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The usual mathematical formalism of quantum field theory is not rigorous because it contains

divergences that can only be renormalized by nonrigorous mathematical methods. So we present

a method of subtraction of divergences using the formalism of decoherence. This is achieved

by replacing the standard renormalization method by a projector on a well defined Hilbert subspace. In

this way a list of problems of the standard formalism disappears while the physical results of quantum

field theory remain valid. From its own nature, this formalism can be also used in nonrenormalizable

theories.

DOI: 10.1103/PhysRevD.85.025002 PACS numbers: 11.10.Gh

I. INTRODUCTION

The development of formalisms encompassing several

areas of physics is one of the main purposes of theo-

retical physics. Experience shows that when two areas

are successfully unified, the obtained formalism fre-

quently explains new phenomena which were not in-

cluded in either one of the two areas: the unification

of electrostatic forces and magnetism is a venerable and

eloquent example. The basis of a unification is the

choice of a common mathematical structure, e.g. many

physical systems share a common feature: only some

part of the information they contain is relevant for the

comprehension of the system. Following this line, in this

paper, we present a common formalism for some fea-

tures of decoherence and Quantum Field Theory (QFT),

two theories that deal with systems of many degrees of

freedom, with the result that some new understanding is

obtained.

The comprehension of both decoherence theory

and QFT was greatly improved in the last decades.

Moreover, nowadays we understand the mechanics

of decoherence and the classical limit quite well.

Nevertheless, there is not an accepted rigorous formal-

ism of QFT because many doubts still remain. In fact,

QFT has a certain bad reputation: mathematicians say

that it is not properly formulated, philosophers find that

some old unsolved problems reappear in QFT in a viru-

lent shape,1 and some physicists feel that something is

not completely clear.2 For these reasons alternative theo-

ries were developed: the axiomatic version, superstrings,

branes, loop quantum gravity, etc. (see [8,9]). This paper

is an attempt to explain QFT using another approach

based on several ideas, mainly the proper definition of

quantum states and observables and new techniques to

deal with systems with continuous evolution spectrum,

which give good results in other cases ([10–15]).3

The two main ideas

The main purpose of this paper is to discuss the example
of the equivalence between the quantum theory of a �4

theory and what we will call the mathematical formalism

1Like the one of internal and external relations ([1], p. 190).

2Many years ago K.O. Friedrichs said: ‘‘Quantum Field
Theory is akin to the challenge felt by an archeologist stumbling
on records of a high civilization written in strange symbols.
Clearly there were intelligent messages but what did they want to
say?’’ (Even if the sentence is old it is still standing since Haag
quoted it in his book [2].) P. Roman also said that in QFT we
have only learned to ‘‘peacefully coexist’’ with alarming diver-
gencies ([3], p. 298). P. Ramond ([4], p. 172) and L. S. Brown
considered the renormalization a ‘‘miracle’’ ([5], p. 243), etc.
(see also [1,6])
Of course this is not a universal opinion and may be an extreme
one, but it is certainly the one, e.g., of Haag’s. This will be the
point of view that we will adopt in this paper, even if we
acknowledge other most respectable opinions, e.g., the explana-
tion of renormalization based in an analogy with statistical
physics of magnets and fluids [7].

3The continuous spectrum will force us to work with distribu-
tions, kernels, etc. We will do so, instead of putting the system in
a box, lattice, etc. In this way we will obtain a more direct
explanation of what is really going on.
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for quantum continuous systems that will be introduced in
Sec. III. Following the main idea of [16], in this work it will
be shown that the generating functional of�4 theory can be
written as the sum of two terms: a divergent term, which
contains all the infinities of the theory, and a regular term
which contains the physical contribution.

Our program is based on the introduction of a rigorous
mathematical formalism based in two main ideas:

(1) We will deal with quantum systems where partial
degrees of freedom are used and other partial de-
grees of freedom are neglected. In QFT, the counter-
terms of renormalization theory eliminate some part
of information that it is considered unphysical since
it contains meaningless infinities. Analogously, in
the formalism introduced in this work, the whole
quantum system is decomposed into an external
quantum system and in an internal quantum system,
but only the relevant degrees of freedom will be
considered.

(2) We will substitute the unsatisfactory counterterms
in QFT renormalization by a simple projection� on
a well defined subspace of an also well defined
Hilbert space. The central idea is the following: if

�ðnÞðx1; . . . ; xnÞ are some (symmetric) n-point func-
tions (like Feynman or Euclidean functions) we can
define the corresponding generating functional [[2],
Eq. (II.2.21), [5], eq. (3.2.11)] as

W½J� ¼ X1
n¼0

in

n!

Z
�ðnÞðx1; . . . ; xnÞJðx1Þ . . . JðxnÞ

� d4x1 . . . d
4xn (1)

where4

�ðnÞðx1; . . . ; xnÞ � h0j�ðx1Þ . . .�ðxnÞj0i: (2)

A convenient way to eliminate trivial contributions
of single-particle propagators is by introducing a
modified generating functional Z½J� for irreducible
Green’s functions. It is defined as

W½J� ¼ eiZ½J�: (3)

The new generating functional Z½J� satisfies the
normalization condition Z½0� ¼ 0 and it reads

iZ½J� ¼ X1
n¼0

in

n!

Z
�ðnÞc ðx1; . . . ; xnÞJðx1Þ . . . JðxnÞ

� d4x1 . . . d
4xn; (4)

where in this case �ðnÞc ðx1; . . . ; xnÞ are connected
n-point functions that can be obtained by differen-
tiation

�ðnÞc ðx1; . . . ; xnÞ ¼ 1

in�1

�nZ½J�
�Jðx1Þ . . .�JðxnÞ

��������J¼0
:

(5)

In turn, the connected n-point functions can be
written in terms of the Lagrangian interaction den-
sity L0

I ðypÞ as

�ðnÞc ðx1; . . . ; xnÞðpÞ ¼ ip

p!

Z
h�0jT�ðx1Þ . . .�ðxnÞ

�L0
I ðy1Þ . . .L0

I ðypÞj�0i
� d4y1 . . . d

4yp: (6)

Introducing (6) in (4) we have

iZ½J� ¼ X1
n¼0

X1
p¼0

in

n!

ip

p!

Z
h�0jT�ðx1Þ . . .�ðxnÞ

� L0
I ðy1Þ . . .L0

I ðypÞj�0iJðx1Þ . . . JðxnÞ
� d4y1 . . .d

4ypd
4x1 . . . d

4xn: (7)

The main idea of this paper is to rewrite the generating
functional of connected Feynman diagrams [Eq. (7)] as the
inner product of a state with an observable. The observ-
ables will have the property of being diagonal in some of
its components which will contain the short-distance sin-
gularities of the physical theory. In turn, these singularities
will appear in the inner product if also the state has a
nonzero diagonal part in the same components. In this
way, the physical contribution will be obtained by throwing
away the diagonal part of the state by a projection in the
Hilbert space where the states are defined.
This procedure has a conceptual counterpart: essentially

we must admit that the main role of physics is to explain
what the apparatus measure. To do this physicists usually
construct an ideal model of the system under study, using
postulates and mathematical structures that go far beyond
the simple measurements of the apparatus (e.g. the unitary
time evolution theories or when we only consider the
microstates of a system, etc.). In fact, it is very rare to
model a physical system accurately, and so it is quite usual
to construct models which only vaguely resemble the real
system but whose essence one hopes to capture. This is the
case of irreversibility and decoherence but also the case of
QFT, where the Lagrangians are usually chosen only by
their simplicity and covariant properties. But after a model
of the system is adopted, physicists again consider the
apparatus and what they really measure, and they refine
the set of states by only considering those that are real and
measurable. Namely, they constrain the whole information
the system ideally contains, only keeping the information
that the apparatus really provides and rejecting the rest [17]
(e.g. when they obtain nonunitary time evolution theories
via coarse-graining or the consideration of the macrostates
only, etc.). Then if the theoretical prediction coincides with

4In a realistic field theory (a theory with interactions), the
functions of Eq. (2) are not well defined, since they are objects
with mathematical properties that are worse than those of
distributions.

JUAN SEBASTIÁN ARDENGHI AND MARIO CASTAGNINO PHYSICAL REVIEW D 85, 025002 (2012)

025002-2



the measurements up to a certain level they say that the
theory is correct (up to this level). In some theories this fact
is clearly stated (e.g. in decoherence theory, see paper [18])
but not generally in others. Following this line of thought,
our presentation in QFT coincides with the idea of restrain-
ing the whole information that the quantum field contains.
These ideas agree with those states in [19] (Vol. 1, p. 499):
QFT yields divergent integrals ‘‘but these infinities cancel
when we express all the parameters of the theory in re-
normalized quantities, such as the masses and the charges
that we actually measure.’’ Moreover, it also coincides
with [20], since we believe that the process of subtracting
infinities is really a matter of subtracting the irrelevant
effect of the ‘‘perhaps poorly understood physics at high
energy or short scale to obtain the meaningful physics at
the scales actually studied in the laboratory.’’ In this sense,
the constraining is done by neglecting the physics of high
energy or short scale.

In the standard presentation of QFT in textbooks, the
infinities are eliminated by the introduction of counter-
terms in the Lagrangian. This is a nonaesthetic and
poorly motivated method. Really the simpler Bogolubov,
Pasarsiuk, Hepp, and Zimmermann subtraction of infinities
introduced long ago in papers [21] is more direct. We will
restudy this method using dimensional regularization [22],
and we will show that the divergences can be avoided by
constraining the quantum state of the quantum field with a
projector. In this way the substraction will not be an ad hoc
procedure to make finite an essentially divergent theory,
but it will be the consequence of the projector that does not
see the short-scale behavior of the quantum field.

