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Convergence of an adaptive Kačanov FEM for quasi-linear problems

Eduardo M. Garau a,∗,1, Pedro Morin a,1, Carlos Zuppa b,2

a IMAL, Güemes 3450, S3000GLN Santa Fe, Argentina
b Departamento de Matemática, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Chacabuco 918, D5700BWT San Luis, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2010
Received in revised form 27 November 2010
Accepted 6 December 2010
Available online 14 December 2010

Keywords:
Nonlinear stationary conservation laws
Adaptive finite element methods
Convergence

We design an adaptive finite element method to approximate the solutions of quasi-linear
elliptic problems. The algorithm is based on a Kačanov iteration and a mesh adaptation
step is performed after each linear solve. The method is thus inexact because we do not
solve the discrete nonlinear problems exactly, but rather perform one iteration of a fixed
point method (Kačanov), using the approximation of the previous mesh as an initial guess.
The convergence of the method is proved for any reasonable marking strategy and starting
from any initial mesh. We conclude with some numerical experiments that illustrate the
theory.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider quasi-linear elliptic partial differential equations over a polygonal/polyhedral domain Ω ⊂ Rd

(d = 2,3) of the form{−∇ · [α(·, |∇u|2)∇u
] = f in Ω,

u = 0 on ∂Ω,
(1)

where α : Ω × R+ → R+ is a function whose properties will be stated in Section 2 below, and f ∈ L2(Ω) is given. These
equations describe stationary conservation laws which frequently arise in problems of mathematical physics [17]. For ex-
ample, in hydrodynamics and gas dynamics (subsonic and supersonic flows), electrostatics, magnetostatics, heat conduction,
elasticity and plasticity (e.g., plastic torsion of bars), etc. Some of these examples are better modeled by variational inequal-
ities (see [8] and the references therein), but these fall beyond the scope of this article, which attempts to set a first step
towards understanding the convergence and optimality of inexact Kačanov-type iterations, in the context of adaptive finite
element methods.

For a summary of convergence and optimality results of AFEM we refer the reader to the survey [12], and the references
therein. We restrict ourselves to those references strictly related to our work.

Inexact adaptive finite element methods have been considered for Stokes problem in [1,10] using Uzawa’s algorithm.
Briefly, a Richardson iteration is applied to the infinite-dimensional Schur complement operator and in each iteration, the
elliptic problem is solved up to a decreasing tolerance. In [1] linear convergence is proved and in [10] the optimality of the
method in terms of degrees of freedom is proved, after adding some new refinement steps to the algorithm.
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In a recent work [9] a convergence theory for a general class of adaptive approximation algorithms for abstract nonlinear
operator equations on Banach spaces has been developed. The theory is used to obtain convergence results for practical
adaptive finite element methods applied to several classes of nonlinear elliptic equations. The framework can be viewed as
an extension of the recent convergence results for linear problems of [11] to a general nonlinear setting.

In [2], a contraction property is proved for an adaptive algorithm based on Dörfler’s marking strategy [3] for nonlinear
problems of the type (1), using Orlicz norms to cope with the very mild assumptions on the nonlinear term α.

In this work we impose stronger assumptions on α, which guarantee the convergence of Kačanov’s iteration [8]. More
precisely, we assume that α(· , ·) is decreasing with respect to its second variable (cf. (20)), and fulfills condition (3) be-
low; which are the same assumptions stated in [8], where they consider the iteration on a fixed space, either finite- or
infinite-dimensional. Our focus is the convergence analysis of the adaptive method that results from performing one mesh
adaptation in each iteration of the nonlinear solver. This turns out to be a very realistic and efficient method, based on the
sole assumption that a linear system is exactly solved in each iteration step.

This paper is organized as follows. In Section 2 we present the class of specific nonlinear problems that we study, and
some of its properties. In Section 3, we present the inexact adaptive Kačanov algorithm and in Section 4 we state and prove
the main result of this article, namely the convergence of the discrete solutions produced by the algorithm to the exact
solution of the nonlinear problem. Finally, in Section 5, we present some numerical experiments which illustrate the theory,
and explore the practical boundaries of applicability of the algorithm.

