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Abstract Formation of an aberrant and heterogeneous vascular network is a
key pathological event in the multistep process of tumor growth and
metastasis. Pro-angiogenic factors are synthesized and released from
tumor, stromal, endothelial, and myeloid cells in response to hypoxic
and immunosuppressive microenvironments which are commonly found
during cancer progression. Emerging data indicate key roles for
galectins, particularly galectin-1, -3, -8, and -9 in the regulation
of angiogenesis in different pathophysiologic settings. Each galectin
interacts with a preferred set of glycosylated receptors, triggers different
signaling pathway, and promotes sprouting angiogenesis through
different mechanisms. Understanding the role of galectins in tumor
neovascularization will contribute to the design of novel anti-angiogenic
therapies aimed at complementing current clinical approaches. Here we
describe selected strategies and methods used to study the galectin-1
regulation by hypoxia and its role in blood vessel formation.
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Chapter 19

Regulation of Galectins by Hypoxia and Their Relevance 
in Angiogenesis: Strategies and Methods

Mariana Salatino, Diego O. Croci, Diego J. Laderach,  
Daniel Compagno, Lucas Gentilini, Tomas Dalotto-Moreno, 
L. Sebastián Dergan-Dylon, Santiago P. Méndez-Huergo, 
Marta A. Toscano, Juan P. Cerliani, and Gabriel A. Rabinovich

Abstract

Formation of an aberrant and heterogeneous vascular network is a key pathological event in the multistep 
process of tumor growth and metastasis. Pro-angiogenic factors are synthesized and released from tumor, 
stromal, endothelial, and myeloid cells in response to hypoxic and immunosuppressive microenvironments 
which are commonly found during cancer progression. Emerging data indicate key roles for galectins, 
particularly galectin-1, -3, -8, and -9 in the regulation of angiogenesis in different pathophysiologic set-
tings. Each galectin interacts with a preferred set of glycosylated receptors, triggers different signaling 
pathway, and promotes sprouting angiogenesis through different mechanisms. Understanding the role of 
galectins in tumor neovascularization will contribute to the design of novel anti-angiogenic therapies 
aimed at complementing current clinical approaches. Here we describe selected strategies and methods 
used to study the galectin-1 regulation by hypoxia and its role in blood vessel formation.

Key words Galectin, Angiogenesis, Tumor neovascularization, Hypoxia

1 Introduction

Angiogenesis is the physiologic mechanism that leads to formation 
of new blood vessels from preexisting ones and involves the coordi-
nated action of different soluble factors, such as vascular endothelial 
growth factor (VEGF), fibroblast growth factor (FGF)-1 and -2, 
angiopoietins, and cell adhesion molecules such as integrins [1]. 
This process can be examined in vitro by studying three critical 
steps: endothelial cell proliferation, migration, and tube formation 
in response to different extracellular or intracellular stimuli [1]. 
Angiogenesis is a hallmark of cancer and various ischemic diseases 
like retinopathies [2]. The identification of new players of angiogenic 
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programs and the elucidation of the precise molecular pathways 
linking tumor hypoxia to angiogenesis are essential for the design of 
rational anti-angiogenic therapies.