Even if our mathematical treatment is essentially rigor-
ous, in this paper we do not intend to give an axiomatic
version for philosophers nor a mathematical development
suitable for pure mathematicians (these matters are only
sketched, and they will be explained elsewhere). On the
contrary we will try to present a treatment that could be
meaningful for physicists. To do this we will focus in some
apparently irrelevant details to make our exposition as
clear as possible. Finally, the main advantage of this
method is the possible application to nonrenormalizable
theories that will be studied in future works. For the sake of
simplicity we have only added the second order in the
perturbation expansion for the self-energy of the electron
inQED and the first order in the perturbation expansion for
�6 theory.

In Sec. II we study the decoherence phenomenon in the
discrete and continuous case showing how divergences
naturally appear in the later case. In Sec. III we introduce
the divergent and regular structure of the continuous quan-
tum systems. In Sec. IV we study the first order in pertur-
bation �4 theory to explain carefully the relation between
QFT and the continuous quantum systems. In Sec. V we
study how we can proceed with all orders in perturbation
�4 theory. In Sec. VI we give a conceptual explanation of

the projection in algebraic terms.5 The conclusions will be
stated in Sec. VII. In Appendix A we will calculate the
number of ultraviolet divergences in a �l theory. In
Appendix B we introduce the mass shift in the two-point
correlation function in �4 theory using dimensional regu-
larization. Finally, in Appendix C and D we show how to
apply the formalism introduced in Sec. III to QED and �6

theory.

II. DECOHERENCE

A. The formalism in the discrete case

In general, to obtain irreversibility and decoherence,
only some (relevant) information must be considered,
while the remaining (irrelevant) information must be for-
gotten. This is the case for all the formalisms of decoher-
ence, including the environment Induced decoherence
(EID) (see e.g. [23]) and our formalism for decoherence
(SID), (that was introduced and studied in papers
[10–12,15,24]). Both formalisms are based in a choice of
a space of relevant observables and in both cases a projec-
tor � can be defined (see [25]). To give an example of a
projector in decoherence theory we will only consider the
paradigmatic EID formalism. In EID, a system S (usually a
small system of macroscopic nature) and an environment E
(usually a big system of macroscopic nature) are defined
(in a more or less arbitrary way) and the closed system U
‘‘the universe’’ becomes U ¼ E [ S. Then we have the
system and environment subspaces OE and OS and the
observable space OU such that

O U ¼ OS �OE: (8)

Then we consider the relevant observables OR defined as

OR ¼ OS � IE; (9)

whereOS 2 OS and IE is the identity observable ofOE. As
U ¼ E [ S the corresponding Hilbert space is H U ¼
H S �H E. Let fjiig ði ¼ 1; 2; . . . ; mÞ be the basis of
H S, let fj�ig ð� ¼ 1; 2; . . . ; nÞ be the basis of H E; there-
fore, fji; �ig is the basis ofH U. Under these conditions we
are only interested in what affects the relevant observable,
i.e., the mean values

hORi� ¼ X
ij��

�i�;j�OSij��� ¼ X
ij

�X
�

�i�;j�

�
Oij

¼ hOSi�S
; (10)

where it can easily be proved that

�S ¼ TrE� ¼ X
�

�i�;j�; (11)

5In this section we will return to the concept of instrument and
system model.
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where TrE is the partial trace of the indices � of the
environment. In many cases it can be proved that this
�SðtÞ evolves in a nonunitary way and reaches equilibrium
at a relaxation time tR. Moreover a moving preferred basis
can be defined where �SðtÞ becomes diagonal in a deco-
herence time tD < tR (see [26]).

B. The formalism in the continuous case

In this case, the corresponding Hilbert space is H U ¼
H S �H E, where fj!Sig (!s 2 R) is the basis of H S,
and fj!Eig (!E 2 R) is the basis of H E; therefore,
fj!S;!Eig is the basis of H U. If we consider the relevant
observables OR [see Eq. (9)], the mean value can be
calculated as

hORi�¼
ZZZZ

�ð!S;!E;!
0
S;!

0
EÞOð!S;!

0
SÞ

��ð!E�!0
EÞd!Sd!Ed!

0
Sd!

0
E

¼
ZZ �Z

�ð!S;!E;!
0
S;!EÞd!E

�
Oð!S;!

0
SÞd!Sd!

0
S

¼hOSi�S
; (12)

where

�S ¼ TrE� ¼
Z

�ð!S;!E;!
0
S; !EÞd!E; (13)

which is the equivalent to Eq. (11) in the continuous case.

Divergences in the continuous formalism

For the sake of simplicity we will only consider an
isolated quantum system with corresponding Hilbert space
H and a basis fj!ig. The relevant observables acting in
H �H are

O¼
ZZ

ðODð!Þ�ð!�!0ÞþONDð!;!0ÞÞj!ih!0jd!d!0;

(14)

where OD and OND are regular functions. These observ-
ables are contained in the spaceO of self-adjoint operators.
The introduction of distributions like �ð!�!0Þ is neces-
sary because the ‘‘singular term’’ ODð!Þ�ð!�!0Þ ap-
pears in observables that cannot be left outside the space
of observables, like the identity operator, the operator
whose eigenvectors are j!i, or the operators that commute
with the latter. So, even in this simple case the observables
contain � functions (while in more elaborated cases they
will also contain other kind of distributions).

Symmetrically, a generalized state reads

� ¼
ZZ

ð�Dð!Þ�ð!�!0Þ þ �NDð!;!0ÞÞj!ih!0jd!d!0;

(15)

where �D and �ND are regular functions. This state is
contained in a convex set of states S. The introduction of
distributions like �ð!�!0Þ is also necessary in this case
because the singular term �Dð!Þ�ð!�!0Þ appears in
generalized states that cannot be left outside of the set S,
like the equilibrium state.
The mean value of the observable O in the state � reads

Tr ð�OÞ ¼ �ð0Þ
Z

�Dð!ÞODð!Þd!

þ
Z

ONDð!;!Þ�Dð!Þd!

þ
Z

�NDð!;!ÞODð!Þd!

þ
ZZ

�NDð!;!0ÞONDð!0; !Þd!d!0: (16)

But this result is meaningless because a term proportional
to �ð0Þ appears.
This means that the mathematical formalism to describe

continuous quantum systems contain divergences which
have no sense from the mathematical point of view. From
the just introduced mathematical formalism we can see that
the divergence can be avoided by the following transfor-
mation acting on the state:

�ð�Þ ¼ ��
Z

�ð!Þj!ih!jd!; (17)

where �ð!Þ is some regular function of!. In matrix terms,
this transformation in the discrete case acts as a displace-
ment of the diagonal elements:

huj�ð�Þjvi ¼ huj�jvi � �ðuÞ�uv: (18)

Applying again the transformation we obtain

�2ð�Þ ¼ �ð�ð�ÞÞ ¼ �ð��
Z

�ð!Þj!ih!jd!Þ: (19)

If the transformation is linear then6

�ð�� �ð!Þj!ih!jd!Þ
¼ �ð�Þ ��

�Z
�ð!Þj!ih!jd!

�

¼ �ð�Þ (20)

because �ðR�ð!Þj!ih!jd!Þ is zero. Then
�2ð�Þ ¼ �ð�Þ (21)

which implies that the transformation is idempotent, so it
can be considered a projector. Choosing as a regular func-
tion �ð!Þ ¼ �Dð!Þ, the transformation on the state reads

6Here linear means �ðaþ bÞ ¼ �ðaÞ þ�ðbÞ
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�ð�Þ ¼ ��
Z

�Dð!Þj!ih!jd!

¼
ZZ

�NDð!;!0Þj!ih!0jd!d!0: (22)

Finally, the trace gives

Tr ð�ð�ÞOÞ ¼
Z

�NDð!;!ÞODð!Þd!

þ
ZZ

�NDð!;!0ÞONDð!0; !Þd!d!0:

(23)

This is a simple example of what will be done below.
It should be clear that the divergences in the mean value

of an observable has been solved in [10] based in the
mathematical structure introduced in paper [27]. But for
the purpose of this paper we will only work with the
divergences and the projector. It will be a source of future
works to describe a finite quantum field theory from the
beginning using the ideas in [10].

III. QUANTUM CONTINUOUS SYSTEMS:
A GENERAL FORMALISM FOR DIVERGENCES

In this section we will introduce a general formalism in
terms of states and observables following the same proce-
dure used in decoherence. For the sake of simplicity a few
assumptions will be introduced in order to apply them to
Quantum Field Theory of a perturbative �4 theory.

The complete quantum system will be defined by S ¼
Sext [ S1 [ . . . [ Sp, where Sext will be called the external

quantum system and S1; . . . ; Sp will be called the internal

quantum systems. The corresponding Hilbert space is
H ¼ H ext �H 1 � . . . �H p. Each quantum system

will contribute with diagonal and nondiagonal parts in
the observables and states in the same way as in the
decoherence approach (see Sec. II B). We will make the
following simplifications: we will only consider nondiag-
onal observables in Sext and diagonal observables in the
internal quantum systems. For the states we will only
consider the nondiagonal part in the external quantum
system Sext in the coordinate basis and both diagonal and
nondiagonal parts in the rest of the internal quantum
systems. This particular choice will be clearer below.

This means that observables and states read

OðpÞ
rel ¼

Z
Oextðx1; x2Þ

Yp
i¼1

�ðyi � wiÞjx1; y1; . . . ; ypi

� hx2; w1; . . . ; wpjd4x1d4x2
Yp
i¼1

d4yid
4wi; (24)

where the subscript rel means ‘‘relevant’’7 and

�ðpÞ ¼ Xp�1

k¼0

Z
�ðkÞ
extðx1; x2Þ

Yp
i¼1

ð�ði;kÞ
D ðyiÞ�ðyi � wiÞ

þ �ði;kÞ
ND ðyi; wiÞÞjx1; y1; . . . ; ypi

� hx2; w1; . . . ; wpjd4x1d4x2
Yp
i¼1

d4yid
4wi; (25)

where fjx1ig is a continuous basis of H ext (and fhx2jg the
corresponding dual basis) and each fjypig is a basis ofH p

(and fhwpjg the corresponding dual basis). The p super-

script on the state indicates the number of internal quantum
systems and the sum in k will be associated with irreduc-
ible diagrams in the perturbation theory (this will be ex-
plained in the following sections).