2. Setting

Let Ω ⊂ Rd be a bounded polygonal (d = 2) or polyhedral (d = 3) domain with Lipschitz boundary. A weak formulation
of (1) consists in finding u ∈ H1

0(Ω) such that

a(u; u, v) = L(v), ∀v ∈ H1
0(Ω), (2)

where

a(w; u, v) =
∫
Ω

α
(·, |∇w|2)∇u · ∇v, ∀w, u, v ∈ H1

0(Ω),

and

L(v) =
∫
Ω

f v, ∀v ∈ H1
0(Ω).

We require that α is piecewise Lipschitz in its first variable, uniformly with respect to its second variable (cf. (18) below).
On the other hand, we assume that α is C1 as a function of its second variable and there exist positive constants ca and Ca
such that

ca � α
(
x, t2) + 2t2 D2α

(
x, t2) � Ca, ∀x ∈ Ω, t > 0, (3)

where D2α denotes the partial derivative of α with respect to its second variable. The last condition is related to the
well-posedness of problem (2) as we will show below. Also, it is possible to prove that (3) implies that

ca � α(x, t) � Ca, ∀x ∈ Ω, t > 0. (4)

These same assumptions are stated in [8], where several interesting applied problems are shown to satisfy them.
Additionally, it is easy to check that the form a is linear and symmetric in its second and third variables. Also, from (4)

it follows that a is bounded,∣∣a(w; u, v)
∣∣ � Ca‖∇u‖Ω‖∇v‖Ω, ∀w, u, v ∈ H1

0(Ω), (5)

and coercive,

ca‖∇u‖2
Ω � a(w; u, u), ∀w, u ∈ H1

0(Ω). (6)

If we define A : H1
0(Ω) → H−1(Ω) as the nonlinear operator given by

〈Au, v〉 := a(u; u, v), ∀u, v ∈ H1
0(Ω),

then problem (2) is equivalent to the equation

Au = L,

where L ∈ H−1(Ω) is given. Assumption (3) implies that A is Lipschitz and strongly monotone (see [17]), i.e., there exist
positive constants C A and c A such that
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‖Au − Av‖H−1(Ω) � C A
∥∥∇(u − v)

∥∥
Ω

, ∀u, v ∈ H1
0(Ω), (7)

and

〈Au − Av, u − v〉 � c A
∥∥∇(u − v)

∥∥2
Ω

, ∀u, v ∈ H1
0(Ω). (8)

As a consequence of (7) and (8), problem (2) has a unique solution and is stable [16,17].

3. Adaptive algorithm

In order to define discrete adaptive approximations to problem (2) we will consider triangulations of the domain Ω . Let
T0 be an initial conforming triangulation of Ω , that is, a partition of Ω into d-simplices such that if two elements intersect,
they do so at a full vertex/edge/face of both elements. Let T denote the set of all conforming triangulations of Ω obtained
from T0 by refinement using the bisection procedures presented by Stevenson [15]. These coincide (after some re-labeling)
with the so-called newest vertex bisection procedure in two dimensions and the bisection procedure of Kossaczký in three
dimensions [13].

Due to the processes of refinement used, the family T is shape regular, i.e.,

sup
T ∈T

sup
T ∈T

diam(T )

ρT
=: κT < ∞,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball contained in it. Throughout this article, we only
consider meshes T that belong to the family T, so the shape regularity of all of them is bounded by the uniform constant
κT which only depends on the initial triangulation T0 [13]. Also, the diameter of any element T ∈ T is equivalent to the
local mesh-size HT := |T |1/d , which in turn defines the global mesh-size HT := maxT ∈T HT .

For the discretization we consider the Lagrange finite element spaces consisting of continuous functions vanishing on
∂Ω which are piecewise linear over a mesh T ∈ T, i.e.,

VT := {
v ∈ H1

0(Ω)
∣∣ v |T ∈ P1(T ), ∀T ∈ T }

. (9)

We are now in position to state the adaptive loop to approximate the solution u of the problem (2).