In addition to modulation of tumor immunity (reviewed by 
Salatino et al. in this issue), emerging evidence indicates a key role 
for galectin-1 in the modulation of vascular signaling programs. 
This glycan-binding protein is up-regulated in hypoxic micro-
environments [3, 4] through hypoxia-inducible factor (HIF)-
dependent [5] or HIF-independent pathways involving activation 
of nuclear factor (NF)-κB and production of reactive oxygen 
species (ROS) [3]. Thijssen and colleagues demonstrated that 
galectin- 1 is expressed in tumor-associated endothelial cells, an 
effect which is associated with the promotion of an angiogenic 
phenotype [6]. In addition, endothelial cells can also take up 
galectin-1 which activates H-Ras signaling and Raf/mitogen-acti-
vated protein kinase/extracellular signal-regulated kinase (Erk) 
kinase (Mek)/Erk cascade, thus stimulating endothelial cell prolif-
eration and migration [7]. This pathway has been proposed to be 
activated through binding to neuropilin-1 on the surface of 
endothelial cells [8]. Interestingly, galectin-1 promotes tumor 
angiogenesis in different tumor models including Kaposi’s sar-
coma, melanoma, and prostate cancer [3, 6, 7, 9, 10]. Disruption 
of galectin-1-N-glycan interactions, using a galectin-1-specific 
monoclonal antibody or through inhibition of complex N-glycan 
branching, abrogates hypoxia-driven angiogenesis and tumorigen-
esis in a model of Kaposi’s sarcoma [3], suggesting that blockade 
of galectin-1 may contribute not only to potentiate tumor immunity, 
but also to ameliorate hypoxia and block neovascularization in 
different tumor types. Furthermore, other galectins including 
galectin-3 and galectin- 8 also contribute to tumor angiogenesis 
[11–14]. The αvβ3 integrin has been proposed to be a major galec-
tin-3-binding protein [11] and CD166 (activated leukocyte cell 
adhesion molecule; ALCAM) has been identified as a candidate 
receptor for galectin- 8 in normal vascular ECs [13]. Here we 
describe a selection of methods used to study the role of galectins, 
particularly galectin-1, in the modulation of tumor angiogenesis 
and their regulated expression by hypoxic microenvironments.

2 Materials (See Note 1)

 1. Modular Incubator Chamber (MIC-10, Billups-Rothenberg).
 2. Petri dishes.
 3. Cells to be evaluated.
 4. Appropriate cell culture medium (follow guidelines for indi-

vidual cell culture).
 5. O2 gas cylinder.

[AU2] 2.1 Hypoxia 
Induction in Modular 
Incubation Chamber
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 6. N2 gas cylinder.
 7. CO2 gas cylinder.
 8. Closing clamps.
 9. Oxygen sensor.
 10. Conventional incubator.

 1. Cells to be evaluated (e.g., tumor cells; endothelial cells).
 2. Phosphate buffered saline (PBS): 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4.
 3. Protein Extraction Buffer (50 mM Tris, pH 7.5; 150 mM 

NaCl; 10 mM EDTA; 1 % v/v NP-40) with protease and 
phosphatase inhibitors cocktails (Sigma).

 4. 18 mm cell scraper (Corning).
 5. 2× Laemmli sample buffer (BioRad).
 6. Amersham Hybond-ECL (GE Healthcare).
 7. 1.6 ml tubes (Axygen).
 8. Tris-buffered saline (TBS): 150 mM NaCl, 50 mM Tris, pH: 7.4.
 9. tTBS (TBS with 0.1 % Tween 20).
 10. Blocking buffer: tTBS with 5 % nonfat milk or bovine serum 

albumin (BSA).
 11. HIF-1α primary antibody (MA1-516, Pierce).
 12. HRP-conjugated secondary antibody (Vector Labs).
 13. Immobilon chemiluminescent HRP substrate (WBKLS01-00, 

Millipore).
 14. PVDF membrane (Millipore).
 15. 7.5 % SDS-polyacrylamide electrophoresis gel.
 16. GBOX incubator (Syngene).
 17. Bradford assay kit (Pierce).

 1. Cells to be evaluated.
 2. Cell culture medium.
 3. 15 ml tubes (BD).
 4. P60 petri dish (GBO).
 5. Human VEGF DuoSet ELISA Kit (R&D System).

 1. Conditioned media (see Note 2).
 2. Primary Human Umbilical Vein Endothelial Cells (HUVEC) 

or Bovine Aortic Endothelial Cells (BAEC) (see Note 3).
 3. Matrigel Reduced Growth Factor Basement Membrane Matrix 

(BD Biosciences).

2.2 Evaluation 
of Hypoxia. Hif-1α 
Detection by 
Western Blot

2.3 Detection 
of Soluble VEGF

2.4 Assessment of 
Angiogenesis In Vitro

2.4.1 Endothelial Cell 
Tubulogenesis
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 4. DMEM medium (D1) supplemented with 1 % heat-inactivated 
FBS (PAA, the Cell Culture Company), 2 mM l-glutamine, 
100 μg/ml streptomycin, and 100 U/ml penicillin (Life 
Technologies).

