
Critical behavior of self-assembled rigid rods on two-dimensional lattices:
Bethe-Peierls approximation and Monte Carlo simulations
L. G. López, D. H. Linares, A. J. Ramirez-Pastor, D. A. Stariolo, and S. A. Cannas 
 
Citation: J. Chem. Phys. 138, 234706 (2013); doi: 10.1063/1.4809987 
View online: http://dx.doi.org/10.1063/1.4809987 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v138/i23 
Published by the AIP Publishing LLC. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 03 Aug 2013 to 190.122.236.36. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1335634424/x01/AIP-PT/AIPPub_JCPCoverPg_073113/AIP-1871_PUBS1640x440.jpg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=L. G. L�pez&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=D. H. Linares&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. J. Ramirez-Pastor&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=D. A. Stariolo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=S. A. Cannas&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4809987?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v138/i23?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 138, 234706 (2013)
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The critical behavior of adsorbed monomers that reversibly polymerize into linear chains with re-
stricted orientations relative to the substrate has been studied. In the model considered here, which is
known as self-assembled rigid rods (SARRs) model, the surface is represented by a two-dimensional
lattice and a continuous orientational transition occurs as a function of temperature and coverage.
The phase diagrams were obtained for the square, triangular, and honeycomb lattices by means of
Monte Carlo simulations and finite-size scaling analysis. The numerical results were compared with
Bethe-Peierls analytical predictions about the orientational transition for the square and triangular
lattices. The analysis of the phase diagrams, along with the behavior of the critical average rod
lengths, showed that the critical properties of the model do not depend on the structure of the lattice
at low temperatures (coverage), revealing a quasi-one-dimensional behavior in this regime. Finally,
the universality class of the SARRs model, which has been subject of controversy, has been revisited.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4809987]

I. INTRODUCTION

Self-assembly has become a topic of increasing interest
in recent years. One reason for this interest is that it is cen-
tral to understanding structure formation in living systems.1

As a consequence, a significant research effort has been de-
voted to enhance our understanding of the theoretical basis
of the fundamental mechanisms governing self-assembly and
the observables required to characterize the interactions driv-
ing thermodynamic self-assembly transitions.2, 3 More related
to the present work, several research groups reported on the
assembly of particles in linear chains.4–8 Despite of the num-
ber of contributions to this problem, the knowledge of how
this process works is still limited.

It is obvious that a complete analysis of the self-assembly
phenomenon is quite a difficult subject because of the com-
plexity of the involved microscopic mechanisms. For this rea-
son, the understanding of simple models with increasing com-
plexity might be a help and a guide to establish a general
framework for the study of this kind of systems, and to stimu-
late the development of more sophisticated models which can
be able to reproduce concrete experimental situations.

In this context, an interesting model was introduced by
Tavares et al.9 The system in Ref. 9 consists of monomers
with two attractive (sticky) poles that polymerize reversibly
into polydisperse chains and, at the same time, undergo a con-
tinuous isotropic-nematic (IN) phase transition. Using an ap-
proach in the spirit of the Zwanzig model,10 the authors stud-
ied the IN transition occurring in the system. The obtained

a)Author to whom correspondence should be addressed. Electronic mail:
antorami@unsl.edu.ar.

results revealed that nematic ordering enhances bonding. In
addition, the average rod length was described quantitatively
in both phases, while the location of the ordering transition,
which was found to be continuous, was predicted semiquan-
titatively by the theory. Finally, Tavares et al.9 assumed as
working hypothesis that the nature of the IN transition re-
mains unchanged with respect to the case of monodisperse
rigid rods on square lattices, where the transition is in the 2D
Ising universality class.11–14

From the seminal work by Tavares et al.,9 a series of pa-
pers exploring the self-assembled rigid rods (SARRs) model
have been published.15–23 These studies can be separated in
two groups: (i) those dealing with the nature and universal-
ity of the phase transition occurring in the system15–21 and
(ii) those dealing with the temperature-coverage phase dia-
gram of the system.22, 23

With respect to the first point, the universality class of the
model has been a subject of controversy. Thus, the criticality
of the SARRs model in the square lattice was investigated in
Ref. 15 by means of canonical Monte Carlo (MC) simulation
and finite-size scaling (FSS) theory. The existence of a con-
tinuous phase transition was confirmed. In addition, the de-
termination of the critical exponents, along with the behavior
of the Binder cumulants, revealed that the universality class
of the IN transition changes from 2D Ising-type for monodis-
perse RRs without self-assembly to q = 1 Potts-type (random
percolation) for polydisperse SARRs. Later, a multicanonical
MC method based on a Wang-Landau sampling scheme was
used by Almarza et al.16 to reinvestigate the critical behavior
of the model studied in Refs. 9 and 15. Employing the cross-
ing point of the Binder cumulants and the value of the critical
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exponent of the correlation length (ν), it was observed that the
criticality of the SARRs model is in the 2D Ising class, as in
models of monodisperse RRs.12, 14

The results in Refs. 15 and 16, along with the recent
study in Ref. 17, indicate that the system under study repre-
sents an interesting case where the use of different statistical
ensembles (canonical or grand canonical) leads to different
and well-established universality classes (q = 1 Potts-type or
q = 2 Potts-type, respectively). A similar scheme was ob-
served for triangular lattices, where canonical MC simula-
tions indicated that the IN transition of SARRs at intermedi-
ate density belongs to the q = 1 Potts universality class.19, 20

In contrast with this result, a q = 3 Potts-type universality was
obtained by using grand canonical MC simulations.21

Among the studies of the second group, the temperature-
coverage phase diagram of SARRs on square lattices was
calculated in Ref. 22. By using MC simulations, mean-field
theory, and a renormalization group (RSRG) approach, the
critical line which separates regions of isotropic and nematic
stability was obtained and characterized. The results showed
that the theory presented in Ref. 9 overestimates the criti-
cal temperature in all range of coverage. Small differences
appear between simulation and theoretical results for small
values of θ ; however, the disagreement turns out to be sig-
nificantly large for larger θ ’s. On the other hand, RSRG re-
produces qualitatively the shape of the critical line, but sys-
tematically underestimates the critical temperature. The main
prediction of RSRG approach is that the critical properties of
the whole line are associated to a unique second-order fixed
point, confirming the continuous nature of the transition. Con-
cerning the MF results, the theory predicts the existence of a
first-order transition line and a tricritical point. This finding
is in sharp contrast to that obtained by MC simulations and
RSRG approach.