The product �ðpÞOðpÞ
rel reads

�ðpÞOðpÞ
rel ¼

Xp�1

k¼0

Z
�ðkÞ
extðx1; x2ÞOextðx2; x02Þ

�Yp
i¼1

�
�ði;kÞ
D ðyiÞ�ðyi � wiÞ þ �ði;kÞ

ND ðyi; wiÞ
�

� jx1; y1; . . . ; ypihx02; w1; . . . ; wpj

� d4x1d
4x2d

4x02
Yp
i¼1

d4yid
4wi (26)

then8

Trð�ðpÞOðpÞ
rel Þ ¼

Xp�1

k¼0

Z
�ðkÞ
extðx1; x2ÞOextðx2; x1Þ

�Yp
i¼1

ð�ði;kÞ
D ðyiÞ�ð0Þ

þ �ði;kÞ
ND ðyi; yiÞÞd4x1d4x2

Yp
i¼1

d4yi: (27)

We can further simplify the computation: in Eq. (27) we
can calculate the integral over the yi coordinates as

Z Yp
i¼1

ð�ði;kÞ
D ðyiÞ�ð0Þ þ �ði;kÞ

ND ðyi; yiÞÞd4y1 . . . d4yp

¼ Yp
i¼1

Z
ð�ði;kÞ

D ðyiÞ�ð0Þ þ �ði;kÞ
ND ðyi; yiÞÞd4yi: (28)

That is, the integral and the product commute because each
integrand does not mix the coordinates. Now, we can write

7This particular name will be explained later.

8In the following equation a �ð0Þ appears, which is not a well
defined mathematical object. However, this fact indicates that
the formalism introduced above has a bad short-distance
behavior.
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�ð0Þ
Z

�ði;kÞ
D ðyiÞd4yi þ

Z
�ði;kÞ
ND ðyi; yiÞd4yi

¼ �ð0Þ�ði;kÞ
D þ �ði;kÞ

ND ; (29)

where

�ði;kÞ
D ¼

Z
�ði;kÞ
D ðyiÞd4yi �ði;kÞ

ND ¼
Z

�ði;kÞ
ND ðyi; yiÞd4yi:

(30)

Then the right-hand side (rhs) of Eq. (28) reads

Yp
i¼1

ð�ð0Þ�ði;kÞ
D þ �ði;kÞ

ND Þ ¼ ð�ð0Þ�ð1;kÞ
D þ �ð1;kÞ

ND Þ . . .

� ð�ð0Þ�ðp;kÞ
D þ �ðp;kÞ

ND Þ; (31)

which can be written as

Yp
i¼1

ð�ð0Þ�ði;kÞ
D þ �ði;kÞ

ND Þ ¼ Xp
l¼0

�ðp;kÞ
l ½�ð0Þ�l; (32)

where

�ðp;kÞ
l ¼ X

p
l

� �

m¼1

fðp;k;lÞm ; (33)

where

p
l

� �
¼ p!

l!ðp� lÞ! :

In particular

�ðp;kÞ
0 ¼ X1

m¼1

fðp;k;0Þm ¼ Yp
i¼1

�ði;kÞ
ND ; . . .

�ðp;kÞ
p ¼ X1

m¼1

fðp;k;pÞm ¼ Yp
i¼1

�ði;kÞ
D : (34)

All the terms �ðp;kÞ
l with l > 0 that are multiplied by

½�ð0Þ�l contain at least one �ði;kÞ
D , that is, the diagonal part

of the state of the _i-internal quantum system.
Finally, we can write

Tr ð�ðkÞ
extOextÞ ¼

Z
�ðkÞ
extðx1; x2ÞOextðx2; x1Þd4x1d4x2: (35)

Then Eq. (27) reads

Tr ð�ðpÞOðpÞ
rel Þ ¼

Xp�1

k¼0

Xp
l¼0

�ðp;kÞ
l ½�ð0Þ�lTrð�ðkÞ

extOextÞ: (36)

Finally, we can multiply Trð�ðpÞOðpÞ
rel Þ by ip

p! and sum over

the index p9:

Tr ð�OextÞ ¼
X1
p¼0

ip

p!
Trð�ðpÞOðpÞ

rel Þ: (37)

As we shall see in the following sections, this function
Trð�OextÞ is identical to the generating functional of�4 for
two external points.
Introducing Eq. (36) in Eq. (37) we finally have

Tr ð�OextÞ ¼
X1
p¼0

Xp�1

k¼0

Xp
l¼0

ip

p!
�ðp;kÞ
l ½�ð0Þ�lTrð�ðkÞ

extOextÞ:

(38)

This last equation can be rewritten as

Trð�OextÞ ¼
X1
k¼0

BkTrð�ðkÞ
extOextÞ

Bk ¼
X1
l�1

Xl
j¼0

ilþk

ðlþ kÞ!�
ðl;kÞ
j ½�ð0Þ�j

(39)

and obtain the last equation defining a state

� ¼ X1
k¼0

Bk�
ðkÞ (40)

which resembles a spectral decomposition of the quantum
state. Finally, we can rearrange Eq. (39) as

Tr ð�OextÞ ¼
X1
s¼0

Ds½�ð0Þ�s; (41)

where

Ds ¼
X1
k¼0

X1
v¼1

ivþk

ðvþ kÞ!�
ðv;kÞ
s Trð�ðkÞ

extOextÞ: (42)

From this point of view, the finite contribution to the mean
value of the observable Oext on the state � comes from the
s ¼ 0 term in Eq. (41) only.

A. Cancellation of the divergent structure
by a transformation

We can make the following transformation in Eq. (41):

D0 ¼ �D0 �Ds ¼
X1
s¼1

�Ds½�ð0Þ�s: (43)

Then, Eq. (41) reads

Tr ð ��OextÞ ¼ �D0 þ
X1
s¼1

ðDs � �DsÞ½�ð0Þ�s; (44)

where �� is the corresponding transformed state. If

9The coefficients ip

p! are introduced for later convenience.
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Ds � �Ds ¼ 0; (45)

then Eq. (41) reads

Tr ð ��OextÞ ¼ �D0; (46)

where only the finite zero order terms remains. In turn,

using Eq. (42) and (43), the transformed coefficients ��ðv;kÞ
s

of Eq. (34) must obey the following equation:

��ðv;kÞ
s � �ðv;kÞ

s ¼ 0 for s ¼ 1; . . . ;þ1;

v ¼ 1; . . . ;þ1; k ¼ 0; . . . ;þ1:
(47)

From this point of view, the finite contribution to Trð ��OextÞ
reads

Tr ð ��OextÞ ¼
X1
k¼0

X1
v¼1

ivþk

ðvþ kÞ!
�Yv
i¼1

�ði;kÞ
ND

�
Trð�ðkÞ

extOextÞ;

(48)

where the transformed state reads

�� ¼ X1
k¼0

�X1
v¼1

ivþk

ðvþ kÞ!
Yv
i¼1

�ði;kÞ
ND

�
�ðkÞ
ext: (49)

From this point of view, the cancellation of the divergent
terms of the trace [see Eq. (38)] implies a transformation of
the nondiagonal and diagonal internal quantum state [see
Eq. (47)] which is a relation between the nondiagonal and
diagonal states.
This procedure is similar to the renormalization proce-

dure in conventional QFT by introducing counterterms in
the Lagrangian. In this case, the counterterms will be
defined by new quantum states �C:T: which will have
diagonal and nondiagonal part ��D and ��ND and will cancel
the divergences through Eq. (47). So we will rename the
transformation introduced in this section [Eq. (43)] as
Renormaliztion.

B. Cancellation of the divergence by a projection

As we have seen in the previous subsection, we can
find a transformation for the nondiagonal functions [see
Eq. (47)] so that the trace results in a finite value. On the
other hand we saw that this finite result exclusively de-
pends on the nondiagonal quantum state, so we can con-
struct a projector that projects over the nondiagonal
quantum state. Following Eq. (17), the projector reads

�pð�ðpÞÞ ¼ �ðpÞ � Xp�1

k¼0

Z
�ðkÞ
extðx1; x2Þjx1ihx2jd4x1d4x2

�Z
�ð1;kÞ
D ðy1Þ�ð2;kÞ

D ðy2Þ . . .�ðp;kÞ
D ðypÞjy1; . . . ; ypihy1; . . . ; ypj

Yp
i¼1

d4yi

þ
Z

�ð1;kÞ
D ðy1Þ�ð2;kÞ

D ðy2Þ . . .�ðp�1;kÞ
D ðyp�1Þ�ðp;kÞ

ND ðyp; wpÞjy1; . . . ; ypihy1; . . . ; wpjd4wp

Yp
i¼1

d4yi þ . . .