 5. 24-well plates (GBO).
 6. Crystal Violet aqueous solution 0.1 % (Sigma-Aldrich).
 7. Recombinant human Gal-1 (rGal-1).
 8. Anti-Gal-1 monoclonal antibody (F8.G7).
 9. Lactose (Sigma).
 10. Incubator set at 37 °C, 5 % CO2.
 11. Inverted phase microscope.
 12. Digital camera (Nikon).

 1. Conditioned media (see Note 2).
 2. Primary Human Umbilical Vein Endothelial Cells (HUVEC) 

or Bovine Aortic Endothelial Cells (BAEC) (see Note 3).
 3. DMEM medium (D1) supplemented with 1 % heat-inactivated 

FBS (PAA, the Cell Culture Company), 2 mM l-glutamine, 
100 μg/ml streptomycin, and 100 U/ml  penicillin (Life 
Technologies).

 4. Endothelial cell migration 24-multiwell transwells, 8 μm (BD 
Biosciences).

 5. 24-well plates (GBO).
 6. rGal-1.
 7. Lactose (Sigma).
 8. Incubator set at 37 °C, 5 % CO2.
 9. 0.1 % crystal violet solution (Sigma-Aldrich).
 10. Distilled water.
 11. Q-tips.
 12. Inverted microscope.
 13. Chemoattractant (see Note 4).
 14. rVEGF (R&D).

 1. Matrigel Reduced Growth Factor Basement Membrane Matrix 
(BD Biosciences).

 2. 1 ml syringe (Neojet).
 3. 23 G needle (BD).
 4. Phosphate buffered saline (PBS): 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4.
 5. rVEGF-A (R&D system).
 6. FGF-2 (R&D system).

2.4.2 Endothelial Cell 
Migration

2.5 Assessment of 
Angiogenesis In Vivo

2.5.1 Matrigel 
Plug Assay
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 7. TNF-α (R&D system).
 8. Heparin (Fluka, Sigma).
 9. Serum-Free Conditioned Media from Kaposi’s sarcoma.
 10. Gal-1 shRNA.
 11. rGal-1.
 12. Anti-Gal-1 monoclonal Ab (F8.G7).
 13. 1.6 ml tubes (Axygen).

 1. 23 G needle.
 2. Matrigel mix (see Subheading 3.5.1).
 3. Athymic nude mice.
 4. C57BL/6 Lgals1−/− (Gal-1 KO).
 5. C57BL/6 WT (Jackson).

 1. Scale.
 2. H2O.
 3. P60 Petri dish (GBO).
 4. Drapkin’s reagent (Sigma).
 5. Spectrophotometer.
 6. Mouse hemoglobin (Sigma).
 7. RPMI (Gibco).
 8. 50 ml conical tubes (BD/Falcon).
 9. Collagenase II solution (0.03 % in PBS/Sigma).
 10. Phosphate buffered saline (PBS): 137 mM NaCl, 2.7 KCl, 

10 mM Na2HPO4, 2 mM KH2PO4.
 11. 100 μm cell strainer (BD bioscience).
 12. 1 % fetal bovine serum (FBS) (Gibco).
 13. Paraformaldehyde (1 % and 4 % w/v buffer).
 14. PE-conjugated anti-CD34 antibody (clone RAM34 BD 

biosciences).
 15. Phosphate buffered saline with 1 % FBS and 0.05 % NaN3.
 16. Ketamine (Holliday scott).
 17. Xylazine (Richmond).
 18. Optimum cutting temperature (OCT) medium (Biopack).
 19. Cryostat.
 20. PBS 10 % normal rat serum (Sigma).
 21. Acetone (Cicarelli).
 22. Anti-PECAM-1/CD31 antibody (clone MEC13.3 Novus 

Biologicals).

2.5.2 Inoculation of 
Matrigel Plugs to Evaluate 
Angiogenesis In Vivo

2.5.3 Determination 
of Angiogenesis In Vivo 
in Matrigel Plugs
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 23. PBS 1 % BSA.
 24. Slides.
 25. AlexaFluor 596-conjugated goat anti-rat antibody (Cell 

Signaling).
 26. Fluoromount slide mounting media (Southern Biotech).
 27. DAPI (Life technologies).