More recently, the main adsorption properties of SARRs
on square and triangular lattices have been addressed.23 The
study demonstrated that the adsorption isotherms appear as
sensitive quantities to the IN phase transition, allowing to re-
produce the temperature-coverage phase diagram of the sys-
tem for square lattices, and to obtain a first determination of
the phase diagram for triangular lattices.

Following the line of Refs. 15–23, the present paper deals
with the two aspects above mentioned. On one hand, the
problem of the universality is revisited, clarifying recent re-
sults obtained for triangular lattices (with conclusions that
can be extrapolated to the honeycomb lattice case). On the
other hand, the complete temperature-coverage phase dia-
grams were obtained for the square, triangular, and honey-
comb lattices by means of MC simulations and FSS analysis.
The critical lines were also calculated for the square and trian-
gular lattices within the Bethe-Peierls (BP) or quasi-chemical
approach, as formulated in the Cluster Variational Method
(CVM). Comparisons with MF and RSRG data indicate that
BP represents a qualitative advance in the analytical descrip-
tion of the phase diagram of SARRs.

The rest of the paper is organized as follows. In Sec. II,
we describe the lattice-gas model. The simulation scheme and
computational results are given in Sec. III. In Sec. IV, we
present the analytical approximations, and compare the MC

results with the theoretical calculations. In Sec. V, we review
previous results on the universality class of the SARRs model
in the triangular and honeycomb lattices. Finally, the general
conclusions are drawn in Sec. VI.

II. LATTICE-GAS MODEL

As in Refs. 9 and 15–23, a system of self-assembled rods
with a discrete number of orientations in two dimensions is
considered. The substrate is represented by a square, trian-
gular, or honeycomb lattice of M = L × L adsorption sites,
with periodic boundary conditions. N particles are adsorbed
on the substrate with m possible orientations along the princi-
pal axes of the array, being m = 2 for square lattices and m = 3
for triangular and honeycomb lattices. The rods interact with
nearest-neighbors (NN) through anisotropic attractive inter-
actions. Thus, a cluster or uninterrupted sequence of bonded
particles is a self-assembled rod. Then, in the canonical en-
semble, the model is characterized by the Hamiltonian,

H = −w
∑
〈i,j〉

{|�rij · �σi ||�rji · �σj | div 1}, (1)

where 〈i, j〉 indicates a sum over NN sites; w represents the
NN lateral interaction between two neighboring sites i and
j; the energy is lowered by an amount |w| only if the NN
monomers are aligned with each other and with the inter-
molecular vector �rij ; �σj is the occupation vector, with �σj = 0
if the site j is empty and �σj = x̂k if the site j is occupied by
a particle with orientation parallel to xk. x̂k are a set of unit
vectors along the crystalline axes. In Eq. (1), div represents
an integer division, so the result inside { } can be either 0 or
1 (i.e., the fractional part is discarded). The integer division
is redundant in the case of the Hamiltonian for the square lat-
tice, but it avoids additional lateral interactions24 that promote
the condensation of the monomers in the triangular and hon-
eycomb lattices,20 restricting the attractive couplings only to
those pairs of NN monomers whose orientations are aligned
with each other and with the monomer-monomer lattice di-
rection, in line with the model in the square lattice.

The grand canonical Hamiltonian of the model is given
by

H = −w
∑
〈i,j〉

{|�rij · �σi ||�rji · �σj | div 1} − (μ − εo)
∑

i

|�σi |,

(2)

where εo is the adsorption energy of an adparticle on a site
and μ is the chemical potential. In the present work, εo = 0
and μ is the only parameter that determines the strength of the
adsorption.

On the other hand, it is worth mentioning that, while the
concept of linear rod is trivial for square and triangular lat-
tices, in a honeycomb lattice the geometry does not allow for
the existence of a linear array of monomers. In this case, we
call linear rod to a chain of adjacent monomers that can be
assembled in only three types of sequences, defining three
directions in similar way to the triangular lattice. For more
details about the model in the honeycomb lattice, see Ref. 19.
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In the case of a square lattice the grand canonical Hamil-
tonian (2) can be exactly mapped into a spin-1 model,22

H = −w

4

∑
〈i,j〉

[(
S2

i + Si

)(
S2

j + Sj

)
(x̂2.�rij )

+ (
S2

i − Si

)(
S2

j − Sj

)
(x̂1.�rij )

] − μ
∑

i

S2
i , (3)

where Si = 0, ±1 and x̂1, x̂2 are unit vectors along the two
orthogonal crystalline directions. Si ± 1 represent the verti-
cal (�σi = x̂2) and the horizontal (�σi = x̂1) orientations, while
Si = 0 represents the empty state.

In the case of a triangular lattice the model can be formu-
lated in terms of a diluted q = 3 anisotropic Potts model. We
associate to each site of the lattice a spin variable σ i = 0, 1,
2, 3, such that σ i = 0 represents the empty state and the states
σ i = 1, 2, 3 represent a bar oriented along the three unit vec-
tors x̂k (k = 1, 2, 3), where the angle between any pair of them
is 2π /3 . Then the Hamiltonian can be written as

H = −w
∑
〈i,j〉

3∑
σ=1

δ(σi, σ ) δ(σj , σ ) δ(�rij ,±x̂σ )

−μ
∑

i

[1 − δ(σi, 0)], (4)

where δ(σ , σ ′) is the Kronecker delta function. These alterna-
tive representations of the model are useful for the analytical
treatment.

III. MC SIMULATIONS

A. MC method

We have used a standard importance sampling MC
method in the canonical and grand canonical ensembles,25

and FSS techniques.26 All calculations were carried out us-
ing the parallel cluster BACO of Universidad Nacional de San
Luis, Argentina. This facility consists of 50 CPUs each with
an Intel Core i7 processor running at 2.93 GHz and 512MB
of RAM per core.

