AMα+1

is found for which three solutions are obtained: two
of them are unstable (the largest and the smallest
ones) and the other is stable. When AMα+1 grows,
the behavior described above is obtained again: there
is only one unstable solution close to the radius of
the horizon of the original manifold.

∗ For |Q| > Qc, the range of values of AMα+1 where
there are three solutions becomes larger; two of them
are unstable (the largest and the smallest ones) and
the other one is stable. For large values of AMα+1

there is again only one unstable solution.
– When α = 1:

∗ For 0 ≤ |Q| < Qc and |Q| not very close to Qc, we
see that a bounded range of values of AMα+1 ex-
ists for which there is only one unstable solution.
The value of a0/M decreases with AMα+1 until it
reaches the radius of the horizon of the original man-
ifold, and then no solutions are found.

∗ For |Q| � Qc , there is a range of values of AMα+1

for which two solutions are found, one is stable (the
smallest) and the other is unstable (the largest). From
a certain value of AMα+1 solutions are not longer
present.

∗ For |Q| > Qc , there are three solutions, two of them
unstable (the largest and the smallest ones) and the
other stable. For large values of AMα+1 there is only
one solution, which is unstable.

Comparing the results shown in Figs. 1 and 2 with those
obtained in Ref. [46], we can see a similar behavior in the
cases b = 0 and 0 < b/M ≤ 1, for the same values of α.
The only difference is found when |Q| > Qc: the smallest
of the unstable solutions for 0 < b/M ≤ 1 is not present
if b = 0.

• An analogous analysis can be done for Figs. 3 and 4, cor-
responding to b/M = 2 (then Qc/M = 1.10592):
– When 0 < α < 1 (for example, α = 0.2):

∗ For 0 ≤ |Q| < Qc and |Q| not very close to Qc, we
observe that from a certain value of AMα+1 there is
always one unstable solution.

∗ For |Q| � Qc or |Q| > Qc , there exists a small range
of values of AMα+1 where three solutions can be
found: two of them unstable (the smallest and the
largest ones) and the other stable. From a certain
value of AMα+1 there is only one solution, which
is unstable.

– When α = 1:
∗ For 0 ≤ |Q| < Qc and |Q| not very close to Qc ,

there is a bounded range of values of AMα+1 for
which only one unstable solution is present. Again,
we see that a0/M decreases until it reaches the ra-
dius of the horizon of the original manifold, and then
no solutions are found.

∗ For |Q| ∼ Qc , there are two solutions, one stable
(the smallest one) and the other unstable (the largest
one) for a bounded range of AMα+1, and outside
from this range no solutions are present.

∗ For |Q| > Qc, there is always only one solution,
which is unstable.

• From Figs. 5 and 6, in which b/M = 5 (then Qc/M =
1.48468), we can say that:
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– When 0 < α < 1 (for example, α = 0.2) and for any
value of the charge |Q| there is only one solution,
which is always unstable.

– When α = 1:
∗ For 0 ≤ |Q| < Qc and |Q| not very close to Qc, a

small range of values of AMα+1 can be found for
which only one unstable solution is present, with
a0/M decreasing quickly to reach the horizon radius
of the original manifold.

∗ For |Q| � Qc or |Q| > Qc , there is only one solu-
tion, which is always unstable.

This shows that for large values of b/M , the stability re-
gion disappears completely.

Comparing these results with those obtained in the above
mentioned work [46], we observe that the results obtained
for values of b/M > 1 differ significantly from those with
b = 0.

4 Summary

In this paper, we have constructed spherically symmetric
wormholes by using the thin-shell formalism within the
framework of Einstein–Born–Infeld theory, with a Chaply-
gin gas at the surface of union, where the throat is localized.
We have analyzed the stability of the wormholes under per-
turbations that preserve the symmetry. The study has been
done analytically and standard software was used to display
the results graphically. We found stable solutions for a given
set of parameters, namely the radius of the throat a0, the
parameter b of Born–Infeld electrodynamics, the parame-
ters A and α of the equation of state corresponding to the
generalized Chaplygin gas, the mass M , and the charge Q.
The results were compared with those obtained in a previ-
ous work, where a similar study was conducted using the
Reissner–Nordström metric. For small b/M , there are val-
ues of the other parameters for which the solutions are sta-
ble, results similar to the Reissner–Nordström case, except
that in Einstein–Born–Infeld a new unstable solution were
found in the vicinity of the origin for large values of Q/M .
As b/M increases, i.e. that the theory is distancing itself
more from Einstein–Maxwell, the stability region becomes
smaller. For large values of b/M the stable solutions are not
longer present.
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