Adaptive Algorithm. Let T0 be an initial conforming mesh of Ω and u0 ∈ VT0 be an
initial approximation. Let T1 = T0 and k = 1.

1. uk := SOLVE(uk−1,Tk).

2. {ηk(T )}T ∈Tk := ESTIMATE(uk−1, uk,Tk).

3. Mk := MARK({ηk(T )}T ∈Tk ,Tk).

4. Tk+1 := REFINE(Tk,Mk,n).

5. Increment k and go back to step 1.

We now explain each module of the last algorithm in detail.

The module SOLVE. Given the conforming triangulation Tk of Ω , and the solution uk−1 from the previous iteration, the
module SOLVE outputs the solution uk ∈ Vk := VTk of the linear problem

a(uk−1; uk, vk) = L(vk), ∀vk ∈ Vk. (10)

Remark 1 (Linear versus nonlinear). Notice that while SOLVE requires the solution of a linear system, the usual discretization
of (2) in Vk consists in finding uk ∈ Vk such that

a(uk; uk, vk) = L(vk), ∀vk ∈ Vk, (11)

which is nonlinear. We propose here to make only one step of a fixed point iterative method to solve the nonlinear problem,
and proceed to the mesh adaptation, whereas the usual approach would be to approximate the discrete nonlinear problem
up to a very fine accuracy (pretending to have it exactly solved) before proceeding to mesh adaptation [6] (see also [9] for
a convergence result in a general setting). Each iteration of the adaptive loop is thus much cheaper in our approach. Our
theory guarantees convergence of this algorithm, and the numerical experiments of Section 5 show that the convergence is
quasi-optimal, although the latter is not yet rigorously proved.
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Remark 2 (Kačanov’s Method). Let us consider problem (2) (resp. problem (11) with k ∈ N fixed). We denote the space H1
0(Ω)

(resp. Vk) by V, and the solution u (resp. uk) by U . Given an initial approximation U0 ∈ V of the solution U , we consider
the sequence {Ui}i∈N0 where Ui ∈ V is the solution of the linear problem

a(Ui−1; Ui, v) = L(v), ∀v ∈ V, i ∈ N.

This is known as Kačanov’s Method, and it follows [8] that the sequence {Ui}i∈N0 converges to the solution U , provided
D2α(x, t) � 0 for all x ∈ Ω and t > 0.

Notice that our algorithm consists in performing only one step of Kačanov iteration in each step of the adaptive loop.

The module ESTIMATE. Given Tk , uk−1 and the corresponding output uk of SOLVE, the module ESTIMATE computes and
outputs the local error indicators {ηk(T )}T ∈Tk given by

η2
k (T ) := H2

T ‖Rk‖2
T + HT ‖ Jk‖2

∂T , (12)

for all T ∈ Tk . Here Rk denotes the element residual given by

Rk |T
:= −∇ · [α(·, |∇uk−1|2

)∇uk
] − f , ∀T ∈ Tk,

and Jk denotes the jump residual given by

Jk |S
:= 1

2

[(
α

(·, |∇uk−1|2
)∇uk

)
|T

· �n + (
α

(·, |∇uk−1|2
)∇uk

)
|T ′ · �n′],

for each interior side S , and Jk |S
:= 0, if S is a side lying on the boundary of Ω . Here, T and T ′ denote the

elements of Tk sharing S , and �n, �n′ are the outward unit normals of T , T ′ on S , respectively.

Remark 3. Note that in order to compute the local indicator ηk(T ) we need the outputs uk and uk−1 of the module SOLVE
from the last two iterations. The index k in ηk corresponds to the iteration counter k of the algorithm, and we should keep
in mind that ηk(T ) depends both on uk and uk−1.