þ
Z

�ð1;kÞ
D ðy1Þ�ð2;kÞ

ND ðy2; w2Þ . . .�ðp;kÞ
ND ðyp; wpÞjy1; . . . ; ypihy1; . . . ; wpjd4y1

Yp
i¼2

d4yid
4wi

�
: (50)

This projector acting on the state �ðpÞ gives the following
result:

�pð�ðpÞÞ¼ Xp�1

k¼0

Z
�ðkÞ
extðx1;x2Þ

Yp
i¼1

�ði;kÞ
ND ðyi;wiÞjx1;y1; . . . ;ypi

�hx2;w1; . . . ;wpjd4x1d4x2
Yp
i¼1

d4yid
4wi:

(51)

Then, the mean value of OðpÞ
rel in the state �pð�ðpÞÞ reads

Tr ð�pð�ðpÞÞOðpÞ
rel Þ ¼

Xp�1

k¼0

Z
�ðkÞ
extðx1; x2ÞOextðx2; x1Þ

� Yp
i¼1

�ði;kÞ
ND ðyi; yiÞd4x1d4x2

Yp
i¼1

d4yiÞ

(52)

from Eq. (28) and (35); the last equation can be written as

Tr ð�pð�ðpÞÞOðpÞ
rel Þ ¼

Xp�1

k¼0

�ðp;kÞ
0 Trð�ðkÞ

extOextÞ: (53)

Multiplying by ip

p! and summing in p we finally obtain

Tr ð��pOextÞ ¼
X1
p¼0

Xp�1

k¼0

ip

p!
�ðp;kÞ
0 Trð�ðkÞ

extOextÞ; (54)

where �� ¼ �ð�ðpÞÞ because � is a projector. The last
equation is similar to Eq. (39) and we have

Tr ð��pOextÞ ¼
X1
k¼0

B�p
ðkÞTrð�ðkÞ

extOextÞ

B�p
ðkÞ ¼ X1

l¼1

ilþk

ðlþ kÞ!�
ðl;kÞ
0 ;

(55)

which implies that
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��p ¼ X1
k¼0

B�ðkÞ�ðkÞ
ext: (56)

Finally, in terms of Eq. (46) and (54) reads

Tr ð��pOextÞ ¼ D0: (57)

In this way, we have eliminated all the divergences of the
mathematical formalism by the application of the projector
over a well defined Hilbert subspace.10 This formalism will
be applied to the �4 theory in terms of states and observ-
ables, and then we will use dimensional regularization to
localize the divergences. Then we will show that these
divergences appear in �4 with the same structure of
Eq. (38), where ½�ð0Þ�� will be represented by a factor

�
ðd�4Þ� , where d is the dimension of space-time.

IV. �4 AT FIRST ORDER IN
PERTURBATION THEORY

This section has the purpose to see how the formalism
introduced in the last section can be applied to the �4

theory at the first order in the perturbation theory. In the
Appendix B it is shown how to handle all the other orders
using dimensional regularization. We will only consider
the generating functional of two external points. In QFT,
this generating functional is symbolized Z2½J�, and in this
case it is a function of two external points x1 and x2 [see
[2], Eq. (II.2.31)]:

Z2½J� ¼
ZZ

�ð2Þðx1; x2ÞJðx1ÞJðx2Þd4x1d4x2; (58)

where �ð2Þðx1; x2Þ is the two-point connected correlation
function of the interacting theory and JðxÞ is the source
term.

The first order in the perturbation expansion of

�ð2Þðx1; x2Þ reads

�ð2Þðx1; x2Þ ¼
�
�i

�

4!

�Z
d4y1h�0j�ðx1Þ�ðx2Þ�4ðy1Þj�0i:

(59)

Introducing Eq. (59) in Eq. (58) the generating functional
Z2½J� reads

Z2½J� ¼
�
�i

�

4!

�ZZZ
h�0j�ðx1Þ�ðx2Þ�4ðy1Þj�0i

� Jðx1ÞJðx2Þd4x1d4x2d4y1: (60)

The only connected Feynman diagram reads

h�0j�ðx1Þ�ðx2Þ�4ðy1Þj�0i
¼ �ðx1 � y1Þ�ðx2 � y1Þ�ðy1 � y1Þ; (61)

where �ðx� yÞ is the scalar propagator. This propagator

diverges when x ¼ y, which means that �ð2Þ diverges due to
the factor �ðy1 � y1Þ in Eq. (61). To formally avoid this
divergence, without changing the theory, we can introduce
a Dirac delta in Eq. (61) so

h�0j�ðx1Þ�ðx2Þ�4ðy1Þj�0i
¼
Z
d4w1�ðx1�y1Þ�ðx2�y1Þ�ðy1�w1Þ�ðy1�w1Þ:

(62)

Introducing Eq. (62) in Eq. (60) we have

Z2½J�¼12 �
�
�i

�

4!

�ZZZZ
�ðx1�y1Þ�ðx2�y1Þ�ðy1�w1Þ

��ðy1�w1ÞJðx1ÞJðx2Þd4x1d4x2d4y1d4w1; (63)

where 12 is the symmetry factor.11 We can call

�ðx1; y1; x2; w1Þ ¼ �ðx1 � y1Þ�ðx2 � y1Þ�ðy1 � w1Þ
(64)

and

OND
ext ðx1; x2Þ ¼ Jðx1ÞJðx2Þ: (65)

Then Eq. (63) reads

Z2½OND
ext � ¼ 12

�
�i

�

4!

�ZZZZ
�ðx1; y1; x2; w1Þ

� �ðy1 � w1ÞOND
ext ðx1; x2Þd4x1d4x2d4y1d4w1;

(66)

which is identical to Eq. (12) with !S ¼ x1, !E ¼ y1,
!0

S ¼ x2, and !0
E ¼ w1.

Following the notation of Eq. (27), we can write
Eq. (66) as

Z2 ¼ Trð�ð1ÞOð1Þ
rel Þ; (67)

where

�ð1Þ ¼
ZZZZ

�ðx1 � y1Þ�ðx2 � y1Þ�ðy1 � w1Þjx1; y1i
� hx2; w1jd4x1d4x2d4y1d4w1 (68)

and

10In Sec. VI we will be more precise about this Hilbert
subspace.

11From Eq. (63) we can interpret the quantum state as the tree
diagram associated to the Feynman diagram of the first order in
the perturbation expansion. The propagator �ðy1 � w1Þ is trans-
formed into a loop when we introduce the observable which has
a �ðy1 � w1Þ. This procedure can be done for all the Feynman
diagrams, but it only introduces a pictorial way to understand the
quantum states.
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Oð1Þ
rel ¼

ZZZZ
Jðx1ÞJðx2Þ�ðy1 � w1Þjx1; y1i

� hx2; w1jd4x1d4x2d4y1d4w1: (69)

In principle we must admit that the definition of state given

by Eq. (68) is not rigorous because Trð�ð1ÞÞ ¼ 1. But this
is exactly what we are trying to achieve in the mathemati-
cal formalism of QFT. When this problem is resolved, we
may obtain the normalization of the state without
difficulties.

A. Reduced state

As we have seen in the previous section [see Eq. (24)],
the relevant observable of Eq. (69) can be written as

Oð1Þ
rel ¼ OND

ext � Iint: (70)

This is analogous to the observable of Eq. (9). In the
continuous case, Eq. (66) can be written as the trace of
an observable in a reduced state, analogously to Eq. (13).
To be more precise, it is convenient to remember which the
Hilbert spaces are. The external system Sext corresponds to
the coordinate x1 and x2, and the internal quantum system
Sint corresponds to the y1 and w1 coordinates. The com-
posite system is S ¼ Sext [ Sint with the corresponding
Hilbert space H ¼ H ext �H int. The continuous basis
for H ext is fjx1ig (and the corresponding basis of the dual
space is fhx2jg), and the continuous basis for H int is fjy1ig
(and the corresponding basis of the dual space is fhw1jg),
which means that in Sec. III we have p ¼ 1; in general, p
counts the order in perturbation, the number of internal
quantum systems, and the internal coordinates. Both ex-
ternal and internal coordinates come in pairs. This means
that the only contributions to the generating functional
comes from an even number of external and internal coor-
dinates. This agrees with �4 theory because the generating
functional vanishes for an odd number of external
coordinates.

Then, the Eq. (67) can be written as the trace of an
observable in a reduced state:

Z2½Oext� ¼ 12

�
�i

�

4!

�ZZ
Trintð�ð1ÞÞOND

ext ðx1; x2Þd4x1d4x2
¼ Trð ��ð1;0Þ

ext OextÞ: (71)

Here the reduced state ��ð1;0Þ
ext reads12

��ð0Þ
ext¼Trintð�ð1ÞÞ¼

Z
hy01j�ð1Þjy01id4y01

¼
�Z

�ðx1�y1Þ�ðx2�y1Þ�ð0Þdy1Þjx1ihx2jd4x1d4x2;
(72)

where Trint is the partial trace of �ð1Þ with respect to the
internal coordinates y1, and Oext reads

13

Oext ¼
Z

Jðx1ÞJðx2Þjx1ihx2jd4x1d4x2: (73)

The reduced state of Eq. (72) is divergent because the

component of ��ð0Þ
ext contains a �ð0Þ. This state must be

regularized, which means that we must extract the singular
term. It is important to note that the reduced state has a
divergence because we have taken the partial trace over the
internal coordinates. This does not mean that the reduced
state, which depends on the external coordinates x1 and x2,
is singular. In fact, because x1 and x2 are the external
points, they must be different x1 � x2. So, the divergence
only comes from taking y1 ¼ w1 which is identical to have
a diagonal state in the internal quantum system, which
means that in fact our state is identical to the state of
Eq. (25) with p ¼ 1. This is similar to taking the internal
partial trace on Eq. (25), which gives

Tr intð�ð1ÞÞ ¼
Z
hy01j�ð1Þjy01i

¼ �ð0Þ�ð1;0Þ
1

Z
�ð1:0Þ
ext ðx1; x2Þjx1ihx2jd4x1d4x2

þ �ð1;0Þ
0

Z
�ð1;0Þ
ext ðx1; x2Þjx1ihx2jd4x1d4x2;

(74)

where [see Eq. (29) and (34)]

�ð1;0Þ
1 ¼

�Z
�ð1;0Þ
D ðy1Þd4y1

�

�ð1;0Þ
0 ¼

�Z
�ð1;0Þ
ND ðy1; y1Þd4y1

�
:

(75)

To give Eq. (71) the form of Eq. (38), we must regularize
�ð0Þ through dimensional regularization.
The �ð	Þ reads [[7], p. 31, eq. (2.59)]

�ð	Þ ¼
Z d4p

ð2
Þ4
ie�ip	

p2 �m2
0 þ i�

: (76)

Then, the component of the reduced state ��ð1;0Þ
ext [see

Eq. (72)] reads

��ð0Þ
extðx1; x2Þ ¼ i3

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2 þ i�Þ2

�
Z d4l

ð2
Þ4
1

l2 �m2
: (77)

The l-momentum integral diverges when l ! 1. The di-
mensional regularization [22] consists of computing
the Feynman diagram as an analytical function of the

12The bar above the state �� indicates that this state is not the
same as the one in Eq. (38).