 1. Flow cytometer.
 2. Fluorescence microscope.

3 Methods

 1. Prepare cell cultures at 60–70 % of confluence.
 2. Open the chamber incubator, place a Petri dish containing 

water and place the cells inside the incubator. Close the incu-
bator ensuring that it is hermetically closed.

 3. Maintain a separate cell culture in normoxia as control.
 4. To generate an hypoxic atmosphere, flush a mixture of 1 % O2, 

5 % CO2, and 94 % N2 at 2 psi during 10 min. Turn off the gas 
flow and isolate the chamber by closing clamps (see Notes 5 
and 6).

 5. Place the chamber in a conventional incubator for 18–24 h 
(see Notes 5 and 6).

 1. Open the chamber and immediately place cell cultures on ice.
 2. Remove culture medium, and wash with PBS twice.
 3. Add protein extraction buffer (30 μl for 60 mm dishes) and use 

a scraper on hypoxia- treated and control cells.
 4. Collect the total volume and centrifuge at 16,000 × g for 

20 min in a 4 °C precooled centrifuge.
 5. Transfer the supernatant to a fresh 1.6 ml tube on ice and dis-

card the pellet.
 6. Remove a small volume (5 μl) of lysate to perform Bradford 

assay according the manufacturer’s recommended protocol.
 7. Determine the protein concentration for each cell lysate. 

Prepare 20–40 μg of total cell lysate in 2× Laemmli sample 
buffer and boil it for 3 min.

 8. Run samples on a 7.5 % SDS-PAGE gel and transfer to a PDVF 
membrane.

 9. Block the membrane with TBS 0.1 % Tween-20 (tTBS) with 
5 % nonfat milk at room temperature for 1 h on constant 
stirring.

2.6 Special 
Equipment

3.1 Induction 
of Hypoxia in Modular 
Incubator Chamber

3.2 Evaluation 
of Hypoxia. HIF-1α 
Detection by 
Western Blot
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 10. Incubate for 18 h with HIF-1α primary antibody diluted 
1:500 in tTBS 1 % nonfat milk at 4 °C on constant stirring.

 11. Wash three times with tTBS at room temperature for 10 min 
and incubate with HRP- conjugated secondary anti-mouse 
antibody diluted 1:3,000 in tTBS for 1 h at room 
temperature.

 12. Wash three times, incubate with Immobilon chemiluminescent 
HRP substrate, and capture the luminescent image in a GBOX 
incubator.

 1. Collect culture medium supernatants from 24 h cell cultures in 
P60 Petri dishes. Subject samples to quick centrifugation (spin) 
in 15 ml tubes to eliminate cellular debris. Store supernatants 
at −80 °C until use.

 2. Determine VEGF concentration in the supernatants with a 
VEGF ELISA kit following the manufacturer’s instructions.

 1. Seed 150 μl of Matrigel per well in prechilled 24 well plate. 
Incubate 2 h at 37 °C.

 2. Add the conditioned media (CM) to be tested. Avoid freeze/
thaw cycles of the CM. Different dilutions of the CM should 
be assayed.

 3. Adjust to a final volume of 400 μl.
 4. Add 25,000 endothelial cells in 100 μl D1 per well.
 5. Add 1 μM recombinant galectin-1 (rGal-1) or other relevant 

galectin to evaluate  tubulogenesis. Use 30 mM lactose or anti-
Gal-1 monoclonal antibody to selectively block Gal-1 function 
(see Note 8).

 6. Incubate at 37 °C and 5 % CO2. Visualize slides at phase con-
trast microscope every hour for 24 h.

 7. When tubular structures are apparent, take photomicrographs 
of several fields.

 8. Quantify tubular structures (see Note 9).

 1. Seed 40,000 endothelial cells per well in 250 μl D1 in the 
upper chamber of the endothelial cell migration 24-multiwell 
transwells (see Note 10).

 2. The bottom well is filled with 750 μl CM containing the che-
motactic factor to be tested, or other modulators of endothe-
lial cell migration.