The residual Rk ∈ H−1(Ω) of problem (10) is given by

〈Rk, v〉 := a(uk−1; uk, v) − L(v) =
∫
Ω

(
α

(·, |∇uk−1|2
)∇uk · ∇v − f v

)
, (13)

for v ∈ H1
0(Ω). Integrating by parts on each T ∈ Tk we have that

〈Rk, v〉 =
∑
T ∈Tk

(∫
T

Rk v +
∫
∂T

Jk v

)
, (14)

and since 〈Rk, vk〉 = 0 for vk ∈ Vk , using (14) and interpolation estimates, it follows that3

∣∣〈Rk, v〉∣∣ �
∑
T ∈Tk

ηk(T )‖∇v‖ωk(T ), ∀v ∈ H1
0(Ω), (15)

where ωk(T ) is the union of T and its neighbors in Tk .

Remark 4 (A posteriori error estimates). Note that Rk is the residual of the linear problem (10), and depends both on uk
and uk−1. As with the local indicator ηk(T ) the index k in Rk corresponds to the iteration counter k of the algorithm. The
residual R(uk) of uk corresponding to the original nonlinear problem (2) is given by〈

R(uk), v
〉 := a(uk; uk, v) − L(v), for v ∈ H1

0(Ω).

Using (5) and (7), it is easy to check that∣∣〈R(uk), v
〉∣∣ � (Ca + C A)

∥∥∇(uk − uk−1)
∥∥

Ω
‖∇v‖Ω + ∣∣〈Rk, v〉∣∣, (16)

for v ∈ H1
0(Ω). On the other hand, (8) yields

c A
∥∥∇(u − uk)

∥∥2
Ω

� 〈Au − Auk, u − uk〉 = −〈
R(uk), u − uk

〉
. (17)

3 From now on, we will write a � b to indicate that a � Cb with C > 0 a constant depending on the data of the problem and possibly on shape regularity
κT of the meshes.
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Thus, from (17), (16) and (15) we obtain the following upper bound for the error:

∥∥∇(u − uk)
∥∥

Ω
�

( ∑
T ∈Tk

η2
k (T )

) 1
2

+ ∥∥∇(uk − uk−1)
∥∥

Ω
.

This upper bound is computable, and can be used as a stopping criterion for the iterative algorithm.
Additionally, standard techniques allow us to prove that

ηk(T ) �
∥∥∇(u − uk)

∥∥
ωk(T )

+ ∥∥∇(uk − uk−1)
∥∥
ωk(T )

+ H.O.T.,

for T ∈ Tk , where H.O.T. stands for higher order terms (also called oscillation terms).

The next result is some kind of stability result for the indicators, which is a property somewhat weaker than the usual
efficiency, but sufficient to guarantee convergence of our adaptive algorithm (see also [14,4]). In order to prove it, we assume
that α is piecewise Lipschitz (over T0) in its first variable, uniformly with respect to its second variable. More precisely, we
assume that α(·, t) ∈ L∞(Ω) and α(·, t)|T ∈ W 1,∞(T ) with∥∥α(·, t)

∥∥
W 1,∞(T )

� Cα, ∀T ∈ T0, t > 0, (18)

where Cα > 0 is a constant. This assumption allows α(·, t) to jump across sides of T0.

Proposition 1 (Stability of the local error indicators). Let {uk}k∈N be the sequence of discrete solutions computed with the Adaptive
Algorithm. Then, the local error indicators given by (12) are stable. More precisely, there holds

ηk(T ) � ‖∇uk‖ωk(T ) + HT ‖ f ‖T , ∀T ∈ Tk,

for all k ∈ N.

Proof. Let {uk}k∈N be the sequence computed with the Adaptive Algorithm. Let k ∈ N and T ∈ Tk be fixed. On the one hand,
using that uk |T

is linear, and thus 	uk = 0 inside T , we have that

‖Rk‖T = ∥∥−∇ · [α(·, |∇uk−1|2
)∇uk

] − f
∥∥

T �
∥∥∇[

α
(·, |∇uk−1|2

)] · ∇uk
∥∥

T + ‖ f ‖T .

Since α is piecewise Lipschitz in its first variable (cf. (18)), it follows that if ξ := ∇uk−1 (constant over T ),∣∣∣∣ ∂

∂xi
α

(
x, |ξ |2)∣∣∣∣ =

∣∣∣∣ ∂α∂xi

(
x, |ξ |2)∣∣∣∣ � Cα, ∀x ∈ T , 1 � i � d,

and thus,

‖Rk‖T � ‖∇uk‖T + ‖ f ‖T .

