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† Background and Aims Inflorescence forms of panicoid grasses (Panicoideae s.s.) are remarkably diverse and
they look very labile to human eyes; however, when performing a close inspection one can identify just a
small subset of inflorescence types among a huge morphospace of possibilities. Consequently, some evolutionary
constraints have restricted, to some extent, the diversification of their inflorescence. Developmental and genetic
mechanisms, the photosynthetic type and plant longevity have been postulated as candidate constraints for
angiosperms and panicoids in particular; however, it is not clear how these factors operate and which of these
have played a key role during the grass inflorescence evolution. To gain insight into this matter the macroevo-
lutionary aspects of panicoid inflorescences are investigated.
† Methods The inflorescence aspect (lax versus condensed), homogenization, truncation of the terminal spikelet,
plant longevity and photosynthetic type were the traits selected for this study. Maximum likelihood and Bayesian
Markov chain Monte Carlo methods were used to test different models of evolution and to evaluate the existence
of evolutionary correlation among the traits. Both, models and evolutionary correlation were tested and analysed
in a phylogenetic context by plotting the characters on a series of trees. For those cases in which the correlation
was confirmed, test of contingency and order of trait acquisition were preformed to explore further the patterns of
such co-evolution.
† Key Results The data reject the independent model of inflorescence trait evolution and confirmed the existence
of evolutionary contingency. The results support the general trend of homogenization being a prerequisite for the
loss of the terminal spikelet of the main axis. There was no evidence for temporal order in the gain of homogen-
ization and condensation; consequently, the homogenization and condensation could occur simultaneously. The
correlation between inflorescence traits with plant longevity and photosynthetic type is not confirmed.
† Conclusions The findings indicate that the lability of the panicoid inflorescence is apparent, not real. The results
indicate that the history of the panicoids inflorescence is a combination of inflorescence trait contingency and
order of character acquisition. These indicate that developmental and genetic mechanisms may be important con-
straints that have limited the diversification of the inflorescence form in panicoid grasses.
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INTRODUCTION

Inflorescence architecture in the grasses varies enormously
even among close related species (Kellogg, 2000; Doust and
Kellogg, 2002; Doust et al., 2005; Liu et al., 2005, 2007;
Reinheimer and Vegetti 2008; Reinheimer et al., 2009). In
fact, the evolution of the grass inflorescence seems to be
very complex and the identification of clear trends appears
almost impossible. Recently, we have partially investigated
this issue using the panicoid grasses as a model group (also
known as Panicoideae s.s.; Sánchez-Ken and Clark, 2010)
(Reinheimer et al., 2012). We have found that within the the-
oretical morphospace comprising all possible combinations of
inflorescence traits, only a few were actually observed in the
group, and among them some inflorescence architectures pre-
dominate over others. In addition, the inflorescence of each
of the major clades (Arundinelleae s.s., Andropogoneae,

Paspaleae, and Paniceae s.s. tribes; Morrone et al., 2011) is
characterized by distinct patterns of inflorescence character
state transitions. These results indicated that the evolution of
the inflorescence of panicoids may follow certain patterns
and cannot evolve freely.

It has been postulated that limitation in biological diversity
may be due to developmental and genetic constraints as well as
selection at other levels (Prusinkiewicz et al., 2007). In fact, it
has been empirically corroborated that the extensive variation
of inflorescence architecture among angiosperms is somewhat
correlated with season length, plant longevity, pollination
system and seed dispersal mode (Friedman and Harder,
2004, 2005; Prusinkiewicz et al., 2007). Whether, why and
how this presumed co-evolution has happened in the grasses
is an intriguing question that remains open for further investi-
gations. Interestingly, Morrone et al. (2011) recently reported
that qualitative inflorescence character changes (such as
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abortion of the fertile apex of main axes and rachises, lack of
branching beyond first order, and modification of the disarticu-
lation zone of the diaspores) in Paniceae s.l. (Paspaleae +
Paniceae s.s. tribes) predominates at the C4 clades, whereas
the inflorescence of the C3 clades has not changed much
during evolution. Why this happens is still unclear, although
the ancestral character evolution analyses suggested that
changes in qualitative traits of the Paniceae s.l. inflorescence
may represent a delayed response to the change in photosyn-
thetic pathway (Morrone et al., 2011).

To get new insights on the underlying bases of the evolution
of the grass inflorescence, we have used the molecular phyl-
ogeny of panicoid grasses and maximum likelihood (ML)
and Bayesian Markov chain Monte Carlo (MCMC) methods
to (a) test models of evolution, (b) identify directional
trends, (c) test the existence of correlated evolution among in-
florescence traits, and (d ) evaluate the association between in-
florescence traits with plant longevity and photosynthetic type.