13In Eq. (73) the source terms Jðx1Þ and Jðx2Þ acquire an
important role in the formalism introduced above: they are the
distribution function of the external observables.

RENORMALIZATION: THE OBSERVABLE-STATE MODEL PHYSICAL REVIEW D 85, 025002 (2012)

025002-9



dimensionality of space-time, d. In this way, the p�
momentum integral reads

Z ddl

ð2
Þd
1

l2 �m2
0

¼ m2
0

ð4
Þ2
�
m2

0

4


�ðd=2Þ�2
�

�
1� d

2

�
; (78)

where �ð1� d
2Þ is the Gamma function which diverges

when d ¼ 4; 6; 8; . . . . Near d ¼ 4, �ð1� d
2Þ behaves as

�

�
1� d

2

�
� 2

�
þ �þOð�Þ; (79)

where � ¼ 
2

12 is the Euler-Mascheroni constant andOð�Þ is
a sum of powers in � ¼ d� 4.

Expanding in Taylor series the ð�2Þ4�d term in Eq. (78)
and using Eq. (79) we have14

ð�2Þ��
Z ddl

ð2
Þd
1

l2�m2
0

¼ m2
0

ð4
Þ2
�
1��ln

�
4
�2

m2
0

�
þOð�Þ

�

�
�
2

�
þ�ð2ÞþOð�Þ

�
; (80)

where �ð2Þ ¼ 1� �, so

ð�2Þ��
Z ddl

ð2
Þd
1

l2 �m2
0

¼ m2
0

ð4
Þ2
�
�ð2Þ � 2 ln

�
m2

0

4
�2

�
þ 2

�
þOð�Þ

�
: (81)

Then the reduced state can be written as

�� ð0Þ
extðx1; x2Þ ¼ �ð1;0Þ

1

1

�
�ð0Þ
ext þ �ð1;0Þ

0 �ð0Þ
ext; (82)

where �ð1;0Þ
1 ¼ 2m2

0

ð4
Þ2 and �ð1;0Þ
0 ¼ m2

0

ð4
Þ2 ð�ð2Þ � 2 lnð m2
0

4
�2ÞÞ
and

�ð0Þ
ext ¼ i3

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2
0Þ2

: (83)

In the other side, if we take p ¼ 1 in Eq. (36) we obtain

Tr ð�ð1ÞOð1Þ
rel Þ ¼

X0
k¼0

X1
l¼0

�ðp;kÞ
l ½�ð0Þ�lTrð�ðkÞ

extOextÞ

¼ ð�ð1;0Þ
0 þ �ð1;0Þ

1 �ð0ÞÞTrð�ð0Þ
extOextÞ; (84)

and we can make the following replacement

�ð1;0Þ
0 ¼�ð1;0Þ

0 ¼�ð0Þ
D ¼ 2m2

0

ð4
Þ2

�ð1;0Þ
1 ¼�ð1;0Þ

1 ¼�ð0Þ
ND ¼ m2

0

ð4
Þ2
�
�ð2Þ�2ln

�
m2

0

4
�2

��

Trð�ð0Þ
extOextÞ¼ i3

Z
d4x1d

4x2Jðx1ÞJðx2Þ
Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2�m2
0Þ2

R½�ð0Þ�¼ lim
�!0

1

�
: (85)

These last two Eqs. (84) and (85) explain how the mathe-
matical formalism introduced in Sec. III is related with the
QFT of �4 theory. In the following section we will show
how to find all the orders in the perturbation theory.15

The reduced state computed in Eq. (72) has a physical
counterpart. It is well known that the reduction of a state
decreases the information available to the observer about the
composite system. In the case above, the reduction is done
over the internal vertices where the interaction occurs. In
QFT, the particles that are created in this vertices are virtual
particles because they are off shell; that is, they do not obey
the conservation laws. In this sense, the conceptual meaning
of the partial trace of the internal degrees of freedom is to
neglect the virtual nonphysical particles. This is consistent
with the experiments of scattering because basically what is
seen are the in and out states. However, perturbation theory
introduces off shell intermediate states whose existence
depends on the uncertainty principle �E�t � ℏ

2 . In turn,

the interpretation of the integration of the internal vertices is
to sum over all points where this process can occurs (see [7],
p. 94). In our case, the integration over the internal vertices
reflects the fact that we are neglecting the degrees of free-
dom of this virtual particle, and what we finally obtain is a
reduced state which is divergent.

B. The projection at first order

To see how the projector acts at first order in perturba-
tion theory, we can use Eq. (50) with p ¼ 1:

�1ð�ð1ÞÞ ¼ �ð1Þ �
Z

�ð0Þ
extðx1; x2Þ�ð0Þ

D ðy1Þjx1; y1i
� hx2; y1jd4x1d4x2d4y1; (86)

where

�ð0Þ
extðx1; x2Þ ¼

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2
0Þ2Z

�ð0Þ
D ðy1Þd4y1 ¼ �ð1;0Þ

1 ¼ 2m2
0

ð4
Þ2 ; (87)

14� is constant mass factor introduced to have a dimensionless
coupling constant.

15It will be the subject of further work to determine the
diagonal and nondiagonal functions without making use of
QFT in its original version. This function depends on what
happens at short and long distances. In the first case we believe
that a more fundamental theory can give us the desired result.
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then

Tr ð�ð1Þ�1O
ð1Þ
rel Þ ¼ �ð0Þ

NDTrð�ð0Þ
extOextÞ; (88)

where

�ð0Þ
ND ¼ m2

0

ð4
Þ2
�
�ð2Þ � 2 lnð m2

0

4
�2
Þ
�
: (89)

In this way, using the formalism introduced in Sec. III, we
can neglect the divergence that appears at first order in the
perturbation expansion by projecting over the finite
contribution instead of introducing counterterms in the
Lagrangian.

V. GENERAL PROCEDURE FOR �4

In Appendix B we will show the full �4 perturbation
theory for the two-point correlation function. For simplic-
ity we just recall the main result [see Eq. (B9)]:

Z
h�j�ðx1Þ�ðx2Þj�iJðx1ÞJðx2Þd4x1d4x2

¼ Xþ1

s¼0

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2
0Þ1þs

Jðx1ÞJðx2Þd4x1d4x2

� Xþ1

n¼0

Xþ1

j¼1

�
i�

4!

�
j
�ðj;sÞ

n
1

�n
: (90)

If we make the following replacement in Eq. (39):

�ðkÞ
ext ¼

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2
0Þ1þk

(91a)

Oext ¼ Jðx1ÞJðx2Þ (91b)�
i�

4!

�
j
�ðj;sÞ

n ¼ ijþs

ðjþ sÞ!�
ðj;sÞ
n (91c)

Rð½�ð0Þ�nÞ ¼ lim
�!0

1

�n
; (91d)

we obtain

Z
h�j�ðx1Þ�ðx2Þj�iJðx1ÞJðx2Þd4x1d4x2 ¼ Trð�OextÞ:

(92)

Equation (91c) gives the relation between the mathemati-
cal formalism introduced in Sec. III and the conventional
QFT using dimensional regularization.

For simplicity, we will develop the following results
directly using Eq. (39) where

�ðkÞ
ext ¼

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2
0Þ1þk

; (93)

then

Tr ð�ðkÞ
extOextÞ ¼

Z d4q

ð2
Þ4
fðqÞ

ðq2 �m2
0Þ1þk

; (94)

where

fðqÞ ¼
Z

d4x1d
4x2e

�iqðx1�x2ÞJðx1ÞJðx2Þ: (95)

Introducing Eq. (94) in Eq. (39) we have

Trð�OextÞ ¼
Z d4q

ð2
Þ4 fðqÞ
�

1

q2 �m2
0

þ X1
n¼0

1

ðq2 �m2
0Þ2þn

� X1
r¼1

Xrþn

l¼0

irþn

ðrþ nÞ!�
ðrþn;nÞ
l ½�ð0Þ�l

�
: (96)

If we apply the projection of Sec. III B, Eq. (50) order by
order, we must only keep the term with l ¼ 0 in Eq. (96),
then

Trð��OextÞ ¼
Z d4q

ð2
Þ4 fðqÞ
�

1

q2 �m2
0

þ X1
n¼0

1

ðq2 �m2
0Þ2þn

� X1
r¼1

irþn

ðrþ nÞ!�
ðrþn;nÞ
0

�
: (97)

The first term of the rhs of the last equation is the propa-
gator of the noninteracting theory. The second term with
n ¼ 0 contains the sum of all one-particle irreducible
diagrams �ðpÞ [see [7], p. 228, Eq. (7.43)]:

�ðpÞ ¼ M2ð0Þ ¼ X1
r¼1

ir

ðrÞ!�
ðr;0Þ
0 : (98)

In fact, the following terms with n > 1 in Eq. (97) are the
product of one-particle irreducible diagrams �ðpÞ, which
means that

M2ðnÞ ¼ ½M2ð0Þ�nþ1: (99)

This gives a relation between the coefficients �ðrþn;nÞ
n and

�ðr;0Þ
0 :