1. Canonical MC simulations

MC simulations in the canonical ensemble were used
to obtain the results presented in Subsection III B. The pro-
cedure is as follows. Starting with a random initial con-
figuration (sites occupied with concentration θ = N/M and
particle axis orientation chosen at random), successive config-
urations are generated by attempting to move single particles
(monomers). One of the two (translation or rotation) moves is
chosen at random. In a translation move, an occupied site and
an empty site are randomly selected and their coordinates are
established. Then, an attempt is made to interchange its oc-
cupancy state with probability given by the Metropolis rule:27

P = min {1, exp (−β	H)}, where 	H is the difference be-
tween the Hamiltonians of the final and initial states and
β = 1/kBT (being kB the Boltzmann constant). For a rotation
move, the rotational state of the chosen particle is changed
with a probability determined by Metropolis rule. A MC step
(MCS) is achieved when θ × M sites have been tested to

change its occupancy state. Typically, the equilibrium state
can be well reproduced after discarding the first 5 × 106 MCS.
Then, the next 6 × 108 MCS are used to compute averages.
The same procedure is performed at different temperatures.

2. Grand canonical MC simulations

MC simulations in the grand canonical ensemble have
been carried out to understand the discrepancy between
the results of Refs. 19 and 21 about the universality class
of SARRs model in the triangular lattice (Sec. V). The
procedure is as follows. For a given pair of values of T
and μ, an initial configuration with an arbitrary number of
monomers adsorbed at random positions and orientations (on
M sites) is generated. Then an adsorption-desorption process
is started, where the lattice sites are tested to change its oc-
cupancy state with probability given by the Metropolis rule:27

P = min {1, exp (−β	H)}, where 	H is the difference be-
tween the Hamiltonians of the final and initial states and
β = 1/kBT. Insertion and removal of monomers, with a given
orientation, are attempted with equal probability. For this pur-
pose, an axis orientation (with probability 1/3 for the trian-
gular lattice) and a lattice site are chosen at random. If the
selected lattice site is empty, an attempt to place a monomer
(with the orientation previously chosen) on the site is made.
If, instead, the site is occupied, then the algorithm checks the
orientational state of the adsorbed monomer and if this co-
incides with the previously chosen orientation, an attempt to
desorb the particle is performed; otherwise, the trial ends. A
MCS is achieved when M sites have been tested to change its
occupancy state. The number of monomers on the lattice con-
verges to the average value corresponding to the fixed chemi-
cal potential, in less than 105 MC steps. The equilibrium state
can be well reproduced after discarding the first 6 × 108 MCS.
Then, averages are taken over 6 × 108 successive configura-
tions. The same procedure is performed at different chemical
potentials.

3. Order parameters, Binder cumulant,
and FSS analysis

In order to follow the formation of the nematic phase
from the isotropic phase, we use the order parameter defined
in Ref. 15 for the square lattice,

Q = |Nv − Nh|
Nv + Nh

, (5)

where Nh(Nv) is the number of monomers aligned along the
horizontal (vertical) direction, and N is the number of total
monomers on the lattice (N = Nh + Nv).

For the triangular and honeycomb lattices, the order pa-
rameter has been defined in Ref. 19 as

Q = |�n1 + �n2 + �n3|
|�n1| + |�n2| + |�n3| , (6)

where each vector �ni is associated to one of the 3 possible
orientations (or directions) for a chain on the lattice. In addi-
tion: (1) the �ni’s lie in the same plane (or are co-planars) and
point radially outward from a given point P which is defined
as coordinate origin; (2) the angle between two consecutive
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vectors, �ni and �ni+1, is equal to 2π /3; and (3) the magnitude of
�ni is equal to the number of rods aligned along the i-direction
(for a graphical representation, see Fig. 1(a) in Ref. 19). Note
that the �ni’s have the same directions as the q vectors in
Ref. 28.

In our canonical MC simulations, we fixed the density θ ,
and monitored the order parameter 〈Q〉 as function of tem-
perature T. The reduced fourth-order (Binder) cumulant UL,25

was calculated as

UL(T ) = 1 − 〈Q4〉
3〈Q2〉2

, (7)

where the thermal average 〈. . . 〉 means the usual time average
throughout the MC simulation.

The critical behavior of the SARRs model has been in-
vestigated by means of FSS analysis. The FSS theory implies
the following behavior for 〈Q〉 and UL at criticality:

〈Q〉 = L−β/νQ̃(L1/νε) (8)

and

UL = ŨL(L1/νε), (9)

for L → ∞, ε → 0 such that L1/νε = finite, where ε ≡ T/Tc

− 1 for canonical MC simulations and ε ≡ μ/μc − 1 for grand
canonical MC simulations. Here β and ν are the standard
critical exponents of the order parameter (〈Q〉 ∼ (−ε)β for
ε → 0−, L → ∞), and correlation length ξ (ξ ∼ |ε|−ν for
ε → 0, L → ∞), respectively. Q̃ and ŨL are scaling func-
tions for the respective quantities.

Finally, we calculated the average rod length on the tran-
sition line that, at fixed coverage, increases as the temperature
decreases. At each MCS the average rod length may be calcu-
lated as

�MCS = N

N − [Nbonds − N(L)rods]
, (10)

where N is the number of monomers adsorbed on the lat-
tice; Nbonds is the number of bonds between pairs of nearest-
neighbors monomers. N(L)rods is the number of rods with
length L; its inclusion prevents counting spurious bonds in-
troduced by the periodic boundary conditions (i.e., bonds that
do not contribute to the rod’s length). Thus the equilibrium
average rod length is obtained from

� = 〈�MCS〉. (11)

B. Computational results

1. Behavior of the Binder cumulant

The critical behavior of the SARRs model has been in-
vestigated by means of the computational scheme described in
Sec. III A for the canonical ensemble and FSS analysis.25, 26

In order to illustrate the behavior of the Binder cumulant in
the critical regime, we show here the results for the triangu-
lar lattice case at intermediate and full coverage. In addition,
these results will be useful when we address the question of
whether or not the universality class can change as a result
of the constant density constraint applied in the canonical en-
semble (Sec. V).

FIG. 1. Size dependence of the order parameter as a function of temperature
for θ = 0.5 and θ = 1 (inset).