MATERIALS AND METHODS

Inflorescence morphology dataset

The morphological dataset was based on the following charac-
ters: (a) inflorescence aspect (0, condensed; 1, lax; 2, lax to con-
densed); (b) degree of homogenization (0, non-homogenized; 1,
partially homogenized; 2, fully homogenized); and (c) presence/
absence of terminal spikelet (0, non-truncated; 1, truncated). We
followed the character definitions described in Rua and
Weberling (1998) and Reinheimer et al. (2012). The reconstruc-
tion of the homogenization character resulted in ambiguity at
deep nodes when the trait was codified as a multistate charac-
ter. For this reason, we have explored the reconstruction of the
homogenization of the inflorescence as a binary character (0,
absence; 1, presence). Character-state data were compiled
from published reports (reviewed in Reinheimer et al., 2012).
The dataset used in this study is presented in Supplementary
Data Table S1.

To calculate the incidence of the different inflorescence
types within panicoids we have calculated the proportion of
taxa with a given inflorescence type.

Phylogeny

Phylogenetic reconstruction and analysis of character evolu-
tion were based on ndhF nucleotide sequences and alignment
previously published by Aliscioni et al. (2003), Sánchez-Ken
and Clark (2010), Zuloaga et al. (2010) and Morrone et al.
(2011). Recent studies have suggested that panicoids should
be divided into six well-supported tribes (Sánckez-Ken and
Clark, 2010; Zuloaga et al., 2010; Morrone et al., 2011):
Steyermarkochloeae p.p., Tristachyideae, Arundinelleae s.s.,
Andropogoneae, Paspaleae (also known as the Paniceae x ¼
9 clade; Giussani et al., 2001) and Paniceae s.s. (also referred
in the literature as the Paniceae x ¼ 10 clade; Giussani et al.,
2001). The phylogenetic position of Steyermarkochloa angu-
stifolia (Spreng.) Judz. and Tristachyideae is not well resolved
(Sánckez-Ken and Clark, 2010; Morrone et al., 2011).
Consequently, we will focus our studies on the three
major, well-supported panicoid lineages: Andropogoneae +

Arundinelleae s.s., Paspaleae and Paniceae s.s. tribes which
include most of the species diversity in panicoids.

We estimated phylogenetic relationships using Bayesian
Markov chain Monte Carlo (MCMC) analysis as implemented
in MrBayes version v3.1.2 (Huelsenbeck and Ronquist, 2001).
The best-fit model (GTR + G + I) was inferred with
MrModeltest v.2.3 (Nylander, 2004) based on the Akaike cri-
terion. Two Metropolis-coupled Markov chains with an incre-
mental heating temperature of 0.2 were run for 10 million
generations and sampled every 1000th generation. The ana-
lysis was repeated twice, starting from random trees. The con-
vergence and the effective sample size (.100) of each
replicate were checked using Tracer v. 1.5 (Rambaut and
Drummond, 2007). A majority-rule consensus tree was then
reconstructed after applying a burn-in of 2.5 million genera-
tions (thus considering a total of 15 002 trees).

Ancestral character state reconstruction

Character states were estimated for nodes with a posterior
probability equal to/higher than 0.95. We have inferred ancestral
character states using ML and MCMC methods.

For the MCMC analyses, we used the ‘multistate’ module in
BayesTraits (Pagel et al., 2004; program available at
www.evolution.rdg.ac.uk), and the 15 002 trees previously cal-
culated. An exponential prior seed from a uniform prior model
was chosen. To set the range of the hyperprior, preliminary
chains were run under ML (Pagel et al., 2004). Given these
results, the range of the hyperprior was set to 0–30 for all
cases. In addition, several exploratory chains were also run
adjusting the value of the rate coefficient proposals (the
ratedev parameter) until an approximate acceptance rate of
20–40 % was achieved (Pagel et al., 2004). Final values of
ratedev were 0.1 for inflorescence appearance and homogen-
ization degree, from 0.01 to 0.05 for presence/absence of hom-
ogenization, and 2 for presence/absence of terminal spikelet.
Ancestral states were estimated using the most recent common
ancestor (‘MRCA’) of selected taxa command. Once these para-
meters were set, two independent analyses were run for 10
million generations and sampled every 1000th generation to
ensure independence. The first 1 million generations were dis-
carded as burn-in (convergence and ESS were checked with
Tracer v1.5; Rambaut and Drummond, 2007) and the rest of
the samples from the two replicates were combined (18 002
samples). Hypothesized character states at internal nodes were
tested by estimating Bayes factor (BF), comparing MCMC
runs in which the node in question was constrained to one
state versus the other using the ‘fossil’ command (Pagel et al.,
2004). The BF approach was based on smoothed estimates of
marginal likelihood analysed with Tracer v1.5 (Rambaut and
Drummond, 2007), which applies the method used by Newton
and Raftery (1994) with modifications by Suchard et al.
(2001). A value between 2 and 5 indicates ‘positive’ support,
between 5 and 10 ‘strong’ support, and any value .10 means
‘very strong’ support. Similar tendencies were recovered when
additional analyses of ancestral state reconstruction were run
using a uniform prior (0–100).

