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Abstract
The chemical composition of ultra high energy cosmic rays is still uncertain.
The latest results obtained by the Pierre Auger Observatory and the HiRes
collaboration, concerning the measurement of the mean value and the
fluctuations of the atmospheric depth at which the showers reach the maximum
development, Xmax, are inconsistent. From comparison with air shower
simulations it can be seen that, while the Auger data may be interpreted as
a gradual transition to heavy nuclei for energies larger than ∼ 2–3 × 1018 eV,
the HiRes data are consistent with a composition dominated by protons. In
Wilk and Wlodarczyk (2011 J. Phys. G: Nucl. Part. Phys. 38 085201), it is
suggested that a possible explanation for the observed deviation of the mean
value of Xmax from the proton expectation, observed by Auger, could originate
in a statistical bias arising from the approximated exponential shape of the
Xmax distribution, combined with the decrease of the number of events as a
function of primary energy. In this paper, we consider a better description of
the Xmax distribution and show that the possible bias in the Auger data is at
least one order of magnitude smaller than the one obtained when assuming
an exponential distribution. Therefore, we conclude that the deviation of the
Auger data from the proton expectation is unlikely to be explained by such
statistical effect.

(Some figures may appear in colour only in the online journal)

1. Introduction

The nature of the primary cosmic rays is intimately related to the astrophysical objects capable
of accelerating these particles to such high energies. Also, propagation in the intergalactic
medium depends on the composition, which affects the resulting spectral distribution of the
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flux observed on Earth. A knowledge of the composition is also very important for primary
energy reconstruction and for anisotropy studies.

One of the most important limitations of composition analysis comes from the lack of
knowledge of the hadronic interactions at the highest energies. Composition studies are based
on the comparison of experimental data with Monte Carlo simulations of atmospheric cosmic
rays showers, which makes use of hadronic interaction models which extrapolate the available
low-energy accelerator data to the energies of the cosmic rays.

One of the most sensitive parameters to the mass of the primary cosmic ray is the
atmospheric depth at which the showers reach their maximum development. Lighter primaries
generate showers that are more penetrating, producing larger values of Xmax. Also, the
fluctuations of this parameter are smaller for heavier nuclei. The Pierre Auger Observatory and
the HiRes experiment are able to observe directly the longitudinal development of the showers
by means of fluorescence telescopes. Therefore, in both experiments, the Xmax parameter of
each observed shower can be reconstructed from the data taken by the telescopes.

The mean value and the standard deviation of Xmax, as a function of primary energy,
obtained by Auger [2] and HiRes [3] appear to be inconsistent. From the comparison with
simulations, the Auger data suggests a transition to heavier nuclei starting at energies of the
order of 2–3 × 1018 eV, whereas, the HiRes data are consistent with protons in the same
energy range. In [1], a new parameter, the difference between the mean value and the standard
deviation of Xmax, was introduced in order to reconcile the Auger and HiRes results. This new
parameter has the advantage of being much less sensitive to the first interaction point than
the mean value and the standard deviation separately. From a comparison of the experimental
values of this parameter, obtained by Auger and HiRes, with simulated data, they infer that
the composition of the cosmic rays is dominated by protons. They say that the energy
dependence of the distribution of Xmax, observed by Auger, seems to be caused by an
unexpected change in the depth of the first interaction point, which can be explained by a
rapid increase of the cross section and/or increase of the inelasticity. Both possibilities require
an abrupt onset of new physics in this energy range, which makes them questionable. They
also suggest that the deviation of the distribution of Xmax from the proton expectation, present
in the Auger data, could be originated in the statistical techniques used to analyze the data.
In particular, they suggest that the deviation of the mean value of Xmax from the proton
expectation could be explained by a bias originated from the exponential nature of the Xmax

distribution and the decreasing number of events as a function of primary energy.
In this work we show that, considering a better description of the Xmax distribution,

the bias in the determination of the mean value of Xmax becomes more than one order of
magnitude smaller than the one obtained for the exponential distribution. We find that the
value of the bias in the last energy bin (the one with the smallest number of events) of the
Auger data, published in [2], is � 1.5 g cm−2, which is much smaller than the systematic
errors on the determination of the mean value of Xmax estimated in [2].