Figure 1 (inset of Fig. 1) shows the behavior of the or-
der parameter versus the reduced temperature T ∗ = kBT /w

for several lattice sizes and θ = 0.529 (θ = 1). As it can be
observed, 〈Q〉 appears as a proper order parameter to elu-
cidate the phase transition. When the system is disordered
(T ∗ > T ∗

c , being T ∗
c the critical temperature), all orienta-

tions are equivalent and 〈Q〉 is zero. In the critical regime
(T ∗ < T ∗

c ), the particles align along one direction and 〈Q〉 is
different from zero. Interested readers are referred to Refs. 15
and 19 for a more complete description of the scaling behavior
(critical exponents and data collapsing) of the order parameter
and the susceptibility.

Hereafter, we discuss the behavior of the critical temper-
ature as a function of coverage. The standard theory of FSS
allows for various efficient routes to estimate T ∗

c from MC
data.25, 26 One of these methods, which will be used in this
case, is from the temperature dependence of UL(T ∗), which
is independent of the system size at T ∗ = T ∗

c . In other words,
T ∗

c can be found from the intersection of the curve UL(T ∗)
for different values of L, since U ∗ ≡ UL(T ∗

c ) = const.30 As
an example, Fig. 2 shows the reduced four-order cumulants
UL plotted versus T ∗ for the cases studied in Fig. 1. The val-
ues obtained for the critical temperature were T ∗

c = 0.220(2)
(corresponding to θ = 0.5) and T ∗

c = 0.476(3) (correspond-
ing to θ = 1).

The behavior of the reduced fourth-order cumulant as a
function of temperature also allows to make a preliminary
identification of the order and universality class of the phase
transition occurring in the system.25 Thus, the curves in Fig. 2
exhibit the typical behavior of the cumulants in the presence
of a continuous phase transition. Namely, the order parame-
ter cumulant shows a smooth drop from 2/3 to 0, instead of
a characteristic deep (negative) minimum, as in a first-order
phase transition.25
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FIG. 2. Curves of UL vs T ∗ for θ = 0.5 (a) and θ = 1 (b). From their in-
tersections one obtained T ∗

c . In the insets, the data are plotted over a wider
range of temperatures.

The value of the intersection point U ∗ shows two differ-
ent behaviors, which can be visualized from Fig. 2. On one
hand, the value obtained for U ∗ at θ = 0.5 (U ∗ = 0.643(4)) is
consistent with the q = 1 Potts universality class28 observed
in Ref. 19, where the system was studied at a fixed temper-
ature (T ∗ ≈ 0.222). On the other hand, at θ = 1, the fixed
value of the cumulants, U ∗ = 0.605(6), is more consistent
with previous estimates for the three-state Potts model (see
for instance Ref. 31, where U ∗ ∼= 0.61332). However, even
though the value of U ∗ may be taken as a first indication of
universality, a detailed calculation of critical exponents is re-
quired for an accurate determination of the universality class.
In Sec. V, the distinction between the two universality classes
above is considered based on the determination of the critical
exponent of the correlation length.

2. Phase diagrams of SARRs on square, triangular,
and honeycomb lattices

The isotropic-nematic phase transition in a model of self-
assembled rigid rods with restricted orientations was consid-

FIG. 3. Temperature-coverage diagrams for the SARRs model on different
lattices. For comparative purposes, the critical curve reported by Tavares
et al.9 is shown as a solid line. The open and solid squares are from Refs. 22
and 16, respectively. The open triangles and hexagons represent the results
obtained in this work for the triangular and honeycomb lattices, respectively.
Solid triangles are from Almarza et al.21 (in black) and from Ref. 23 (in grey).

ered for the first time by Tavares et al.9 The temperature-
coverage phase diagram in Ref. 9, obtained using an approach
in the spirit of the Zwanzig model,10 is qualitative only, and
the theory overestimates the critical temperature in all ranges
of coverage (especially at high coverages).33 However, for
small values of θ , small differences appear between simula-
tion and theoretical results (Fig. 3). As seen in Fig. 3, the crit-
ical lines separate regions of isotropic and nematic stability,
and show that the nematic phase is stable at low temperatures
and high densities. In addition, the phase diagrams show a
marked increase of the density difference from dilute isotropic
to dense nematic phases upon increasing the attraction be-
tween monomer units (i.e., decreasing the temperature).

The critical line for SARRs on the square lattice, was ob-
tained by means of numerical simulations in Refs. 22 and 16.
Figure 3 shows the critical line reported in Ref. 22 and only
one point (the lowest coverage obtained) of the critical line re-
ported in Ref. 16. As explained in Ref. 16, the line of critical
points continues beyond the lowest density showed in Fig. 3,
however, the rapid increase of the average length of the rods
at low densities and temperatures prevents an efficient simu-
lation of the system.

For the case of the triangular lattice, some critical points
were obtained, at high coverages in Ref. 21 and at interme-
diate coverages in Ref. 23 (see Fig. 3). In the latter case, the
points were obtained from the singularities in the adsorption
isotherms. To corroborate these previous results and com-
plete the phase diagram construction, the procedure used in
Sec. III B 1 (to obtain the critical temperature) was repeated
for θ ranging between 0.2 and 1. The same procedure was
done for the case of the honeycomb lattice, this way the com-
plete phase diagram of honeycomb lattice is reported here for
the first time. All results are collected in Fig. 3. Together, the
phase diagrams show that the critical properties coincide in
the very low-temperature (coverage) regime.
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FIG. 4. Critical average rod lengths. See description in the text.