On the other hand, if S is a side of Tk shared by the elements T , T ′ ∈ Tk ,

‖ Jk‖S �
∥∥(

α
(·, |∇uk−1|2

)∇uk
)
|T

∥∥
S + ∥∥(

α
(·, |∇uk−1|2

)∇uk
)
|T ′

∥∥
S

� ‖∇uk |T
‖S + ‖∇uk |T ′ ‖S � H−1/2

T ‖∇uk‖T + H−1/2
T ′ ‖∇uk‖T ′ � H−1/2

T ‖∇uk‖T ∪T ′ ,

where we have used (4) and a scaled trace theorem. Therefore,

H1/2
T ‖ Jk‖∂T � ‖∇uk‖ωk(T ),

which completes the proof. �
The module MARK. Based on the local error indicators, the module MARK selects a subset Mk of Tk , using any of the

so-called reasonable marking strategies, such as the maximum strategy, the equidistribution strategy, or Dörfler’s
strategy [13]. More precisely, we only require that the set of marked elements Mk has at least one element of Tk
holding the largest local indicator. That is, there exists an element T max

k ∈ Mk such that

ηk
(
T max

k

) = max
T ∈Tk

ηk(T ). (19)

This is what practitioners usually do in order to maximize the error reduction with a minimum computational
effort.
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The module REFINE. Finally, the module REFINE takes the mesh Tk and the subset Mk ⊂ Tk as inputs. By using the
bisection rule described by Stevenson in [15], this module refines (bisects) each element in Mk at least n times
(where n � 1 is fixed), in order to obtain a new conforming triangulation Tk+1 of Ω , which is a refinement
of Tk and the output of this module. By definition, Tk ∈ T for all k ∈ N and the family of meshes obtained by
the Adaptive Algorithm is shape-regular. Finally, it is worth observing that the resulting spaces are nested, i.e.,
Vk ⊂ Vk+1; this fact will be used in the proof of Lemma 3 below.

Remark 5 (The adaptive sequence {uk}k∈N0 is bounded). By the coercivity of a given by (6), and using the definition (10) of uk
we have that

‖∇uk‖2
Ω � 1

ca
a(uk−1; uk, uk) = 1

ca
L(uk) �

‖L‖H−1(Ω)

ca
‖∇uk‖Ω,

for all k ∈ N, and then

‖∇uk‖Ω �
‖L‖H−1(Ω)

ca
.

Therefore, {uk}k∈N0 is bounded in H1
0(Ω).

4. Convergence analysis

In this section we prove the convergence of the sequence computed with the Adaptive Algorithm described in the
previous section. We combine the ideas of the proof of convergence of adaptive algorithms for linear problems given in [11]
and [14] with new techniques needed to overcome the difficulties arisen by the nonlinear nature of the problem treated in
this paper, adapting some ideas from [5,4].

As a first step to prove the convergence of the {uk}k∈N0 to the exact solution u, we prove that ‖∇(uk − uk+1)‖Ω → 0, as
k tends to infinity, for which we need the following auxiliary lemma.

From now on we assume that

α(x, t1) � α(x, t2) whenever 0 � t1 � t2 and x ∈ Ω. (20)

Lemma 2. Let us assume that α(x, ·) is a monotone decreasing function for all x ∈ Ω , i.e., (20) holds. Then

J (v) − J (w) � 1

2

(
a(w; v, v) − a(w; w, w)

)
, ∀v, w ∈ H1

0(Ω),

where J (v) = ∫ 1
0 a(sv; sv, v)ds.

Proof. Let v, w ∈ H1
0(Ω). Then, a change of variables in the integral defining J (·) yields

J (v) − J (w) = 1

2

∫
Ω

( |∇v|2∫
0

α(x, t)dt −
|∇w|2∫

0

α(x, t)dt

)
dx = 1

2

∫
Ω

|∇v|2∫
|∇w|2

α(x, t)dt dx.