For conflicting nodes, we have also inferred the ancestral
state reconstruction using the ML method. Maximum likeli-
hood reconstructions were conducted using the ‘multistate’
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module included in the computer package BayesTraits (Pagel
et al. 2004), and the 15 002 trees previously calculated.
Ancestral states were estimated using the most recent
common ancestor (‘MRCA’) of selected taxa command, and
hypothesized character states at internal nodes were then
tested by estimating the differences of the log likelihood in
which the node in question was constrained to one state
versus the other using the ‘fossil’ command (Pagel et al.,
2004). We applied the general rule that two log likelihood
units (using the mean and median of 15 002 tree likelihoods)
constitute a significant difference (Pagel et al., 2004). There
was no appreciable difference between the mean and the
median of the 15 002 tree likelihoods. Consequently, we
only calculated the mean.

For simplicity, we report ancestral state reconstructions on
the majority rule consensus topology of 15 002 trees.

Models of inflorescence evolution

To test hypotheses on inflorescence evolution within pani-
coids, two models of character evolution were assessed. The
first model assumes all character state transitions are unordered
(i.e. direct transitions are possible among all character states),
whereas the second model assumes ordered character state
transitions as follows: transitions between lax inflorescence
to condensed inflorescence are constrained to pass through a
lax to condensed inflorescence, transitions between non-
homogenized inflorescence and fully homogenized inflores-
cence are constrained to pass through a partially homogenized
inflorescence, and the transitions from non-truncated to trun-
cated inflorescences is irreversible. Models were tested on
the 15 002 set of trees by ML and MCMC approaches using
the ‘restrict’ command at the ‘multistate’ module of the com-
puter package BayesTraits (Pagel et al., 2004). For the ML
model test we applied the general rule that two log likelihood
units constitute a significant difference as explained above
(Pagel et al. 2004). In the MCMC analysis, we used the
MCMC settings and the approach to assess the convergence
of the analysis as described above. The models were compared
using approximate BF as explained before.

In addition, we calculated the global rate of the inflorescence
aspect processes, and the homogenization processes as:
qcondensation¼ q1,2 + q1,0 + q2,0 versus qde-condensation¼ q2,1 +
q0,1 + q0,2 for the inverse process, and qhomogenization¼ q0,1+
q1,2 + q0,2 versus qde-homogenization¼ q1,0 + q2,1 + q2,0 for the
inverse process, where the parameter qi, j is the transition rate
from state ‘i’ to state ‘j’. The statistical differences among pairs
of rates were studied using the non-parametric Mann–Whitney
U-test in the program InfoStat version 2009 (Grupo InfoStat,
FCA, Universidad Nacional de Córdoba, Argentina).

Analysis of correlated evolution

We explored correlations between inflorescence characters
across the evolutionary tree by using ML and the MCMC algo-
rithms in the ‘discrete’ module implemented by BayesTraits
(Pagel et al., 2004). For this purpose, each trait was coded as a
discrete character: condensed and lax to condensed inflores-
cence (state 0), lax inflorescence (state 1), non-homogenized
inflorescence (state 0), partially and fully homogenized

inflorescence (state 1), non-truncated inflorescence (state 0)
and truncated inflorescence (state 1). For the ML test, each
pair of characters was analysed under two different models
(Pagel and Meade, 2006). The first model (the independent
model I) assumed that the characters vary independently of
each other. The second model (the dependent model D)
allowed one character to vary based on the other. We determined
the likelihood ratio (LR) using the equation LR¼ –2[L(D) –
L(I)] where L(D) and L(I) are the likelihood estimates of the
dependent and independent models, respectively. We tested the
likelihood ratio against x2 distribution, with four degrees of
freedom (Pagel and Meade, 2006). P , 0.05 is taken as positive
evidence that the dependent model is favoured, P , 0.01 means
strong evidence, and P , 0.001 is very strong evidence. When
the MCMC algorithm was implemented, we used a uniform
prior for the independent model and an exponential hyperprior
for the model of dependent evolution (Pagel and Meade, 2006).
Repeating the analyses applying a uniform hyperprior for the de-
pendent model does not change the results. Each model, was run
using the MCMC settings and the approach to assess the conver-
gence of the analysis as described above. When necessary, the
number of generations was doubled until the effective size of
parameters exceeds 200 (checked with Tracer v1.5; Rambaut
and Drummond, 2007). In all cases, the range of hyperprior
was set to 0–30, and ratedev was set to 0.1. Then, we compared
the model that assumed the independent evolution of the two
binary characters being compared with that of a model that
allowed for correlated evolution between these characters (de-
pendent model) using BF as described above. Results .2 are
taken as positive evidence that the dependent model is favoured,
.5 is strong evidence, and .10 represents very strong evidence
(Pagel and Meade, 2006).