Xþ1

r¼1

irþn

ðrþ nÞ!�
ðrþn;nÞ
0 ¼

�Xþ1

r¼1

ir

r!
�ðr;0Þ
0

�
nþ1

: (100)

For example, for n ¼ 1, Eq. (100) implies that

Xr
j¼1

�ðj;0Þ
0 �ðr�jþ1;0Þ

0

j!ðr� jþ 1Þ! ¼
�ðrþ1;1Þ
0

ðrþ 1Þ! : (101)

From Eq. (99) and (97) we have

Tr ð��OextÞ ¼
Z d4q

ð2
Þ4 fðqÞ
�

1

q2 �m2
0

X1
n¼0

�
M2ð0Þ
q2 �m2

0

�
n
�

(102)

if j M2ð0Þ
q2�m2

0

j< 1, then

X1
n¼0

�
M2ð0Þ
q2 �m2

0

�
n ¼ 1

1� M2ð0Þ
q2�m2

0

: (103)

Introducing Eq. (103) in Eq. (102) we finally obtain
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Tr ð��OextÞ ¼
Z d4q

ð2
Þ4
fðqÞ

q2 � ðm2
0 þM2ð0ÞÞ ; (104)

where the pole in the mass value has been shifted away by
an amount of M2ð0Þ. If we do keep all the l terms in
Eq. (97) we have

Trð�OextÞ¼
Z d4q

ð2
Þ4fðqÞ

�
�

1

q2�m2
0

þX1
n¼0

1

ðq2�m2
0Þ2þn

L2ðnÞ
�
; (105)

where

L2ðnÞ ¼ X1
r¼1

Xrþn

l¼0

irþn

ðrþ nÞ!�
ðrþn;nÞ
l ½�ð0Þ�l: (106)

Then if we introduce the condition

L2ðnÞ ¼ ½L2ð0Þ�nþ1 (107)

we have

Tr ð�OextÞ ¼
Z d4q

ð2
Þ4 fðqÞ
X1
n¼0

½L2ð0Þ�n
ðq2 �m2

0Þ1þn

¼
Z d4q

ð2
Þ4
fðqÞ

q2 � ðm2
0 þ L2ð0ÞÞ ; (108)

where we have written that j L2ð0Þ
q2�m2

0

j< 1 which, of course,

has no sense because L2ð0Þ is divergent [see Eq. (106)].
Nevertheless, the mass shift reads

m2 ¼ m2
0 þ

X1
r¼1

ir

r!
�ðr;0Þ
0 þ X1

r¼1

Xr
l¼r

ir

r!
�ðr;0Þ
l ½�ð0Þ�l; (109)

which is identical to Eq. (B19) and to Eq.(2.3a) of [28].
Given the relation of Eq. (109) and (B19), the renormal-

ization group is hidden in the last equation because we
have not introduced some constants like the mass factor,

which is inside the functions�ðj;0Þ
n and�ðj;0Þ

0 as discussed in

Appendix B.

VI. THE PROJECTION IN ALGEBRAIC TERMS

We can rewrite Sec. III in algebraic language; then, for
each order in the perturbation theory we have the following
Hilbert spaces:

p ¼ 0 H ð0Þ ¼ H ext

p ¼ 1 H ð1Þ ¼ H ext �H ð1Þ
int

..

. ..
.

p ¼ j H ðjÞ ¼ H ext �H ð1Þ
int � . . . �H ðjÞ

int

: (110)

The total Hilbert space to all orders in the perturbation
theory reads

H ¼ H ð0Þ 	H ð1Þ 	 . . . 	H ðpÞ ¼ 	p
i¼0H

ðiÞ: (111)

The algebra of observablesO is represented by 
 algebra
A of self-adjoint elements, and states are represented by
functionals onO, that is, by elements of the dual spaceO0,
� 2 O0. In this work, we will shall adopt a C
 algebra of
operators. As it is well known, a C
 algebra can be repre-
sented in a Hilbert spaceH (Gelfand, Naimark, and Segal
theorem) and, in this particular case, O ¼ O0; therefore O
and O0 are represented by H �H that will be called N
which reads

N ¼ H �H

¼ ðH ð0Þ �H ð0ÞÞ 	 . . . 	 ðH ðpÞ �H ðpÞÞ
¼ N ð0Þ 	 . . . 	N ðpÞ: (112)

Now letN S be the space of singular parts [namely, the one
containing the �ðxÞ] andN R the space of the regular parts
(namely, the nondiagonal part) of N .
Then

N S;N R � N : (113)

We can make the quotient

N
N S

¼ N R; (114)

where N R would represent the vector space of equivalent
classes of nondiagonal operators. These equivalence
classes read

½a� ¼ aþN S; a 2 N : (115)

So we can decompose N as

N ¼ N sþN R: (116)

But Eq. (115) is not a direct sum, since we can add an
arbitrary a 2 N S from the first term of the rhs of the last
equation and substract a from the second term.
As we are interested in the diagonal and nondiagonal

elements of a matrix state we can define a sub algebra of
N that can be called a van Hove algebra [29], since such a
structure appears in his work as

N vh ¼ N S 	N R � N ; (117)

where the vector space N R is the space of operators with
OðxÞ ¼ 0, and Oðx; x0Þ is a regular function. Moreover
O ¼ N vhS is the space of self-adjoint operators of
N vh, which can be constructed in such a way it could
be dense in N S (because any distribution can be approxi-
mated by regular functions). Therefore essentially the in-
troduced restriction is the minimal possible coarse
graining. Now the 	 is a direct sum because N S contains
the factor �ðx� x0Þ and N R contains just regular func-
tions and a kernel cannot be both a � and a regular
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function. Moreover, as our observables must be self-
adjoint, the space of observables must be

O ¼ N vhS ¼ N S 	N R � N : (118)

This decomposition corresponds to the one given in
Eq. (14) or Eq. (24), where N r only contains a regular
self-adjoint operator [namely, Oðx0; xÞ
 ¼ Oðx; x0Þ].

The states must be considered as linear functionals over
the space O (O0 the dual of space O):

O 0 ¼ N 0
vhS ¼ N 0

S 	N 0
R � N 0: (119)

Therefore the states read as in Eq. (15) or Eq. (25). The set
of these generalized states is the convex set S � O0.

Now we can apply the projector of Eq. (17) that in terms
of the algebra reads

� ¼ �ð0Þ 	 . . . 	�ðpÞ:N 0
vhS ! N 0

R: (120)

This is the simple trick that allows us to neglect the
singularities [i.e. the �ðx� x0Þ ] in a rigorous mathemati-
cal way and to obtain correct physical results. Essentially
we have defined a new dual space O0 (that contains the
states � without divergences) that is adapted to solve our
problem.

So, essentially we have substituted an ‘‘ad hoc’’ counter-
term procedure (or an ad hoc subtraction procedure [21])
with a clear physical motivated theory. These are the
essential features of the proposed formalism, where the
deltas are absent.16

VII. SUMMARY

Summarizing, the main idea of this work is that in the p
order in the perturbation expansion of �4 theory, the state
reads

�ðpÞ ¼ �ðpÞ
ext �p

i¼0 �
ði;pÞ
int (121)

and the observable reads

O ¼ Oext �p
i¼0 I

ðiÞ
int; (122)

then

Tr ð�ðpÞOÞ ¼ Trð ��ðpÞ
extOextÞ; (123)

where ��ðpÞ
ext ¼ Trint�

ðpÞ is the reduced state. Because the
state of Eq. (121) is a tensor product, then

Tr ð�ðpÞOÞ ¼ Trð�ðpÞ
extOextÞ�p

i¼0Trð�ði;pÞ
int Þ: (124)

Finally, we can proceed with the sum in p

Xþ1

p¼0

ip

p!
Trð�ðpÞOÞ ¼ Xþ1

p¼0

ip

p!
Trð�ðpÞ

extOextÞ�p
i¼0Trð�ði;pÞ

int Þ;

(125)

where �p
i¼0Trð�ði;pÞ

int Þ is the factor that contains the diver-

gences. These divergences appear because the internal
quantum state contains diagonal functions multiplied by
Dirac deltas that cannot be avoided unless we assume that
the diagonal functions are zero, that can be obtained by a
‘‘projection’’ or by making a transformation on the diago-
nal and nondiagonal functions.
From the point of view of the physics, the internal

quantum state refers to the internal vertices that appear in
the perturbation expansion. The particles that propagate to
an internal vertex are called a virtual particle because it can
be off shell, so they are not real and cannot be detected. The
mathematical formalism introduced in this work naturally
considers these virtual particles by assigning them a quan-
tum state. But we cannot observe these particles, so any
relevant observable defined in the theory will be a observ-
able that acts on the external quantum state which refers to
the external particles. In terms of the mathematical formal-
ism, this observable will act as an identity in the internal
quantum states of the virtual particles. The consequence is
that we can reduce the degrees of freedom of the virtual
particles with the result of a partial trace with respect to the
internal quantum system. This partial trace implies that we
can integrate over the degrees of freedom of the internal
quantum state. This give us an interpretation of this inte-
gration as a reduction of the degrees of freedom of the
theory. In the conventional interpretation of this integration
‘‘The integral d4z instructs us to sum over all points where
this process can occur. This is just the superposition prin-
ciple of quantum mechanics: when a process can happen in
alternative ways, we add the amplitudes for each possible
way.’’, ([7], p. 94). Then the fact that the reduction of the
degrees of freedom results in a divergent quantity comes
from the fact that it allows the internal quantum state to be
singular by itself, in the sense that it can have a diagonal
function multiplied by a Dirac delta. The fact that the
observable is not sensitive to the internal quantum state
means that the diagonal function survives and manifests
itself in the mean value of that observable in the total
quantum state as a divergent quantity. So the projection
procedure is to take one virtual particle and eliminate its
diagonal part.
Perhaps the most interesting of all this mathe-

matical procedure developed to treat �4 theory, which is a
renormalizable theory, is that it could be applied to non-
renormalizable theories, such as�6. Apparently, the proce-
dure should not be different, and for each correlation
function one can construct a quantum state that contains
both an internal and external part. Then we can construct
a particular transformation or projection that gives us a
quantum state without a diagonal part. This would be the

16This can also be considered as a way to multiply distributions
(as in Ref. [30])
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physical contribution to the scattering process. In
Appendices C andD it is shown how to apply the formalism
introduced in Sec. III to the second order and first order in
the perturbation expansion of the self-energy of the electron
in QED and the self-energy of a scalar field with �6 self-
interaction.