Since α(x, ·) is a decreasing function for all x ∈ Ω ,

1

2

∫
Ω

|∇v|2∫
|∇w|2

α(x, t)dt dx � 1

2

∫
Ω

α
(
x, |∇w|2)(|∇v|2 − |∇w|2)dx = 1

2

(
a(w; v, v) − a(w; w, w)

)
,

and the assertion of the lemma follows. �
Lemma 3. Let {uk}k∈N0 denote the sequence of discrete solutions computed with the Adaptive Algorithm. Then,

lim
k→∞

∥∥∇(uk − uk+1)
∥∥

Ω
= 0.

The proof of this lemma follows closely the proof of Theorem 25.L of [17], we include it here to make the article more
self contained.

Proof. Let {uk}k∈N0 be the sequence obtained with the Adaptive Algorithm. Since a is coercive (cf. (6)), and linear and
symmetric in its second and third variables, we have that
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ca
∥∥∇(uk − uk+1)

∥∥2
Ω

� a(uk; uk − uk+1, uk − uk+1)

= a(uk; uk, uk) − 2a(uk; uk+1, uk) + a(uk; uk+1, uk+1). (21)

From (10), since uk ∈ Vk+1, it follows that a(uk; uk+1, uk − uk+1) = L(uk − uk+1) and thus

a(uk; uk+1, uk) = L(uk − uk+1) + a(uk; uk+1, uk+1).

Replacing this equality in (21) and taking into account Lemma 2 we obtain

ca
∥∥∇(uk − uk+1)

∥∥2
Ω

� a(uk; uk, uk) − 2L(uk − uk+1) − a(uk; uk+1, uk+1)

� 2J (uk) − 2J (uk+1) − 2L(uk) + 2L(uk+1)

= 2
(F(uk) − F(uk+1)

)
, (22)

where F := J − L, and therefore, {F(uk)}k∈N0 is a monotone decreasing sequence.
On the other hand, {F(uk)}k∈N0 is bounded below since

F(uk) =
1∫

0

sa(suk; uk, uk)ds − L(uk)

� 1

2
ca‖∇uk‖2

Ω − ‖L‖H−1(Ω)‖∇uk‖Ω � −
‖L‖2

H−1(Ω)

2ca
.

Finally, from the last two assertions it follows that {F(uk)}k∈N0 is convergent. Considering (22), we conclude the proof
of this lemma. �

We show now that the sequence obtained with the Adaptive Algorithm is convergent, and more precisely, that it con-
verges to a function in the limiting space V∞ := ⋃

Vk
H1

0(Ω) . Note that V∞ is a Hilbert space with the inner product
inherited from H1

0(Ω).

Theorem 4 (The adaptive sequence is convergent). Let {uk}k∈N0 be the sequence obtained with the Adaptive Algorithm. Let u∞ ∈ V∞
be the only solution to

u∞ ∈ V∞: a(u∞; u∞, v) = L(v), ∀v ∈ V∞. (23)

Then

uk → u∞ in H1
0(Ω).

Remark 6. Notice that (23) always has a solution because (7) and (8) hold on V∞ , which is itself a Hilbert space.

Proof. Let {uk}k∈N0 be the sequence obtained with the Adaptive Algorithm. Let u∞ ∈ V∞ denote the solution of (23) and
Pk+1 : H1

0(Ω) → Vk+1 be the orthogonal projection onto Vk+1. Since A is strongly monotone (cf. (8)), using (23) and (10)
we have that

c A
∥∥∇(uk − u∞)

∥∥2
Ω

� 〈Auk − Au∞, uk − u∞〉
= 〈Auk, uk − u∞〉 − L(uk − u∞)

= 〈Auk, uk − Pk+1u∞〉 + 〈Auk,Pk+1u∞ − u∞〉 − L(uk − Pk+1u∞) − L(Pk+1u∞ − u∞)

= a(uk; uk − uk+1, uk − Pk+1u∞) + 〈Auk,Pk+1u∞ − u∞〉 − L(Pk+1u∞ − u∞)

� Ca
∥∥∇(uk − uk+1)