Several factors (i.e. season length, plant longevity and
photosynthesis type) are thought to be correlated with inflores-
cence architecture (Friedman and Harder, 2004, 2005;
Prusinkiewicz, et al., 2007; Morrone et al., 2011). To
explore better the strength of such correlations in the panicoids
we statistically assessed parallelism between plant longevity
(0, annual; 1, perennial) and photosynthetic pathway (0, C3

or C3–C4 intermediates; 1, full-C4) with the inflorescence
traits studied here. We compiled the plant longevity and photo-
synthetic type datasets from published reports and on-line
databases (GrassBase, http://www.kew.org/data/grasses-
db.html; Watson and Dallwitz, 1992; Zuloaga et al., 2000;
Giussani et al., 2001; Morrone et al., 2011). The dataset is pre-
sented in Supplementary Data Table S1. For this analysis, we
used the ML and the MCMC algorithms in the ‘discrete’
module implemented by BayesTraits (Pagel et al., 2004), fol-
lowing the same methodology described above.

When we confirmed that two traits were correlated, we
tested hypotheses about conditional evolution and the temporal
order of trait acquisition by ML and MCMC analyses con-
ducted in the ‘discrete’ module of BayesTraits (Pagel et al.
2004). For the ML method, we compared the likelihood esti-
mates of two correlated evolution models: one in which all
the transition rates were allowed to vary, to one that con-
strained the two transition rates to be equal. The likelihood
ratio of the two models is tested against a x2 distribution
with one degree of freedom (Pagel and Meade, 2006). P ,
0.05 is taken as positive evidence that the dependent model
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is favoured, P , 0.01 means strong evidence, and P , 0.001 is
very strong evidence. When MCMC was implemented, we
analysed the posterior probability distributions of the values
of the transition parameters estimated under the dependent
model. For this analysis we calculated the Z-scores and
average of the transition parameters (González-Voyer et al.,
2008). MCMC results are summarized in flow diagrams.

RESULTS

Phylogenetic and ancestral state reconstruction analyses

The topology of the Bayesian majority rule consensus (from
15 002 trees) is similar to that recovered using parsimony
methods by Morrone et al. (2011). The Panicoids are divided
in three major and well-supported lineages: Arundinelleae
s.s. + Andropogoneae, Paspaleae and Paniceae s.s. tribes.
Andropogoneae and Arundinelleae s.s. tribes form a well-
supported clade, which is sister to the Paspaleae tribe. In addition,
Paniceae s.s. is sister to the (Andropogoneae + Arundinelleae
s.s.) + Paspaleae clade.

All reconstruction methods found that the ancestor of pani-
coid grasses had a lax, partially or fully homogenized, and
non-truncated inflorescence (Fig. 1). Lax to condensed inflor-
escences or condensed inflorescences, as well as truncated
inflorescences evolved later at the base of the Arundinelleae
s.s and Andropogoneae tribes, and after the divergence of
Paspaleae and Paniceae s.s. Reversal to the ancestral inflores-
cence aspect is observed at the Arthropogoninae and
Melinidinae subtribes; however, reversal to the ancestral non-
truncated inflorescence was not documented. In terms of hom-
ogenization, ML and MCMC methods suggest that the ancestor
of the panicoids had a partially or fully homogenized inflores-
cence (Fig. 1), with 66–93 % probability and lnBF between 1
and 3.7, depending on the strategy applied. Non-homogenized
inflorescences evolved only once in the Andropogoneae, and
several independent times during the diversification of
Paspaleae and Paniceae s.s. Reversals to the ancestral homoge-
nized inflorescence occurred in the Arthropogoninae,
Otachyriinae and Melinidinae subtribes, and possibly in the
Cenchrinae and Boivinellinae.

Eight basic inflorescence types are identified when the three
characters and their states are combined (presence/absence of
branch condensation + presence/absence of homogenization +
presence/absence of the terminal spikelet of the main axis;
Supplementary Data Fig. S1). Lax, non-homogenized, non-
truncated inflorescences are the most common inflorescence
type observed in the panicoids. In contrast, lax, non-homogenized,
truncated inflorescences are rare, and lax, homogenized, truncated
inflorescences were not observed in the group.