VIII. CONCLUSIONS AND PROSPECTS

The aim of the paper can be summarized as follows. If, in
order to explain decoherence of quantum systems some
procedures are allowed, then the same procedures ought
to be allowed to demonstrate the success of QFT. If we
accept this idea, the projection � and the choice of nice
functions for the set of observables and states are legitimate
and then we could also solve the main interpretative prob-
lems of QFT.

Of course it can be argued that these structures and
properties are put ‘‘just by hand’’. The answer is that all
mathematical structures and their properties (from the
Galilean law of square times to superstrings) are just
choices made by physicists to explain nature (and therefore
also put by hand). The real art is to find the mathematical
structures to explain nature in the simplest way.

A lot of work must be done to transform this primitive
idea into an axiomatic based, mathematically rigorous, and
finite QFT. But the main lines of the picture have already
been drawn.

It seems that these conclusions are in complete agree-
ment with Sec. 12.3 of [19] and Sec. 7.12 of [20]. In paper
[16] and in the examples above we show in detail that our
method is equivalent to usual renormalization. These ex-
amples and the just quoted reference are enough to foresee
that this equivalence could be extended to more examples:
So, it may be that our method could not only be applied to
‘‘renormalizable’’ theories with a finite number of counter-
terms but also to ‘‘nonrenormalizable’’ theories with an
infinite number of arbitrary counterterms.
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APPENDIX A: COUNTING OF ULTRAVIOLET
DIVERGENCES IN �

l!�
l THEORY

Let us consider a pure scalar field theory with an inter-
action term �

l!�
l. Let rI be the number of internal propa-

gators (propagators that are not connected to external
points) and p the number of vertices. Then, the number
of loops in a Feynman diagram reads (see [7], p. 321):

L ¼ rI � pþ 1: (A1)

The number of internal propagators rI can be written in
terms of the number of external points n, the number of
vertices p and l. The total number of propagators r in a
Feynman diagram is

r ¼ rI þ rE; (A2)

where rE is the number of external propagators or external
lines which coincide with the number of external points.17

In turn, if the correlation function has n external fields and
l � p internal fields, then the total number of propagators r
reads

r ¼ nþ l � p
2

: (A3)

Then, replacing Eq. (A3) in Eq. (A2) we have

rI ¼ r� rE ¼ l � p
2

� n

2
: (A4)

Replacing Eq. (A4) in Eq. (A3) we finally have

Lðl; p; nÞ ¼ p

�
l� 2

2

�
� n

2
þ 1: (A5)

Each loop contributes with a term proportional to 1
� plus a

finite term (see [31], p. 103–130 and [32], p. 686). Because
the loops are multiplied together in a Feynman diagram of
a �

l �
l theory with n external points and p vertices, we

obtain the following divergent term:

�ðp;kÞ
p ðl; p; nÞ ¼ XLðl;p;nÞ�1

k¼0

�ðp;kÞ
L�k

�L�k
: (A6)

For example, for l ¼ 4, n ¼ 2 we have

�ðp;kÞ
p ð4; p; 2Þ ¼ Xp

n¼0

�ðp;kÞ
p�n

�p�n ¼ �ðp;kÞ
p

�p
þ . . .þ �ðp;kÞ

0 (A7)

which coincides with the divergent structure of Eq. (32).

APPENDIX B: TWO-POINT CORRELATION
FUNCTION OF THE SELF-INTERACTING

�4 THEORY

Let us consider a self-interacting scalar field with a �
4!�

4

interaction. The two-point connected correlation function,
which represents the propagator in the interacting theory
reads

h�j�ðx1Þ�ðx2Þj�i¼ Xþ1

p¼0

1

p!

�
i�

4!

�
pZ h�0jT�0ðx1Þ�0ðx2Þ

��4ðy1Þ . . .�4ðypÞj�0id4y1 . . .d4yp:
(B1)

Resolving the correlation function inside each integral and
in each perturbation term we have

17The contribution to the generating functional comes from the
connected Feynman diagrams. This means that each external
point must be connected to a vertex. If there are n external points
then there will be n external lines.
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h�j�ðx1Þ�ðx2Þj�i ¼ h�0jT�0ðx1Þ�0ðx2Þj�0i þ i�

4!

Z
h�0jT�0ðx1Þ�0ðx2Þ�4ðy1Þj�0id4y1

þ 1

2!

�
i�

4!

�
2 Z h�0jT�0ðx1Þ�0ðx2Þ�4ðy1Þ�4ðy2Þj�0id4y1d4y2 þ . . . (B2)

It can be shown that using dimensional regularization, each
term in the perturbation can be written as

h�0jT�0ðx1Þ�0ðx2Þj�0i ¼
Z d4k

ð2
Þ4
e�ikðx1�x2Þ

k2 �m2
0

; (B3)

where k is the external momentum. For the first order in the
perturbation we have

i�

4!

Z
h�0jT�0ðx1Þ�0ðx2ÞLðy1Þj�0id4y

¼ i�

4!

Z d4k

ð2
Þ4
e�ikðx1�x2Þ

ðk2 �m2
0Þ2

�
�ð1;0Þ

0 þ �ð1;0Þ
1

1

�

�
; (B4)

where �ð1;0Þ
0 and �ð1;0Þ

1 are some constants which are func-
tions of �, a mass factor introduced by changing the
coupling constant as � ! �ð�2Þ�� to keep it dimension-
less, � ¼ d� 4, where d is the dimension of space-time
and m0 is the bare mass. The first superscript in the con-
stants refers to the order in the perturbation and the second
one to the power of the propagator minus one. The

contribution �ð1;0Þ
0 þ �ð1;0Þ

1
1
� for the first order comes

from the tadpole diagram, where a �ð0Þ appears. If we
use dimensional regularization we find that

ð�2Þ���ð0Þ ¼ m2
0

ð4
Þ2
�
1� � ln

�
4
�2

m2
0

�
þOðd� 4Þ

�

�
�
2

�
þ�ð2Þ þOð�Þ

�

¼ m2
0

ð4
Þ2
�
�ð2Þ � 2 ln

�
m2

0

4
�2

�
þ 2

�
þOð�Þ

�
;

(B5)

where �ð2Þ ¼ 1� �, where � is the Euler-Mascheroni

constant, then �ð1;0Þ
0 ¼ m2

0

ð4
Þ2 ½�ð2Þ � 2 lnð m2
0

4
�2Þ� and

�ð1;0Þ
1 ¼ 2m2

0

ð4
Þ2 .
For the second order in the perturbation theory we have

(see [4], p. 119–125)

�
i�

4!

�
2ð�2Þ2ð4�dÞ Z h�0jT�0ðx1Þ�0ðx2ÞLðy1ÞLðy2Þj�0id4y1d4y2

¼
�
i�

4!

�
2 Z d4k

ð2
Þ4
e�ikðx1�x2Þ

ðk2 �m2
0Þ2

�
�ð2;0Þ

0 þ �ð2;0Þ
1

1

�
þ �ð2;0Þ

2

1

�2

�
þ

�
i�

4!

�
2 Z d4k

ð2
Þ4
e�ikðx1�x2Þ

ðk2 �m2
0Þ3

�
�ð2;1Þ

0 þ �ð2;1Þ
1

1

�
þ �ð2;1Þ

2

1

�2

�
:

(B6)

In this case, we have two different powers in the external
propagator. The reason is that in the second order in the
perturbation theory, a Feynman diagram will be irreducible
and the other not. The Feynman diagram that is not irre-
ducible is given by two loops connected each other by a
propagator and each of them connected to the external
lines. As we can see, the perturbation expansion is also
an expansion in the number of loops. When we proceed
with dimensional regularization, each loop contributes
with aþ b

� .

We can continue with the following orders and finally
obtain the following result when p > 1:

Z
h�0jT�0ðx1Þ�0ðx2ÞLðy1Þ . . .LðypÞj�0id4y1 . . .d4yp

¼ Xp�1

l¼0

Z d4k

ð2
Þ4
e�ikðx1�x2Þ

ðk2 �m2
0Þlþ2

Xp
j¼0

�ðp;lÞ
j

1

�j
: (B7)

Now we can proceed with the sum in p as Eq. (B1)
indicates:

h�j�ðx1Þ�ðx2Þj�i ¼
Z d4k

ð2
Þ4
e�ikðx1�x2Þ

k2 �m2
0

þ Xþ1

p¼1

1

p!

�
i�

4!

�
p

� Xp�1

l¼0

Z d4k

ð2
Þ4
e�ikðx1�x2Þ

ðk2 �m2
0Þlþ2

� Xp
j¼0

�ðp;lÞ
j

1

�j
: (B8)

Rearranging the sum, Eq. (B8) can be written as

h�j�ðx1Þ�ðx2Þj�i

¼
Z d4k

ð2
Þ4
e�ikðx1�x2Þ

k2 �m2
0

þ Xþ1

s¼0

Z d4k

ð2
Þ4
e�ikðx1�x2Þ

ðk2 �m2
0Þ2þs

� Xþ1

n¼0

Xþ1

j¼1

�
i�

4!