 3. Add 1 μM rGal-1 or 1 μM rGal-1 plus 30 mM lactose to evalu-
ate the effects of Gal-1 on endothelial cell migration.

 4. Incubate for 18–24 h at 37 °C, 5 %CO2.

3.3 Detection 
of Soluble VEGF 
by ELISA

3.4 Assessment of 
Angiogenesis In Vitro

3.4.1 Endothelial Cell 
Tubulogenesis  
(See Note 7)

3.4.2 Endothelial Cell 
Migration
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 5. Stain transwells with 0.1 % crystal violet solution for 10 min.
 6. Wash transwells with distilled water.
 7. Remove excess Matrigel with a Q-tip.
 8. Examine at inverted microscope and count the number of 

cells. Data are expressed as cells per cm2. A “fold-migration” 
value may be calculated as the number of cells migrating in 
response to rGal1 or VEGF (positive control), relative to the 
number of cells in the absence of mediator.

Matrigel preparation:

 1. It is important to keep Matrigel HC as cold as possible (lower 
than 10 ºC). It is recommended to maintain all materials and 
reagent (syringes, needles, solutions, pipettes, etc.) on ice prior 
to use.

 2. Mix 300 μl of Matrigel with 200 μl of experimental solution in 
1.6 ml tubes.
(a) Experimental solutions:

●● Positive control: PBS + VEGF (10 ng/ml) + FGF-2 
(20 ng/ml) + TNF-α (5 ng/ml), + heparin 10,000 IU 
(positive control mix) [16].

●● Serum-Free Conditioned Media (SFCM) from 
Kaposi’s sarcoma (KS) cells exposed or not to a 
hypoxic atmosphere (1 % O2, 5 % CO2, and 94 % N2 
during 18 h) and transduced or not with Gal-1 shRNA 
encoded retrovirus [3].

●● PBS + rGal-1 (1.5 μM).
●● PBS + rGal-1 (1.5 μM) + anti-Gal-1 monoclonal anti-

body F8.G7 (1 μM).
 3. Vortex tubes.
 4. Inject the solution subcutaneously using a 23 G precooled 

needle. Injections should be done quickly to prevent the gel 
from solidifying.

 1. Using 23-G precooled needle inject 0.5 ml of Matrigel mix 
subcutaneously into anesthetized female athymic nude mice 
(for SFCM studies) or female C57BL/6 Lgals1−/− (KO) or WT 
(for rGal-1 studies).

 2. After 7 days, euthanize mice and remove the Matrigel plugs.
 3. Angiogenesis can be evaluated by studying three independent 

parameters (see Subheading 3.5.3):
(a) Hemoglobin content in pellets.
(b) Number of endothelial cells.
(c) Microvascular density.

3.5 Assessment of 
Angiogenesis In Vivo

3.5.1 Matrigel Plug 
Assay

3.5.2 Inoculation 
of Matrigel Plugs 
to Evaluate Angiogenesis 
In Vivo
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Hemoglobin content

 1. Remove Matrigel plugs, weight and mechanically disaggregate 
them in 1.5 ml of H2O in a Petri dish.

 2. Incubate for 20 min at RT.
 3. Centrifuge for 5 min at 10,000 × g.
 4. Discard cell pellet.
 5. Incubate supernatant with Drabkin’s reagent according to the 

manufacturer’s instructions.
 6. Read absorbance of tubes at 540 nm. A standard curve of 

mouse hemoglobin should be simultaneously performed. Plot 
absorbance vs. cyanmethemoglobin concentration (mg/ml) 
and interpolate. The final concentration of hemoglobin in 
Matrigel pellets is calculated as mg/ml per 100 mg of pellets.

Number of endothelial cells

 1. Remove Matrigel pellets, and mechanically disaggregate them 
in 5 ml of RPMI medium in a Petri dish.

 2. Transfer to a 50 ml conical tube, add 5 ml of collagenase II 
solution, and incubate for 10 min at 37 °C water bath. After 
incubation, add 25 ml of PBS and filter the suspension through 
a 100 μm cell strainer.

 3. Wash the filtered solution by adding 5 ml PBS and centrifuge 
for 5 min at 800 × g.

 4. Remove the supernatant and wash the pellet with PBS 1 % FBS.
 5. Stain cells with 1 μg of PE-conjugated anti-CD34 antibody in 

100 μl of PBS 1 % FBS 0.05 % NaN3 for 45 min in ice.
 6. Wash cells with PBS and centrifuge for 5 min at 800 × g.
 7. Fix cells with 1 % paraformaldehyde.
 8. Analyze the percentage of PE+ CD34+ cells by flow cytometry.