Models of inflorescence evolution

Both, MCMC and ML methods showed similar results
(Table 1). The free model allowing all the possible transitions
among the states of inflorescence aspect fit the dataset better
than the restricted model (lnBF ¼ 3.88; log-likelihood
difference ¼ 4.21). The reconstruction of the transition rates
based on the Bayesian MCMC method and the unordered
model of evolution, showed that the highest rate of change

was from lax inflorescences to lax to condensed inflorescences
(q1,2 ¼ 2.94+ 0.78), and from condensed inflorescences to
lax to condensed inflorescences (q0,2 ¼ 2.97+ 0.83),
whereas the lowest rate of change was from lax to condensed
inflorescences (q1,0 ¼ 0.41+ 0.77; Fig. 2). Slightly different
results were obtained under ML methods in which the highest
rate of change was from condensed inflorescences to lax to con-
densed inflorescences (q0,2 ¼ 3.7+ 0.65), and the lowest rates
were to lax to condensed inflorescence as well as lax to con-
densed to condensed inflorescences (q1,0 ¼ 0.66+ 0.09, and
q2,0 ¼ 0.65+ 0.21; Supplementary Data Fig. S2). The statistic-
al differences among pairs of rates, associated with both evolu-
tionary processes of de-condensation versus condensation,
showed that the former process was favoured over the latter one
independently of the method used (Bayesian MCMC inference:
qde-condensation ¼ 2.4+1.29 vs. qcondensation ¼ 1.89+1.46; ML
inference: qde-condensation¼ 2.58+1.45 vs. qcondensation¼
0.99+0.58; Fig. 2 and Supplementary Data Fig. S2).

In terms of homogenization, the restricted model fits the
dataset better, although there is no significant difference
between the two models (lnBF ¼ 2.00; log-likelihood
difference ¼ 0.42). The reconstruction of the transition rates
based on the Bayesian MCMC method and the unordered
model of evolution showed that the highest rate of change was
from partially homogenized to non-homogenized inflorescences
(q1,0¼ 8.61+3.45), whereas the lowest rate of change was from
fully homogenized to non-homogenized inflorescences (q2,0¼
0.13+0.37). The statistical differences among pairs of rates,
associated to both evolutionary processes of homogenization
versus de-homogenization, showed that the second process was
favoured over the former (qde-homogenization¼ 4.59+4.55 vs.
qhomogenization¼ 3.5+4.24). The maximum likelihood method
has produced similar tendencies (Supplementary Data Fig. S2).

Finally, we found that for truncation of the terminal spikelet
the unordered model fit the dataset better than the restricted
model (lnBF ¼ 2.67; log-likelihood difference ¼ 7.28). The
reconstruction of the transition rates based on the Bayesian
MCMC and ML methods and the unordered model of evolution
showed that the highest rate of change was from non-truncated
to truncated inflorescences (MCMC method: q0,1 ¼ 1.06+
0.34 vs. 1.04+0.36; ML method: q0,1¼ 0.97+0.09 vs.
q1,0 ¼ 0.96+0.13; Fig. 2 and Supplementary Data Fig. S2).

Evolutionary correlations

Bayesian MCMC and ML methods indicate, with positive
statistical evidence, that there is correlation between homogen-
ization and truncation (lnBF¼ 4.60; LR ¼ 12.5, P , 0.01;
Table 2). Also, there is strong evidence for a correlation
between the evolution of condensed inflorescences (condensed
or lax to condensed inflorescences) the homogenization
process (lnBF ¼ 22.91; LR ¼ 20.71, P , 0.001), and trunca-
tion (lnBF ¼ 15.16; LR ¼ 34.92, P , 0.001). In addition,
MCMC and ML methods suggested a weak correlation
between photosynthetic type and inflorescence aspect
(lnBF ¼ 2.02; LR ¼ 7.9, P ¼ 0.09). None of the inflorescence
characters studied show positive correlation with the plant
longevity.

Having confirmed the correlation between inflorescence
traits we tested hypotheses about conditional evolution and
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FI G. 1. Reconstructed ancestral character states on the Bayesian MCMC majority rule consensus tree. Branch shading indicates maximum parsimony recon-
struction (according to Reinheimer et al., 2012). Pie charts indicate Bayesian ancestral characters posterior probabilities at selected nodes. Numbers in parenthesis
indicate the state with the highest likelihood based on the Bayes factor (BF) results. Two or more numbers in parenthesis indicates an ambiguous assignation of

the ancestral character state. *, BF between 2 and 5 (positive support); **, BF between 5 and 10 (strong support).
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the temporal order of trait acquisition with the contingency and
ordered tests using ML and MCMC methods. The contingency
test, using ML methods, indicated, with positive evidence, that
non-homogenized inflorescences are more likely to evolve
when the inflorescence is lax (q2,1 , q4,3), and condensed
inflorescences are more likely to evolve when the inflorescence