3. Critical average rod lengths

Using a generalization of the theory of associating fluids,
Tavares et al.9 obtained an analytic expression for the equi-
librium average rod length in the SARRs model, with orien-
tation α along the x1, x2 directions in two dimensions (2D). In
Fig. 4 (inset), we present a comparison between theoretical9

and numerical results for the equilibrium average rod length
on the transition line. In the numerical case, the points were
obtained by using Eqs. (10) and (11) and square lattices. By
comparing these curves it can be seen a qualitative agreement
up to θ ≈ 0.8. However, at higher coverages, MC simulations
show a gradual increase of the critical average rod length, to
a value of � ≈ 7 (at θ = 1). This value is interesting because
it coincides with the minimum value of k (kmin = 7), which
allows the formation of a nematic phase in long straight rigid
rods of length k (k-mers and monodisperse case), on a square
or triangular lattice.11–13

The average rod length on the critical line was also ob-
tained for triangular and honeycomb lattices, see Fig. 4. Two
observations can be made from Fig. 4: (i) At intermediate cov-
erage (θ ≈ 0.5, dashed line), the critical average rod lengths
for the square and triangular lattices are similar and near to
7 (the minimum value of k which allows the formation of
a nematic phase in monodisperse rigid rods, on a square or
triangular lattice11–13). On the other hand, the critical aver-
age rod length (at θ ≈ 0.5) for the honeycomb lattice, is
near to 11, which coincides with the minimum value of k
for the existence of a nematic phase in the case of monodis-
perse rigid rods on the honeycomb lattice.14 (ii) Although the
trend is more clear for the square and triangular lattices, all
lines tend to converge as the coverage decreases towards zero;
revealing a quasi-one-dimensional behavior in the very low-
temperature (coverage) regime. In this situation, particles ad-
sorb forming chains and the IN phase transition remains up
to the zero density limit, where the average rod length di-
verges and an equilibrium polymerization transition occurs in
the system.21

IV. ANALYTICAL APPROXIMATIONS

In this section, we calculate the phase diagram within the
BP or quasichemical approximation. To do that we use the
CVM.34 In the CVM the BP approximation is obtained mini-
mizing a variational free energy expressed in terms of reduced
probability densities, namely,

F = TrρH + kBT

{
(1 − qc)

∑
i

Triρ
(1)
i log ρ

(1)
i

+
∑
〈i,j〉

Tri,j ρ
(2)
i,j log ρ

(2)
i,j

⎫⎬
⎭ , (12)

where qc is the coordination number of the lattice, ρ
(1)
i and

ρ
(2)
i,j are one and two sites reduced densities, respectively, and

it is assumed that ρ = ∏
〈i,j〉 ρ

(2)
i,j . ρ

(1)
i and ρ

(2)
i,j can be ex-

pressed in terms of local one and two site averages, which
are used as variational parameters and are related through the
reducibility conditions,

Triρ
(2)
i,j = ρ

(1)
j ,

(13)
Trj ρ

(2)
i,j = ρ

(1)
i ,

and Triρ
(1)
i = 1. For details on the method see, e.g., Ref. 34.

In Subsections IV A and IV B, we apply the formalism for the
models (3) and (4).

A. BP approximation for the square lattice case

Within the representation of the model given by Hamil-
tonian (3) the orientational order parameter 〈Q〉 is basically
given by the average “magnetization,”

m = 1

M

〈∑
i

Si

〉
, (14)

while the coverage is given by

θ = 1

M

∑
i

〈
S2

i

〉
. (15)

Then, the one site probability densities can be expressed
as (the details of this analysis are given in the supplementary
material35),

ρ
(1)
i (Si) = (1 − θ ) + 1

2
mSi +

(
3

2
θ − 1

)
S2

i , (16)

where we have assumed translational invariance. Defining the
two-site correlations,

xij ≡ 〈
SiSj

〉 = Tri,j SiSjρ
(2)
i,j , (17)

yij ≡ 〈
S2

i S
2
j

〉 = Tri,j S
2
i S

2
j ρ

(2)
i,j , (18)

zij ≡ 〈
SiS

2
j

〉 = Tri,j SiS
2
j ρ

(2)
i,j , (19)

tij ≡ 〈
SjS

2
i

〉 = Tri,j SjS
2
i ρ

(2)
i,j , (20)
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and imposing the reducibility conditions (13), the two site
density functions ρ

(2)
i,j can be obtained in terms of the varia-

tional parameters m, θ , xij, yij, zij, and tij (see the supplemen-
tary material35). Replacing into Eq. (12) we obtain an expres-
sion for the variational free energy, whose derivatives can be
handled by means of symbolic manipulation programs. Al-
though solving of the corresponding saddle point equations is
cumbersome (even numerically), they greatly simplify in the
high temperature case, i.e., when we consider the disordered
solution m = tij = zij = 0 which is isotropic: xij = x and
yij = y. In that case we obtain (see the supplementary
material35),

log(1 + y − 2θ ) = 2 log(θ − y) − log(y − x), (21)

x = y tanh

(
βw

4

)
, (22)

βμ = − log(2) − 2 log(1 + y − 2θ )

+ 3 log

(
1 − θ

θ

)
+ 2 log(y − x). (23)

Working out Eqs. (21)–(23) shows that there is only one phys-
ically meaningful solution. The equilibrium coverage θ∗ is
then given by the solution of the implicit equation,

e−βμ = F−(θ∗, a), (24)

where

F−(θ, a) = 2

[
1 + y−(θ, a) − 2θ

y−(θ, a) (1 − a)

]2 (
θ

1 − θ

)3

, (25)

with a ≡ tanh(βw/4) and

y−(θ, a) = 1

2a

[
1 − a + 2aθ −

√
(1 − a + 2aθ )2 − 4aθ2

]
,

(26)

while the equilibrium values of the correlations are given by
y∗ = y−(θ∗, a) and x∗ = a y∗.

To compute the high temperature nematic susceptibility
we add to the Hamiltonian (3) a small external field B con-
jugated to m. Then, at temperatures above the critical one we
can still assume isotropy in the solution (namely, the solution
of the saddle point equations that converge to the previous one
in the limit B → 0), so that tij = zij = z and m � 1, z � 1. This
leads to saddle point equations which expanded to the lowest
order in B′ ≡ βB give (see the supplementary material35),

3
m

θ∗ = 4
m − z

θ∗ − y∗ − B ′ + O(m2, z2,mz), (27)

z

x∗ + y∗ = m − z

θ∗ − y∗ + O(m2, z2,mz). (28)

Then, in the linear response regime m = χB′ and
z = ωB′. In the limit B′ → 0, χ is proportional to the nematic
susceptibility. From the above equations we obtain,

χ = θ∗(θ∗ + x∗)

3x∗ − θ∗ , (29)

ω = θ∗(x∗ + y∗)

3x∗ − θ∗ . (30)

FIG. 5. Comparison between the square lattice phase diagram obtained
within the Bethe-Peierls (BP) approximation and those obtained by other
methods: Real Space Renormalization Group (RSRG) from Ref. 22, Tavares
et al. approximation from Ref. 9 and MC simulations.