2. Numerical approach

Following [1], let us introduce the parameter

ξ (N) = 1 − mode
[
X̄N

max

]
〈Xmax〉 , (1)

where 〈Xmax〉 is the mean value of the Xmax distribution;

X̄N
max = 1

N

N∑
i=1

Xi
max (2)
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is the sample mean corresponding to samples of size N and mode[X̄N
max] is the value of X̄N

max
that occurs most frequently, i.e. the maximum of the distribution function of X̄N

max. Therefore,
the bias on the determination of 〈Xmax〉 appears when a particular realization of the sample
mean is equal to the mode of the sample mean distribution function. Note that the sample
mean (equation (2)) is an unbiased estimator of the mean of the exponential distribution, i.e.
E[X̄N

max] = 〈Xmax〉. In [1], it is shown that approximating the Xmax distribution by an exponential
function the parameter ξ (N) is given by ξE (N) = 1/N.

In order to better describe the distribution of Xmax two different types of function
are considered. They are chosen in such a way that the distribution of X̄N

max can be
obtained, at least, in a semi-analytical way. The first function considered is a shifted-Gamma
distribution [4]:

PG(Xmax) =
⎧⎨
⎩

(Xmax − X0)
k−1

�(k) τ k
X

exp

(
−Xmax − X0

τX

)
Xmax � X0

0 Xmax < X0

, (3)

where k = 5 and the other two parameters can be obtained from the mean value and the
standard deviation of Xmax,

X0 = 〈Xmax〉 − k τX , (4)

τX = σ [Xmax]√
k

. (5)

The second function under consideration is the convolution between an exponential
function and a Gaussian (exp-Gauss),

PEG(Xmax) = 1

λ
√

2πβ

∫ Xmax

−∞
du exp

(
−Xmax − u

λ

)
exp

(
− (u − α)2

2β2

)

= 1

2λ
exp

(
−Xmax − α

λ
+ β2

2λ2

)
Erfc

(
β√
2λ

− Xmax − α√
2β

)
, (6)

where α, β and λ are the fitting parameters and

Erfc(z) = 1 − 2√
π

∫ z

0
dt exp(−t2/2). (7)

A library of simulated showers was generated by using the program CONEX (v2r2.3) [5].
Monochromatic samples of 104 proton showers were generated from log(E/eV ) = 18 to
log(E/eV ) = 19.5 in steps of 
 log(E/eV ) = 0.1. The arrival directions of the showers
follow an isotropic distribution, such that the zenith angle is in the interval [0◦, 60◦]. The
hadronic interaction models considered are QGSJET-II [6] and EPOS 1.99 [7].

The mean value and the standard deviation (needed for the description of the Xmax

distribution using the shifted-Gamma function) were fitted with a quadratic function and
a linear function of log(E ), respectively, i.e.

〈Xmax〉 = A0 + A1 log(E/eV ) + A2 log2(E/eV ), (8)

σ [Xmax] = B0 + B1 log(E/eV ). (9)

Figure 1 shows the simulated data as well as the fits, for both hadronic interaction models
considered. The values of the parameters corresponding to equations (8) and (9) are given in
table 1.

The distribution functions of Xmax, for every energy and hadronic interaction model
considered, were fitted with the exp-Gauss function, equation (6). The parameters α, β and λ

were fitted with linear functions of log(E ), in order to obtain the exp-Gauss representation of

3
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Figure 1. Mean value (left panel) and the standard deviation (right panel) of Xmax as a function
of log(E/eV ) obtained by using CONEX with QGSJET-II and EPOS 1.99 for proton initiated
showers. The lines correspond to the fits of the simulated data (see the text for details).

Table 1. Parameters corresponding to the quadratic and linear fits of 〈Xmax〉 and σ [Xmax],
respectively (see equations (8) and (9)), obtained from simulations for QGSJET-II and EPOS
1.99.

A0 (g cm−2) A1 (g cm−2) A2 (g cm−2) B0 (g cm−2) B1 (g cm−2)

QGSJET-II −826.171 124.198 −2.080 37 113.223 −2.992 73
EPOS 1.99 80.4419 14.1183 1.279 33 69.4862 −0.614 616

the Xmax distribution for every value of energy in the interval [1018, 1019.5] eV, see appendix A
for details.