is homogenized (q3,1 , q4,2; Table 3 and Supplementary
Data Fig. S3). However, the test could not infer with confi-
dence, whether the homogenization happened before or after
the change on the condensation aspect of the inflorescence
(q1,2 ≈ q1,3; q4,2 ≈ q4,3). We found positive evidence for
the evolution of non-truncated inflorescences when the
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FI G. 2. Rates of change between the different states of inflorescence aspect (A), homogenization (B) and truncation (C), obtained using an unordered model of
character evolution and MCMC method. (D) Results of the statistical differences among pairs of rates using the non-parametric Mann–Whitney U-test. qi, j

indicates the transition from the state i to the state j. An asterisk indicates significant differences under the non-parametric Mann–Whitney U-test.

TABLE 1. Results of the unordered versus an ordered model of character evolution using MCMC and ML methods

Character Model
MCMC ML

ln P(model | data) s.e. lnBF –log likelihood Difference in –log likelihood

Inflorescence aspect Free –102 17 0.047 3.88 –97 962 006 4.21
Restricted –106 052 0.078 –102 179 487

Homogenization Free –93 989 0.048 2.00 –88 086 746 0.42
Restricted –91 985 0.046 –88 509 734

Terminal spikelet truncation Free –40 959 0.026 2.67 –39 320 407 7.28
Restricted –43 632 0.035 –46 608 380
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inflorescence is lax (q2,1 , q4,3). However, there was no evi-
dence for temporal order in the gain of these traits (Table 3 and
Supplementary Data Fig. S3). The analyses indicated very
strong evidence for conditional evolution between homogen-
ization and truncation events (Table 3 and Supplementary
Data Fig. S3). The homogenization process occurred before
the truncation of the terminal spikelet (q1,2 . q1,3), and trun-
cation occurred if the inflorescence is homogenized (q1,3 ,
q2,4; Table 3 and Supplementary Data Fig. S3). Similar
trends were inferred based on MCMC methods (Fig. 3).

Ancestral state reconstruction indicated that the ancestor of
Panicoids had a lax, homogenized and non-truncated inflores-
cence. The most likely evolutionary pathway from the ances-
tral to the derived state of the traits can be inferred from the
posterior probabilities of the transition rate parameters
(Fig. 3). The posterior distribution shows that the most likely
path from the ancestral state of lax and homogenized inflores-
cences to the derived state of condensed and non-homogenized
inflorescences may involve (a) a transition toward condensed
inflorescence (q4,2 . 0) followed by a transition toward non-
homogenized inflorescence (q2,1 . 0), or (b) a transition
toward non-homogenized inflorescence (q4,3 . 0) followed
by a transition toward condensed inflorescence (q3,1 . 0;
Fig. 4). These transitions were assigned a value of zero in
,2 % of the sampled Markov chains. The inverse path from
the most derived state of condensed and non-homogenized
inflorescences toward the ancestral state of lax and homoge-
nized inflorescences is not likely to occur (q3,4 ≈ 0; q2,4 ≈
0; Fig. 4). Both transitions were assigned a value of zero in
about 60 % of the sampled Markov chains (Fig. 3). In addition,
the posterior distribution shows that the most likely path from
the ancestral state of lax and non-truncated inflorescences to
condensed and truncated inflorescences involved first a transi-
tion toward condensed (q3,1 . 0), followed by a transition
toward truncated inflorescences (q1,2 . 0; Fig. 4). Both transi-
tions in this evolutionary path were assigned a value of zero in

,0.1 % of the sampled Markov chains (Fig. 3). The alternative
route which involves first a transition towards truncated inflor-
escences (q3,4 ≈ 0) followed by a transition to condensed
inflorescences (q4,2 . 0) is not supported (Fig. 4). The transi-
tion that involves first the truncation process was assigned a
value of zero in over 96 % of the sampled Markov chains
(Fig. 3). The inverse path from the most derived state of con-
densed and truncated inflorescences toward the most ancestral
state of lax and non-truncated inflorescences is most likely to
occur via an initial gain of lax aspect (q2,4 . 0) followed
by the gain of a terminal spikelet (q4,3 . 0; Fig. 4). These
transitions were assigned a value of zero in ,0.8 % of the
sampled Markov chains (Fig. 3). The alternative inverse
route may not be possible given a restriction to gain a terminal
spikelet when the inflorescence is condensed (q2,1 ≈ 0;
Fig. 4). This transition was assigned a value of zero in 93 %
of the sampled Markov chains (Fig. 3). Finally, the posterior
distribution shows that the most likely path from the ancestral
state of non-truncated and homogenized inflorescences to trun-
cated and non-homogenized inflorescences involved first a
truncation process (q1,2 . 0) followed by the loss of hom-
ogenization (q2,4 . 0; Fig. 4). None of these transitions in
this evolutionary path were assigned a value of zero in the
sampled Markov chains (Fig. 4). The alternative route that
involves first the loss of homogenization (q1,3 ≈ 0) followed
by truncation (q3,4 . 0) may not be possible (Fig. 4). The
transition q1,3 was assigned a value of zero in 80 % of
the sampled Markov chains (Fig. 3). The inverse path from
the derived state of non-homogenized and truncated inflores-
cences toward the ancestral state of homogenized and non-
truncated inflorescences is most likely to occur via a loss of
the terminal spikelet of the main axis first (q4,3 . 0) followed
by the gain of homogenization (q3,1 . 0; Fig. 4). These tran-
sitions were assigned a value of zero in ,0.1 % of the sampled
Markov chains (Fig. 3). The alternative inverse route may not
be possible given a restriction to gain homogenization when