Analysis of microvascular density (MVD)

 1. Anesthetize animals (ketamine/xylazine, 140/14 mg/kg) and 
perfuse with PBS and 4 % paraformaldehyde.

 2. Remove Matrigel pellets and embed them in frozen Optimum 
Cutting Temperature (OCT) medium and freeze at −70 ºC.

 3. Cut frozen Matrigel into 40–100 μm sections with a cryostat.
 4. Air-dry sections at RT and fix in acetone for 10 min at −20 ºC.
 5. Air-dry for 5 min. Wash three times with PBS.
 6. Block nonspecific binding through incubation for 1 h at RT 

with PBS 10 % normal rat serum.
 7. Incubate sections with 1.5 μg of anti-PECAM-1/CD31 anti-

body in 200 μl of PBS 1 % BSA ON at 4 ºC.
 8. Wash with PBS three times.

3.5.3 Determination 
of Angiogenesis In Vivo 
in Matrigel Plugs
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 9. Incubate for 1 h at RT with 0.2 μg of AlexaFluor 596- conjugated 
goat anti-rat antibody in 100 μl PBS.

 10. Wash slides and mount in Fluoromount slide mounting 
medium containing DAPI as counterstaining fluorophore.

 11. Determine microvessel density (MVD) by counting the num-
ber of microvessels per mm2 in ten randomly selected fields 
(200×).

4 Notes

 1. Galectins, particularly galectin-1, -3, and -8, have recently 
emerged as novel pro-angiogenic molecules responsible of the 
generation of tumor vascular networks [3, 6–14]. In this chap-
ter we enumerate and discuss some of the strategies used to 
study the regulation of galectin-1 by hypoxic microenviron-
ments and the stimulatory function of galectins in angiogenesis 
in vitro and in vivo. These lectins may act as “cytokine-like mol-
ecules” and contribute to angioproliferative and immunosup-
pressive nature of different pathologic conditions [18]. 
Understanding the molecular and cellular mechanisms underly-
ing the pro-angiogenic function of galectins will contribute to 
delineate novel therapeutic strategies. We hope that the strate-
gies and methods described here will facilitate and encourage 
scientists to further evaluate the role of galectins in neovascular-
ization processes in different pathophysiologic settings.

 2. To obtain serum-free conditioned media (CM), cells are cul-
tured in normal culture media (RPMI, 10 % FCS) until 
 reaching ~80 % confluency. Then, medium is discarded, cells 
are washed three times with sterile PBS, and serum-free (SF) 
RPMI media is added. After ~24 h, CM is collected, filtered 
with 0.22 μm syringe, filter and distributed in 1 ml aliquots.

 3. For Primary Human Umbilical Vein Endothelial Cells 
(HUVEC) or Bovine Aortic Endothelial Cells, passages 8 or 
lower are recommended.

 4. We recommend the use of oxygen sensors for more precise 
measurement of the intra-chamber O2 levels during the 
experiment.

 5. In order to eliminate the O2 diluted in the medium it is recom-
mended to re-gas the chamber once after 2 h or bubbling the gas 
into the cell culture medium before starting the experiment.

 6. Hypoxia regulates a large number of genes through the binding 
of HIF-1α to Hypoxia Response Element (HRE) sequences. 
Many genes are under the regulation of HRE such as VEGF-A 
and erythropoietin. Therefore, measurement of up-regulation 
of pro-angiogenic mediators is an effective and reliable method 
to evaluate induction of HIF-dependent hypoxia.
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 7. Suggested Experimental Controls: Negative control: CM is 
replaced by D1, Positive control: 10 ng/ml rVEGF diluted 
in D1

 8. Quantification can be done through multiple ways. One is 
based on counting the number of tubules/cm2. On the other 
hand, morphometric analysis can be performed and tubules 
length can be measured using the ImageJ software.

 9. The filter pores are small enough ~8 μm to allow passage of 
actively migrating cells; otherwise they rest upon the filter.
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