Figure 2 shows the distributions of Xmax, obtained by using CONEX with QJSJET-II, for
log(E/eV ) = 19 and log(E/eV ) = 19.5. Solid lines correspond to the fits of the simulated
data with the exp-Gauss function. The dashed lines correspond to the shifted-Gamma function,
equation (3), for which the parameters X0 and τX are obtained by using the expressions of
〈Xmax〉 and σ [Xmax] in equations (8) and (9) to calculate X0 and τX from equations (4) and
(5), respectively. From the figure, it can be seen that the exp-Gauss function is a better fit to
the simulated data than the shifted-Gamma function. It can also be seen that the tail to larger
values of Xmax is slightly overestimated by the exp-Gauss distribution and underestimated by
the shifted-Gamma function. Therefore, the distribution function of the universe (samples with
N → ∞) should fall between these two functions.

The distribution of X̄N
max can be calculated by means of the characteristic function,

which is defined as the expectation value of exp(itXmax), i.e. φXmax (t) = E[exp(itXmax)].
It is straightforward to show that the characteristic function of X̄N

max is given by φX̄N
max

(t) =
[φXmax (t/N)]N [8].

The characteristic function of the shifted-Gamma distribution is φG
Xmax

(t) = exp(iX0t) (1−
itτX )−k and then the characteristic function of X̄N

max is given by φG
X̄N

max
(t) = exp(iX0t) (1 −

itτX/N)−kN , which corresponds also to a shifted-Gamma distribution. Therefore, the
distribution function of X̄N

max is given by

P̄G
(
X̄N

max

) =

⎧⎪⎨
⎪⎩

(
X̄N

max − X0
)Nk−1

�(Nk) (τX/N)Nk
exp

(
− X̄N

max − X0

τX/N

)
X̄max � X0

0 X̄max < X0

. (10)
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Figure 2. Distributions of Xmax for proton showers generated by using CONEX with QGSJET-II.
Solid lines correspond to the fits of the histograms with the exp-Gauss function, equation (6). The
dashed lines correspond to the shifted-Gamma function, equation (3), where the parameters X0 and
τX are obtained by using equations (4) and (5), and the fits of 〈Xmax〉 and σ [Xmax] as a function of
log E (see text for details).

By using equation (10), it is easy to show that

ξG(N) = σ [Xmax]√
k 〈Xmax〉

1

N
. (11)

In this case, ξ is also proportional to 1/N but it is suppressed by the ratio between the
standard deviation and the mean value of Xmax. A similar expression is obtained when the
distribution function of Xmax is described by a truncated exponential function, see appendix B
for details. The solid line on the left panel of figure 3 corresponds to ξG as a function of N for
log(E/eV ) = 19.5, approximately the mean value of the energy (weighted by the spectrum)
for the last bin considered in [2]. Note that the number of events in this bin is 34. From the
figure, it can be seen that ξG is more than one order of magnitude smaller than the function
1/N.

The distribution function of Xmax is affected by the presence of fluctuations introduced
by the detectors. The distribution function of X̄N

max, including a Gaussian uncertainty on the
determination of Xmax is given by

P̄R
G

(
X̄N

max

) =
√

N√
2πσRec

∫ ∞

0
dX P̄G(X ) exp

(
−

(
X̄N

max − X
)2

2σ 2
Rec/N

)
, (12)

where σRec is the standard deviation of such uncertainty. The mode of this distribution is
calculated numerically. Dashed and dash-dotted lines on the left panel of figure 3 correspond

5
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Figure 3. ξ as a function of the sample size N corresponding to proton showers of log(E/eV ) =
19.5, obtained for the shifted-Gamma distribution (left panel) and for the exp-Gauss distribution
(right panel). Solid lines correspond to the ideal case in which Xmax is determined without any
uncertainty. Dashed and dash-dotted lines correspond to the cases in which there is a Gaussian
uncertainty on the determination of Xmax of σRec = 20 g cm−2 and σRec = 40 g cm−2, respectively.
The hadronic interaction model used is QGSJET-II.

to parameter ξG(N) obtained for σRec = 20 g cm−2 and σRec = 40 g cm−2, respectively. When
a symmetric uncertainty on the determination of Xmax is included, the parameter ξ becomes
still smaller and decreases for increasing values of the uncertainty. This is due to the fact that
ξ is larger for asymmetric distributions, like the exponential, and the convolution of the pure
Xmax distribution with a Gaussian is more symmetric than the original one.