TABLE 2. Bayes factor and likelihood ratio results of the BayesTraits Discrete analyses using MCMC and ML methods

Character Model
MCMC ML

ln P(model | data) s.e. lnBF –log likelihood LR

Truncation with homogenization Independent 2104 107 0.101 4.60 2101 94 12.5**
Dependent 299 502 0.079 295 69

Inflorescence condensation with homogenization Independent 2133 763 0.105 22.91 2133 40 20.71***
Dependent 2110 85 0.134 2123 04

Inflorescence condensation with truncation Independent 2106 54 0.094 15.16 2104 51 34.92***
Dependent 291 376 0.116 287 05

Inflorescence aspect with plant habit Independent 2127 484 0.041 1.13 2101 80 1.16
Dependent 2128 617 0.068 2101 22

Homogenization with plant habit Independent 2118 054 0.054 0.09 2118 92 1.7
Dependent 2118 144 0.059 2118 07

Truncation with plant habit Independent 2103 229 0.053 0.15 2101 14 1.58
Dependent 2103 588 0.05 299 56

Inflorescence aspect with photosynthesis Independent 2102 714 0.087 2.02 299 79 7.9*?

Dependent 2100 694 0.11 295 84
Homogenization with photosynthesis Independent 292 662 0.091 0.25 289 75 3.08

Dependent 292 408 0.104 288 21
Truncation with photosynthesis Independent 277 251 0.085 1.82 273 90 7.38

Dependent 275 426 0.097 270 21

Likelihood values were tested over a x2 distribution. *? P ¼ 0.09, * P , 0.05, ** P , 0.01, *** P , 0.001.
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the inflorescence is already truncated (q4,2 ≈ 0; Fig. 4). This
transition was assigned a value of zero in 56 % of the
sampled Markov chains (Fig. 3).

DISCUSSION

Reconstructions of ML and MCMC methods show many inde-
pendent origins and reversals of the panicoid inflorescence
traits studied here, in agreement with previous work
(Reinheimer et al., 2012). This suggests that inflorescence
characters can easily switch from one state to another, in any
direction, without a specific pattern. However, despite the ap-
parent lability of the panicoid inflorescence, results presented
in this work support the existence of some general evolution-
ary trends and patterns, which are discussed below.

Both MCMC and ML ancestral state reconstructions indi-
cate that the ancestor of the panicoid grasses had a lax, homo-
genized and non-truncated inflorescence. After the origin of
panicoids, the inflorescence evolved following an unordered
model of evolution (direct transitions are possible among all
character states) in which the processes of de-condensation,
de-homogenization and truncation appear favoured over the
processes of condensation, homogenization and gain of a ter-
minal spikelet. These results partially agree with previous
reports (Reinheimer et al., 2012). Reinheimer et al. (2012),
using the parsimony reconstruction method, found that the
panicoid ancestor may have had a non-homogenized inflores-
cence. This conflicting result is due to differences in the meth-
odology used by Reinheimer et al. (2012) and those used here.
Under parsimony reconstruction, the process of homogeniza-
tion is favoured over the process of de-homogenization. In
addition, Reinheimer et al. (2012) suggest, as do our results,
that the evolution from lax to condensed inflorescences and
from non-homogenized to homogenized inflorescence is not
necessarily a two-step process that requires an intermediate
transition from lax to condensed and partially homogenized in-
florescence as was previously hypothesized by Rua (1996) and
Rua and Weberling (1998).