The disordered solution becomes unstable whenever 3x∗

= θ∗. Replacing this condition into Eqs. (21)–(23) we obtain
the critical line,

e−βμc = 27

4

3a − 1

1 − a
(31)

and

θc = 3
1 − a

1 + 3a
, (32)

or equivalently:

T ∗
c = 1

4 arctanh
(

1
3

3−θ
1+θ

) . (33)

In Fig. 5, we compare the Bethe-Peierls critical line with
those obtained by other techniques. From Eq. (33) we obtain
the following asymptotic behavior when θ � 1:

T ∗
c ∼ − 1

2 ln (θ )
, (34)

which agrees qualitatively with the asymptotic behavior of
Tavares et al.9 calculation T ∗

c ∼ −1/3 ln(θ ).

B. BP approximation for the triangular lattice case

The magnetization (orientational order parameter) in this
case is given by

m = 1

M

M∑
i=1

〈{
1

q − 1

[
q δ(σi, 1) + δ(σi, 0) − 1

]}〉

= 1

2
[3 〈δ(σi, 1)〉 − θ ] , (35)

where the broken symmetry direction σ = 1 is taken arbitrar-
ily among the different q oriented states (q = 3 in our case).
This is a generalization of usual definition for the q-state Potts
model. In a disordered state we have 〈δ(σ i, 1)〉 = θ /q, so m
= 0, while in an ordered state along the σ = 1 direction we
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will have 〈δ(σ i, 1)〉 = θ so m = θ . A conjugated external field
to the order parameter (35) can be considered by adding to the
Hamiltonian (4) a term of the form,

− B

2

∑
i

[3 δ(σi, 1) + δ(σi, 0) − 1] . (36)

The coverage is given by

θ = 1

M

M∑
i=1

[1 − 〈δ(σi, 0)〉] = 1 − 〈δ(σi, 0)〉 . (37)

As in the square lattice case, we will consider hereafter
only isotropic solutions (valid above the transition tempera-
ture in the B � 1 limit). We then define the correlations,

x ≡ 〈δ(σi, 0) δ(σj , 0)〉, (38)

y ≡ 〈δ(σi, 1) δ(σj , 1)〉, (39)

z ≡ 〈δ(σi, 2) δ(σj , 2)〉 = 〈δ(σi, 3) δ(σj , 3)〉, (40)

t ≡ 〈δ(σi, 0) δ(σj , 1)〉. (41)

The one and two sites reduced densities for the spin variables
σ i = 0, 1, 2, 3 can be expressed as

ρ
(1)
i (σi) =

q∑
σ=0

Pσ δ(σi, σ ), (42)

ρ
(2)
i,j (σi, σj ) =

∑
σ,σ ′

Pσ,σ ′δ(σi, σ ) δ(σj , σ
′). (43)

Applying the normalization and reducibility conditions
the coefficients Pσ and Pσ,σ ′ can be expressed in terms of
the parameters m, θ , x, y, z, and t (see the supplementary
material35).

First of all we checked the mean-field approximation for
this model. Inside the CVM formalism, the mean field free en-
ergy can be obtained by assuming that the probability density
function is given by ρ = ∏

i ρ
(1)
i and keeping up to the first

order term in the cumulant expansion of the entropy.34 With
a simple analysis (not shown) we found that the mean field
approximation predicts a first order transition for any value of
μ, in complete disagreement with the numerical simulations.

Replacing the reduced densities into Eq. (12) we obtain
the BP free energy in terms of the variational parameters (m,
θ , x, y, z, t) and the corresponding saddle point equations (see
the supplementary material35).

At zero field and high enough temperature we have a dis-
ordered phase, where all ordered states (σ = 1, 2, 3) become
equally probable and therefore m = 0 (〈δ(σ i, 1) 〉 = θ /q). Also
from the definitions (39) and (40) we have that y = z. With
some algebra (see the supplementary material35) the saddle
point equations for the disordered solution reduce to

(1 − θ − x)6(1 − θ )5

x6θ5
= 3eβμ, (44)

9zx

(1 − θ − x)2
= eβw/3, (45)

(1 − θ − x)2 = 3

2
x (2θ + x − 1 − 3z), (46)

t = (1 − θ − x)/3. (47)

The physically meaningful solutions of Eqs. (44)–(50)
can be obtained in terms of the implicit equation,

θ∗ = G−(θ∗), (48)

where

G−(θ ) = 1

a

{
a + x(θ )(3 − a)

−
√

3[ax(θ )[1 − x(θ )] + 3x2(θ )]
}
, (49)

with a ≡ 2 + eβw/3 and

x(θ ) = (1 − θ )11/6

31/6 eβμ/6 θ5/6 + (1 − θ )5/6
. (50)

The equilibrium values for the remaining parameters are
given by x∗ = x(θ∗), t∗ = (1 − θ∗ − x∗)/3 and

z∗ = eβw/3

9x∗ (1 − θ∗ − x∗)2. (51)

Equation (48) has always at least two solutions for any
value of β and μ: θ∗ = 1 (x∗ = 0) and θ∗ = 0 (x∗ = 1).
For large but finite values of μ a third solution with θ∗

< 1 emerges, which is a monotonously increasing function
of μ and limμ → ∞θ∗(μ) = 1. This is the physically meaning-
ful solution for large values of μ. For μ  1 we obtain the
asymptotic behavior (see the supplementary material35)

1 − θ∗ ∼ e−βμ 35

(2 + eβw/3)6
, (52)

x∗ ∼ e−2βμ 39

(2 + eβw/3)11
, (53)

z∗ ∼ 1

3

eβw/3

2 + eβw/3
. (54)

Notice that in the T → ∞ (β → 0), the correlation
z∗ → 1/9, as expected.