The characteristic function of the exp-Gauss distribution is the product of the characteristic
function of the exponential distribution, (1− iλt)−1, with the one corresponding to a Gaussian,
exp(iαt − β2t2/2). Then, the characteristic function of X̄N

max is given by

φEG
X̄N

max
(t) =

(
1 − i

λ

N
t

)−N

exp

(
iαt − β2

N
t2/2

)
, (13)

which corresponds to the convolution of a Gamma distribution with a Gaussian

P̄EG
(
X̄N

max

) = NN+1/2

√
2πβλN�(N)

∫ X̄N
max

−∞
du

(
X̄N

max − u
)N−1

exp

(
− X̄N

max − u

λ/N

)

× exp

(
− (u − α)2

2β2/N

)
. (14)

The last integral is calculated numerically in order to obtain the mode of the resultant
distribution. The solid line in the right panel of figure 3 shows ξEG as a function of the sample
size for log(E/eV ) = 19.5. Note that ξG is smaller than ξEG, this is due to the more extended
tail to larger values of the exp-Gauss distribution compared with the corresponding one to the
shifted-Gamma distribution. In any case, ξEG is still about one order of magnitude smaller than
1/N. As for the case of the Gamma distribution, dashed and dashed-dotted lines correspond
to σRec = 20 g cm−2 and σRec = 40 g cm−2, respectively. In this case, the effect of the
uncertainty on the determination of Xmax is included in P̄EG just by replacing the parameter β

by β̃ =
√

β2 + σ 2
Rec. As expected, the curves that include the uncertainty on the determination

of Xmax fall below the one corresponding to the ideal case.
The left panel of figure 4 shows the parameter ξ as a function of energy corresponding

to the number of events in each energy bin taken from [2], for the case in which there is no
uncertainty on the determination of Xmax (which gives larger value of ξ , as shown before). The
energy assigned to the ith bin, used to calculate ξ , corresponds to the mean value of the energy

6
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Figure 4. ξ (left panel) and 
Xmax (right panel) as a function of log(E/eV ), for the statistics of the
Auger data of [2]. Solid lines correspond to QGSJET-II and dashed lines correspond EPOS 1.99.

in the bin weighted by the broken power-law fit of the cosmic rays energy spectrum, J(E ),
of [9],

〈Ei〉 =
∫ EU

i

EL
i

dE EJ(E )∫ EU
i

EL
i

dE J(E )
, (15)

where EL
i and EU

i are the lower and upper limits of the ith bin. It can be seen that the values
of ξ , obtained by using the exp-Gauss distribution and the shifted-Gamma distribution, are
more than one order of magnitude smaller than the corresponding one for the exponential
distribution, in the whole energy range and for both hadronic interaction models considered.
As in the previous calculation, ξG results are smaller than ξEG. In fact, the ξ curve corresponding
to the true distribution of Xmax should fall between the curves corresponding to the exp-Gauss
and the shifted-Gamma representation of the Xmax distribution.

The right panel of figure 4 shows the parameter 
Xmax = 〈Xmax〉 ξ which gives the
grammage of the shift suffered by 〈Xmax〉 if X̄N

max takes the value of the mode of its distribution.
It can be seen, that for the last energy bin, the one with 34 events, 
Xmax is � 1.5 g cm−2, which
is much smaller than the systematic uncertainties on the determination of 〈Xmax〉 estimated
in [2].

The energy bins considered in the analysis of [2] have a width of 
 log(E/eV) = 0.1 in
the energy range from E = 1018 eV to E = 1019 eV. Between E = 1019 eV and E = 1019.4 eV,

 log(E/eV) changes to 0.2 and the last bin corresponds to E � 1019.4 eV. Therefore, the
number of events per bin decreases in the energy range from E = 1018 eV to E = 1019 eV,
it increases from 96 in the bin [1018.9, 1019] eV to 138 in the bin [1019, 1019.2] eV and then,
it decreases for the last two bins. This change in the bin width generates the structure around
E ∼= 1019.1 eV seen on the curves of figure 4.

Note that ξEG calculated by using EPOS 1.99 is larger than the corresponding one for
QGSJET-II, this is due to the fact that the Xmax distributions obtained with EPOS 1.99 are more
asymmetric (increase faster, coming from small values of Xmax, and have a more extended tail)
than the corresponding ones to QGSJET-II.

Concerning iron showers, it can be seen that ξ takes smaller values than the ones for
protons. This is due to the large suppression of fluctuations in iron showers, the ratio of the
standard deviation to the mean value of Xmax is smaller than that for protons, producing smaller
values of ξ (see equation (11)). In particular, ξ

f e
G = ξ

pr
G /K where K increases from ∼ 2.3 at

E = 1018 eV to ∼ 2.4 at E = 1019.5 eV for QGSJET-II.