�
j
�ðj;sÞ

n
1

�n
: (B9)

Now we can put x2 ¼ 0 and make the Fourier
transformation:
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Z d4p

ð2
Þ4 e
�ipx1h�j�ðx1Þ�ðx0Þj�i

¼ 1

p2 �m2
0

þ Xþ1

s¼0

1

ðp2 �m2
0Þ2þs

�Xþ1

j¼1

�
i�

4!

�
j
�ðj;sÞ

0

þ Xþ1

n¼1

Xþ1

j¼1

�
i�

4!

�
j
�ðj;sÞ

n
1

ðd� 4Þn
�
; (B10)

where we have separated the terms with 1
�0
.

With the purpose of neglecting the terms that depend on
the space-time dimension d, we can make the following
transformation:

�ðj;sÞ
0 ¼ ��ðj;sÞ

0 � Xþ1

n¼1

�ðj;sÞ
n

1

�n
; (B11)

where �ðj;sÞ
n are some constants that will cancel the con-

tributions of �ðj;sÞ
n in Eq. (B10). Then, the term inside the

bracket in the rhs of Eq. (B10) reads

Xþ1

j¼1

�
i�

4!

�
j
��ðj;sÞ
0 � Xþ1

j¼1

Xþ1

n¼1

�
i�

4!

�
j
�ðj;sÞ
n

1

�n

þ Xþ1

n¼1

Xþ1

j¼1

�
i�

4!

�
j
�ðj;sÞ

n
1

�n
¼ 0 (B12)

which implies that

�ðj;sÞ
n � �ðj;sÞ

n ¼ 0; (B13)

then

Z d4p

ð2
Þ4 e
�ipx1h�j�ðx1Þ�ðx0Þj�i

¼ 1

p2 �m2
0

þ Xþ1

s¼0

1

ðp2 �m2
0Þ2þs

MðsÞ; (B14)

where

MðsÞ ¼ Xþ1

j¼1

�
i�

4!

�
j
��ðj;sÞ
0 (B15)

is the finite contribution to the propagator of the self-
interacting scalar theory. Now, each of this terms MðsÞ
depends on swhich is the power of the external propagator.
We know thatMð0Þ is the one-particle irreducible diagram,
and the following termsMðsÞ with s > 1 are the product of
this Mð0Þ:

MðsÞ ¼ ½Mð0Þ�s: (B16)

Introducing this last result in Eq. (B14) we have

Z d4p

ð2
Þ4 e
�ipx1h�j�ðx1Þ�ðx0Þj�i

¼ 1

p2 �m2
0

Xþ1

s¼0

�
Mð0Þ

p2 �m2
0

�
s

¼ 1

p2 �m2
0

1

1� Mð0Þ
p2�m2

0

¼ 1

p2 �m2
0 �Mð0Þ (B17)

which is our desired result. The propagator of the self-
interacting scalar theory has a pole which is shifted
away by

m2 ¼ m2
0 þMð0Þ ¼ m2

0 þ
Xþ1

j¼1

�
i�

4!

�
j
�ðj;0Þ

0 : (B18)

If we do not make the transformation of Eq. (B11), then the
shift in the mass18 would be

m2 ¼ m2
0 þ

Xþ1

j¼1

�
i�

4!

�
j
�ðj;0Þ

0 þ Xþ1

n¼1

Xþ1

j¼1

�
i�

4!

�
j
�ðj;0Þ

n
1

�n
(B19)

which is identical to Eq. (2.3a) of [28]. Equations (B18)

and (B19) give the renormalization group because �ðj;0Þ
0

depends on the mass factor �, �, m0, and �0; thus in the
general case, the unrenormalized two-point correlation
function or Green function �2

0 depends on �, �, m0, and

�0 and the renormalized �2 two-point correlation function
only depends on m, �, and �.

APPENDIX C: SECOND ORDER IN QED
FOR THE SELF-ELECTRON ENERGY

We can apply the same formalism to QED. We can
define the following quantum state and observable:

�ð2Þ ¼
Z

�ð2Þ
extðx1; x2Þð�ð1Þ

D ðy1Þ�ðy1 � w1Þ

þ �ð1Þ
NDðy1; w1ÞÞjx1; y1ihx2; w1jd4x1d4x2d4y1d4w1

(C1)

Oð2Þ ¼
Z

Oextðx1; x2Þ�ðy1 � w1Þjx1; y1i
� hx2; w1jd4x1d4x2d4y1d4w1: (C2)

The mean value Trð�ð2ÞOð2ÞÞ reads
Tr ð�ð2ÞOð2ÞÞ ¼ ð�ð1Þ

D �ð0Þ þ �ð1Þ
NDÞTrð�ð2Þ

extOextÞ; (C3)

where

Tr ð�ð2Þ
extOextÞ ¼

Z
�ð2Þ
extðx1; x2ÞOextðx1; x2Þd4x1d4x2 (C4)

and

18Of course, to find the following result we must do the sumP
n¼0x

n ¼ 1
1�x , but in this case x is not less than one.
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�ð1Þ
D ¼

Z
�ð1Þ
D ðy1Þd4y1 �ð1Þ

ND ¼
Z

�ð1Þ
NDðy1; y1Þd4y1:

(C5)

If we substitute

�ð2Þ
extðx1; x2Þ ¼

Z d4p

ð2
Þ4
iðp� þmÞe�ipðx1�x2Þ

p2 �m2
(C6)

Oextðx1; x2Þ ¼ Jðx1; x2Þ (C7)

�ð1Þ
D ¼ �6pþ 4m

8
2
(C8)

�ð0Þ ¼ lim
"!0

1

"
(C9)

�ð1Þ
ND ¼ e2

8
2

�
1

2
6ppð1þ �Þ þmð1þ 2�Þ þ

Z 1

0
dx½6ppð1

� xÞ þ 2m� ln
�
p2xð1� xÞ þm2x2

4
�2

��
;

(C10)

then Eq. (C3) is equal to Eq. (8.2.20) of [4]. In this sense,

�ð1Þ
ND is the finite contribution to the self-energy of the

electron. In the projection procedure introduced in this
work, the finite contribution would directly be given

by �ð1Þ
ND.

APPENDIX D: FIRST ORDER IN �6

The formalism developed in this work allows us to apply
it to theories that are in principle not renormalizable, as�6.
In this Appendix it is shown the first order in the perturba-
tion �6 theory. Nevertheless, this nonrenormalizable
theory will be developed in detail in future works.

We can define a state and an observable at the first
order as

�ð1Þ ¼
Z

�ð1Þ
extðx1; x2Þð�ð1Þ

D ðy1Þ�ðy1 � w1Þ

þ �ð1Þ
NDðy1; w1ÞÞð�ð2Þ

D ðy2Þ�ðy2 � w2Þ
þ �ð2Þ

NDðy2; w2ÞÞjx1; y1; y2i
� hx2; w1; w2jd4x1d4x2d4y1d4w1d

4y2d
4w2 (D1)

Oð1Þ ¼
Z

Oextðx1; x2Þ�ðy1 � w1Þ�ðy2 � w2Þjx1; y1; y2i
� hx2; w1; w2jd4x1d4x2d4y1d4w1d

4y2d
4w2; (D2)

then, the mean value Trð�ð1ÞOð1ÞÞ reads

Tr ð�ð1ÞOð1ÞÞ ¼ ð�ð1Þ
D �ð2Þ

D ½�ð0Þ�2 þ ð�ð1Þ
D �ð2Þ

ND

þ �ð1Þ
ND�

ð2Þ
D Þ�ð0Þ þ �ð1Þ

ND�
ð2Þ
NDÞTrð�ð1Þ

extOextÞ;
(D3)

where

Tr ð�ð1Þ
extOextÞ ¼

Z
�ð1Þ
extðx1; x2ÞOextðx1; x2Þd4x1d4x2 (D4)

�ðiÞ
D ¼

Z
�ðiÞ
D ðyiÞd4yi �ðiÞ

ND ¼
Z

�ðiÞ
NDðyi; yiÞd4yi:

(D5)

The first order in the perturbation expansion in �6 theory
reads

Z
h�0j�ðx1Þ�ðx2Þ�6ðy1Þj�0iJðx1ÞJðx2Þd4y1d4x1d4x2

¼½�ð0Þ�2
Z
�ðx1�y1Þ�ðx2�y1ÞJðx1ÞJðx2Þd4y1d4x1d4x2:

(D6)

The integral in the internal coordinate y1 reads

Z
�ðx1 � y1Þ�ðx2 � y1Þd4y1 ¼

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2Þ2
(D7)

and

½�ð0Þ�2 ¼
�
�2

�2
þ �1

�
þ �0

�
; (D8)

where �0 ¼ ½�ð2Þ�2, �1 ¼ 4�ð2Þ, and �2 ¼ 4, see
Eq. (B5). Then, Eq. (D6) finally reads

Z
h�0j�ðx1Þ�ðx2Þ�6ðy1Þj�0iJðx1ÞJðx2Þd4y1d4x1d4x2

¼
�
�2

�2
þ�1

�
þ�0

�Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2�m2Þ2Jðx1ÞJðx2Þd
4x1d

4x2:

(D9)

This last equation is similar to Eq. (D3); in fact, if we
replace

�ð1Þ
extðx1; x2Þ ¼

Z d4p

ð2
Þ4
e�ipðx1�x2Þ

ðp2 �m2Þ2
Oextðx1; x2Þ ¼ Jðx1ÞJðx2Þ �ð1Þ

D �ð2Þ
D ¼ �2

�ð1Þ
D �ð2Þ

ND þ �ð1Þ
ND�

ð2Þ
D ¼ �1 �ð1Þ

ND�
ð2Þ
ND ¼ �0

½�ð0Þ�n ¼ lim
�!0

1

�n
;

(D10)

Eq. (D9) and Eq. (D3) are identical. From this point of
view, the projection procedure would give a finite contri-

bution that only depends on the nondiagonal states �ðiÞ
ND.
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