At non-zero magnetic field B � 1 we proceeded as in the
square lattice case, by expanding the saddle point equations
and keeping the lowest order in B. This leads to the following
expression for the nematic susceptibility (see the supplemen-
tary material35):

χ = 1

2

θ∗(9z∗ − x∗ + 1)

12θ∗ − 5(9z∗ − x∗ + 1)
, (55)

which diverges when

12θ∗ − 5(9z∗ − x∗ + 1) = 0. (56)

For a given value of the chemical potential μ/w,
Eqs. (49) and (56) must be solved together in order to ob-
tain the critical line T ∗

c vs. coverage θ . In Fig. 6, we compare
a critical line obtained by numerically solving Eqs. (49) and
(56) with the MC results. In particular, in the limit μ → ∞,
when θ → 1 and x → 0, we obtain from Eqs. (52)–(54) that

χ = 1

4

3 + 4 eβw/3

7 − 4 eβw/3
. (57)
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FIG. 6. Comparison between the phase diagram obtained within the Bethe-
Peierls (BP) approximation and MC simulations for the triangular lattice.
Inset: comparison between the BP critical lines for the square and triangular
lattices.

We see that χ > 0 for all temperatures T > Tc, with

T ∗
c = 1

3 log(7/4)
≈ 0.595647 (58)

and diverges at that temperature, in a clear signature of a sec-
ond order phase transition. Comparing with the square lattice
result from Subsection IV A, we see that the critical temper-
ature at θ = 1 decreases in the triangular lattice in a factor
≈0.826, which compares well with the MC reduction factor
≈0.841.

For finite, but relatively large values of μ/w, Eqs. (49)
and (56) present only one nontrivial solution, that converges
to the value given by Eq. (58) in the μ → ∞ limit. How-
ever, for μ < μ0, with μ0 ≈ −0.65 (which corresponds to
θ ≈ 0.73), two new non-trivial solutions emerge, one with θ

� 1 and the other with 1 − θ � 1. As μ further decreases,
the low coverage solution approaches the critical one (i.e.,
that shown in Fig. 6). Finally, both solutions collapse at μc

≈ −0.83 (corresponding to θ ≈ 0.24) and disappear for
μ < μc. Such behavior could be indicative of the presence of
a first order transition at low values of μ, so that the observed
secondary instabilities in the susceptibility would correspond
to spinodal lines. In that case, a tricritical point somewhere
along the calculated transition line should be expected. In-
deed, a similar behavior has been observed within the mean
field approximation for the square lattice,22 which disappears
in the improved BP approximation as we have shown in
Subsection IV A. However, to check whether there is a change
in the transition order for the triangular lattice case or the ob-
served behavior is just spurious, requires a complete mini-
mization analysis of the BP free energy in a multidimensional
space (taking anisotropic ordered solutions into account)
which is beyond the scope of the present work. Whatever the
case, the calculation presented in Fig. 6 should be regarded as
a high coverage approximation.

V. REVISITING THE UNIVERSALITY CLASS

The purpose of this final section is to revisit a number
of the issues that have emerged during the course of the dis-
cussion about the universality class of the SARRs model,
Refs. 15–18 and 21. For the square lattice case,36 at inter-
mediate coverages, it was shown that the system under study
represents an interesting case where the use of different statis-
tical ensembles (canonical or grand canonical) leads to differ-
ent and well-established universality classes (q = 1 Potts type
or q = 2 Potts type, respectively).17 In Ref. 18, Almarza et al.
concluded that the dependence of the universality class of the
SARRs model on the statistical ensemble, is very likely the
result of inadequate use of normal scaling to investigate the
critical properties of the constrained (constant density) sys-
tem. However, to date, no completely satisfactory explanation
has been given on the consistency of the FSS behavior, in the
canonical ensemble, with the critical exponents of the ordi-
nary percolation (i.e., 2D Potts q = 1 universality class).

As in Sec. III B 1, we will address here only the trian-
gular lattice case. We expect the same universality class for
chains on honeycomb lattices (with three allowed orienta-
tions), given that the excluded volume term exhibits the same
symmetry. The critical behavior of the SARRs model on a tri-
angular lattice was recently reinvestigated by Almarza et al.21

The authors found that the isotropic-nematic phase transition
occurring in the system is in the 2D Potts q = 3 universal-
ity class. This conclusion contrasts with that of a previous
study in the canonical ensemble19 which indicates that the
transition in triangular (and honeycomb) lattices, at interme-
diate density, belongs to the q = 1 Potts universality class. In
Ref. 21, Almarza et al. attributed the discrepancy to the use
of the density as the scaling variable in Ref. 19. In addition,
Almarza et al. have cited a paper37 in which Fisher showed
that fixing the density in some models corresponds to intro-
ducing a constraint that renormalizes the critical exponents.
More precisely, Almarza et al.21 have noted that, for the Potts
q = 3 universality class, the renormalized correlation length
exponent ν ′ is ν ′ = ν/(1 − α) = 5/4, which is close to the value
of ν for the q = 1 universality class, νq = 1 = 4/3, reported in
Ref. 19.

In order to test the argument given by Almarza et al.,21

a series of MC simulations have been conducted. As in Refs.
16 and 17, the distinction between the two universality classes
is based on the determination of the value of ν, which is
clearly different for the two universality classes under dis-
cussion. Then, the scaling behavior can be tested by plot-
ting UL vs εL1/ν and looking for data collapse. As shown
in Fig. 7(a), the collapse of the curves corresponding to
Fig. 2(a), where the control parameter is the temperature,
provides convincing evidence that the scaling obtained using
νq = 1 = 4/3 is not due to the use of the density as the con-
trol parameter, as claimed by Almarza et al.21 However, as
would be expected due to the proximity of the values consid-
ered here (νq = 1 and ν ′), a good data collapse with the renor-
malized correlation length exponent ν ′ can also be obtained
[Fig. 7(b)]. Hence, unlike what happens in the square lattice
case, Fisher renormalization arguments appear to be sufficient
in the triangular (honeycomb) lattice case.
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FIG. 7. Data collapsing of the Binder cumulant, UL vs εL1/ν , with the corre-
lation length exponent of the ordinary percolation (a), and with the renormal-
ized exponent (b). CE means canonical ensemble.