7
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3. Conclusions

In this work, we studied in detail statistical bias in the determination of the mean value of
Xmax, suggested in [1], as a possible explanation of the deviation of Auger data from the
proton expectation. We used two different functions to fit the Xmax distribution obtained from
simulations: (i) the convolution of an exponential distribution with a Gaussian and (ii) a shifted-
Gamma distribution. We find that the bias obtained by using these two functions is more than
one order of magnitude smaller than the corresponding one of the exponential distribution,
the one used in [1]. We find that the values of the bias, obtained for the convolution of the
exponential function with the Gaussian, are larger because it presents a more extended tail to
larger values of Xmax than the shifted-Gamma distribution. We also find that the bias diminishes
when a Gaussian (symmetric) uncertainty on the determination of Xmax is included.

We also calculated the expected bias, as a function of primary energy, using the actual
number of events in each energy bin of the Auger data, published in [2], for both hadronic
interaction models considered in this work, QGSJET-II and EPOS 1.99. We find that the largest
value of the bias, corresponding to the bin with the smallest number of events, is smaller than
1.5 g cm−2, much less than the systematic errors on the determination of 〈Xmax〉 estimated in
[2].

Appendix A. Parameters for the exp-Gauss fits

The parameters α, β and λ, obtained from the fits of the Xmax distributions with the exp-
Gauss function (see equation (6)), are fitted with linear functions of log(E/eV ) as shown in
figure A1. They can be written in the following way:⎛

⎝α(E )

β(E )

λ(E )

⎞
⎠ =

⎛
⎝C1 C2

C3 C4

C5 C6

⎞
⎠ (

1
log(E/eV )

)
, (A.1)

where the coefficients Ci, i = 1 . . . 6, are given in table A1 for both hadronic interaction models
considered.

Table A1. Coefficients Ci, in (g cm−2), corresponding to QGSJET-II and EPOS 1.99.

C1 C2 C3 C4 C5 C6

QGSJET-II −239.053 51.0096 −18.0164 2.239 81 138.806 −4.575 08
EPOS 1.99 −443.120 63.0078 13.6458 0.320 823 75.2960 −0.987 241

Appendix B. Calculation of ξ for a truncated exponential distribution

It is possible to describe the Xmax distribution function by a truncated exponential distribution,
which is given by

PTE(Xmax) =
⎧⎨
⎩

1

�
exp

(
−Xmax − Xc

�

)
Xmax � Xc

0 Xmax < Xc

, (B.1)

where � is a parameter that describes the tail of the Xmax distribution and Xc is the truncation
value.

The characteristic function of this distribution is φTE
Xmax

(t) = exp(itXc) (1−it�)−1 and then
the characteristic function of the sample mean is given by φTE

X̄N
max

(t) = exp(itXc) (1−it�/N)−N ,

8
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Figure A1. Parameters α, β and λ corresponding to the fits of the Xmax distribution with the
exp-Gauss function for QGSJET-II and EPOS 1.99. The straight lines correspond to the linear fits
of the points.

which corresponds to a shifted Gamma distribution. Therefore, the distribution function of the
sample mean is given by

P̄TE
(
X̄N

max

) =

⎧⎪⎨
⎪⎩

(
X̄N

max − Xc
)N−1

�(N)(�/N)N
exp

(
−Xmax − Xc

�/N

)
X̄N

max � Xc

0 X̄N
max < Xc

. (B.2)

By using that 〈Xmax〉 = Xc + �, it is easy to show that

ξTE(N) = �

� + Xc

1

N
, (B.3)

= σ [Xmax]

〈Xmax〉
1

N
. (B.4)

Note that, it can be seen, from equation (B.4), that ξTE takes a very similar form to the one
obtained for the shifted-Gamma function, see equation (11).

Typical values of the parameters, obtained experimentally, are Xc
∼= 700 g cm−2 and

� ∼= 56 g cm−2 [10] (note that these parameters depend on primary energy and the ones
used here, obtained from [10], correspond to the energy interval [1018, 1018.5] eV, in any
case, they are just used to roughly estimate the suppression factor of the bias). Therefore,
ξTE(N) ∼= 0.125/N, which is suppressed by a factor 0.125 with respect to the corresponding
one to the exponential distribution.
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