Despite the lability of inflorescence characters in evolution-
ary time, ML and MCMC analyses strongly reject the inde-
pendent model of evolution. The results confirm the
existence of an evolutionary contingency among the inflores-
cence aspect, homogenization and the loss of the terminal
spikelet of the main axis. Overall, the data presented here
strongly support the general trend of homogenization being a
prerequisite which allows the later loss of the terminal spikelet
of the inflorescence main axis. Interestingly, there was no evi-
dence for temporal order in the gain of homogenization and
condensation, suggesting that homogenization and condensa-
tion could have occurred simultaneously.

Similar trends may occur in other angiosperm families, as
originally suggested by Weberling (1977, 1985). In many fam-
ilies truncated inflorescences have also been described as homo-
genized (i.e. Cyperaceae, Commelinaceae, Podostemaceae,
Chenopodiaceae, Amaranthaceae, Brassicaceae, Resedaceae,
Fabaceae, Malvaceae, Primulaceae, Lamiaceae, Scrophularia-
ceae, Gesneriaceae, among others; Weberling 1965, 1985; Rua
1999; Acosta et al., 2009; Panigo et al., 2011; Reutemann
et al., 2012). In these cases, the loss of the apical organs (such
as flowers or spikelets) of the angiosperm inflorescence may
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require a previous organization or specialization of the axillary
branches below the apex, such as simplification of the branding
pattern and the presence of long and short branches (Rua and
Weberling, 1998; Rua, 1999; Reinheimer et al., 2012).
Homogenization and truncation may represent evolutionary
advantages for angiosperm taxa, and in particular for the
grasses, given the reiterative pattern of acquisition of such traits
for many species, or by entire angiosperm families.

The data presented here show that the evolutionary pathway
from the ancestral inflorescence type of panicoids to the most-
derived inflorescence type could have been accomplished
either by a five- or a three-step process, indicating that the con-
densed, non-homogenized and truncated inflorescence may
have resulted from one of two different evolutionary scenarios
(Fig. 5). Our results also suggest that reversion from the
derived inflorescence type to the ancestral condition is a three-
step process, but one that cannot be fully completed given the
constraint of a lax inflorescence to become homogenized
(Fig. 5). Under this tentative scenario, the lax, non-
homogenized non-truncated inflorescence type, which is the
most abundant type among panicoids (Reinheimer et al.,
2012; this work), may represent a first step from the ancestral
to the derived type, or, in several cases, an incomplete rever-
sion to the ancestral morphology (Fig. 5). This may also
explain why the lax, homogenized non-truncated inflorescence
is probably one of the less abundant types of panicoid inflor-
escences (Reinheimer et al., 2012; this work).

It has been postulated that developmental and genetic
mechanisms available for selection, as well as ecological–
physiological factors could impose constraints to the biological
diversity of angiosperms (Kellogg, 2000; Doust and Kellogg
2002; Friedman and Harder 2004, 2005; Prusinkiewicz
et al., 2007; Morrone et al., 2011).The present work had
demonstrated that in panicoids some inflorescence character-
state transitions could occur frequently, some are rare, and
some others are unlikely to happen. The fact that inflorescence
character-state transitions occur with different rates indicates
that, though such transitions are developmentally and genetic-
ally possible, their specific frequency may reflect different in-
tensities of selection. In contrast, those character-state
transitions that are unlikely to happen or that have never
been documented may have such high morphogenetic costs
that there is a restriction on the availability of these pathways
for selection. It is also possible that, because of the high
number of convergences and reversals observed, inflorescence
diversification has occurred as a response to various ecological–
physiological pressures. However, so far neither plant lon-
gevity nor the photosynthetic type have been shown to be
strongly correlated with the evolution of the inflorescence
characters analysed here.

The present study clearly reveals some comprehensive
macroevolutionary trends on the evolution of the panicoid in-
florescence. Overall, the differences among the frequencies of
character-state transitions and the dependent evolution of in-
florescence traits suggest a complex of constraints imposing
restrictions to the diversification of the panicoid inflorescence.
Among such constraints, morphogenetic cost (the cost to es-
tablish new developmental and genetic mechanisms versus
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the cost of using developmental and genetic mechanisms
already established) may be a key factor.

More detailed analyses of particular clades of panicoids,
involving a more exhaustive taxon sampling, as well as a
larger set of inflorescence traits and environmental para-
meters, could reveal local evolutionary pathways that do
not necessarily agree with the general trends described
here. It would also be interesting to investigate whether
similar trends can be found in other grass or angiosperm
lineages. Such investigations would reveal to what extent
the models of inflorescence evolution described here can
be extended to other groups.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: dataset
used in this study. Figure S1: incidence of a given inflores-
cence type among panicoids main lineages. Figure S2: rates
of change between the different states of inflorescence
aspect, homogenization and truncation obtained using an un-
ordered model of character evolution and the maximum likeli-
hood method. Figure S3: posterior probability distribution of
the rate coefficients values of the correlated evolution model
using the maximum likelihood method.
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