Moreover, to check the data presented by Almarza
et al.,21 MC simulations in the grand canonical ensemble were
carried out using an adsorption-desorption algorithm. It is im-
portant to note that the algorithm used here is different from
that used by Almarza et al.21 In the grand canonical ensem-
ble, the critical behavior was studied at the same point of the
phase diagram (θc ≈ 0.5), fixing the inverse of the reduced

FIG. 8. Data collapsing of the Binder cumulant, UL vs εL1/ν , with the corre-
lation length exponent of the 2D Potts q = 3 universality class, for: grand
canonical ensemble (GCE) simulations at intermediate coverage (a), and
canonical ensemble (CE) simulations at full-coverage (b).

temperature to 1/T ∗ = 4.5, and varying the chemical poten-
tial μ. Very good collapse was obtained with ν = 5/6 in the
scaling plot of UL [Fig. 8(a)], thus corroborating the data of
Almarza et al.21 In addition, only in the full-lattice limit (θ
= 1), canonical MC simulations are able to produce results
consistent with the 2D Potts q = 3 universality class [see Fig.
8(b), which shows the collapse of the cumulant curves corre-
sponding to Fig. 2(b)].

Finally, we wish to clarify that: (i) We do not hold that the
universality class of the SARRs model depends on the poly-
dispersity of the rods, as was stated by Almarza et al.18 in ref-
erence to our work.17 (ii) We agree with Almarza et al.16, 18, 21

that the universality class of the SARRs model, in the square
lattice, is that of the 2D Ising model, whereas that in the tri-
angular and honeycomb lattices, is the same as that of the 2D
Potts model with q = 3. (iii) The strong consistency of the
results obtained in the canonical ensemble with the critical
exponents of the ordinary percolation (at intermediate cover-
age, in the three lattices considered), warrants an explanation
that has not yet been given.

VI. CONCLUSIONS

In this paper, the main critical properties of self-
assembled rigid rods on square, triangular, and honeycomb
lattices have been addressed. The results were obtained
by using Monte Carlo simulations in the canonical and
grand canonical ensembles, finite-size scaling techniques and
theoretical analysis in the framework of the Bethe-Peierls
approximation.

Several conclusions can be drawn from the present work.
On the one hand, the equilibrium average rod length as a func-
tion of concentration was calculated by MC simulations. In
the case of square lattices, computational data were compared
with theoretical results from Tavares et al.9 A good qualitative
agreement was observed in the range of coverage from 0 to
0.8. However, the disagreement turns out to be significantly
large for θ > 0.8. In the case of triangular and honeycomb
lattices, the dependence of the equilibrium average rod length
on coverage was reported here for the first time.

The obtained results for �(θ ) reveal two interesting ob-
servations: (i) at intermediate coverage (θ ≈ 0.5), the value
of the average rod length coincides with the minimum value
of k (kmin), which allows the formation of a nematic phase
for a system of monodisperse straight rigid k-mers adsorbed
on two-dimensional lattices (square lattice, kmin = 7;11–13 tri-
angular lattice, kmin = 7;12, 13 and honeycomb lattice, kmin

= 1114); and (ii) at low coverage, the three curves show the
same tendency, independently of the lattice geometry (given
the range of concentrations studied here, this behavior is more
evident for square and triangular lattices). This finding rein-
forces the idea that the adsorption process behaves as a quasi-
one-dimensional problem in the low-coverage (temperature)
regime: particles adsorb forming chains and an equilibrium
polymerization transition occurs at zero density.23

On the other hand, and regarding the phase diagram of
the SARRs, the complete T-θ critical curves corresponding to
triangular and honeycomb lattices have been obtained by us-
ing MC simulation and FSS analysis. In the case of triangular
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lattices, the present study allowed us to corroborate pre-
vious results obtained from the behavior of the adsorption
isotherms23 and, in the case of honeycomb lattices, the phase
diagram has been reported here for the first time.

The simulation phase diagrams were compared with an-
alytical data from the BP approximation. BP results confirm
the whole scenario that emerges from the MC simulations, in
a clear improvement respect to the mean-field approximation,
namely: (a) a continuous nature of the phase transition for any
value of θ (although in the triangular lattice case the BP fails
in that feature at low coverage, the general trend suggests to
be a spurious effect of the approximation); (b) a consistent
reduction in the critical temperatures for any value θ when
the triangular and square lattice models are compared; (c) an
independence on θ of the critical curves for different lattices
at very low values of θ (see inset of Fig. 6); and (d) a loga-
rithmic decrease with θ of the critical curve when θ → 0, in
agreement with other analytical approach.9

In an earlier study,22 in which the critical behavior of
SARRs on the square lattice was addressed, it was shown that
in the full coverage case (θ = 1.0), the Hamiltonian of the
SARRs model maps exactly onto the Ising model one (q
= 2 Potts model) with coupling constant wIsing = wSARRs/4.
In contrast, the 2D SARRs model on the triangular lattice can-
not be mapped on q = 3 Potts model, as can be easily seen
from Eq. (4). It is interesting to note, that through a simple
extension of the present calculations the critical temperature
T ∗

c within the BP approximation for the isotropic q = 3 Potts
model results 3 times that of the SARRs on the triangular
lattice. The corresponding comparison between the critical
temperatures extracted from MC simulations predicts a fac-
tor 33 299 ≈ 10/3, in close agreement with the BP result.

Finally, the problem of the universality class of the
SARRs model was revisited. Since the case corresponding
to square lattices has been widely discussed in Refs. 15–18,
we focused in the case of triangular lattices (the same uni-
versality class is expected to hold also for honeycomb lattices
with three allowed orientations). Based on the calculation of
the correlation length exponent ν in the canonical and grand
canonical ensembles, and using the Fisher renormalization
scheme, we confirmed previous results by Almarza et al.21

Namely, the universality class of the SARRs model for trian-
gular and honeycomb lattices is that of the 2D Potts model
with q = 3. However, the strong consistency of the results ob-
tained in the canonical ensemble with the critical exponents
of the ordinary percolation (at intermediate coverage, in the
three lattices considered), warrants an explanation that has not
yet been given.
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