∥∥
Ω

(‖∇uk‖Ω + ‖∇u∞‖Ω

)
+ (

Ca‖∇uk‖Ω + ‖L‖H−1(Ω)

)∥∥∇(Pk+1u∞ − u∞)
∥∥

Ω
,

for all k ∈ N0, where in the last inequality we have used (5). From Remark 5 it follows that {uk}k∈N0 is bounded in H1
0(Ω),

and using Lemma 3, together with the fact that the spaces {Vk}k∈N0 are nested and
⋃

k∈N0
Vk is dense in V∞ , we conclude

that uk → u∞ in H1
0(Ω). �

In order to show that the limiting function u∞ is, in fact, the solution of the problem (2) and thereby conclude that
the adaptive sequence converges to the solution of this problem, we establish first two auxiliary results (see Lemma 5 and
Theorem 6). We need the following
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Definition 1. Given any sequence of meshes {Tk}k∈N0 ⊂ T, with Tk+1 a refinement of Tk , for each k ∈ N0, we define

T +
k := {T ∈ Tk | T ∈ Tm, ∀m � k}, T 0

k := Tk \ T +
k ,

and

Ω+
k :=

⋃
T ∈T +

k

ωk(T ), Ω0
k :=

⋃
T ∈T 0

k

ωk(T ).

In words, T +
k is the subset of the elements of Tk which are never refined in the adaptive process, and T 0

k consists of the
elements which are eventually refined.

It can be proved [11] that if χΩ0
k

denotes the characteristic function of Ω0
k , then

lim
k→∞

‖hkχΩ0
k
‖L∞(Ω) = 0, (24)

where hk ∈ L∞(Ω) denotes the piecewise constant mesh-size function satisfying hk |T
:= HT , for all T ∈ Tk .

Since the error indicators are stable (cf. Proposition 1), using the convergence proved in the last theorem and (24) we
can establish the following

Lemma 5 (Indicator on marked elements). Let {{ηk(T )}T ∈Tk }k∈N0 be the sequence of local error indicators computed with the Adaptive
Algorithm, and let {Mk}k∈N0 be the sequence of subsets of marked elements over each mesh. Then,

lim
k→∞

max
T ∈Mk

ηk(T ) = 0.

Proof. Let {{ηk(T )}T ∈Tk }k∈N0 and {Mk}k∈N0 be as in the assumptions. For each k ∈ N0, we select Tk ∈ Mk such that
ηk(Tk) = maxT ∈Mk ηk(T ). Using Proposition 1 we have that

ηk(Tk) � ‖∇uk‖ωk(Tk) + ‖ f ‖Tk � ‖∇uk − ∇u∞‖Ω + ‖∇u∞‖ωk(Tk) + ‖ f ‖Tk , (25)

where u∞ ∈ V∞ is the solution of (23). On the one hand, the first term in the right-hand side of (25) tends to zero due to
Theorem 4. On the other hand, since Tk ∈ Mk ⊂ T 0

k , from (24) it follows that

|Tk| �
∣∣ωk(Tk)

∣∣ � Hd
Tk

� ‖hkχΩ0
k
‖d

L∞(Ω) → 0, as k → ∞,

and the last two terms in the right-hand side of (25) also tend to zero. �
Using the upper bound (15), the stability of the indicators (Proposition 1), the facts that {uk}k∈N0 is bounded (cf. Re-

mark 5) and the marking strategy is reasonable (cf. (19)), and Lemma 5, we now prove the following important result.

Theorem 6 (Weak convergence of the residual). If Rk ∈ H−1(Ω) is given by (13), then

lim
k→∞

〈Rk, v〉 = 0, for all v ∈ H1
0(Ω).

Proof. We prove first the result for v ∈ H2(Ω) ∩ H1
0(Ω), and then extend it to H1

0(Ω) by density. Let p ∈ N and k > p. By
Definition 1 we have that T +

p ⊂ T +
k ⊂ Tk . Let vk ∈ Vk be the Lagrange’s interpolant of v . Since 〈Rk, vk〉 = 0, using (15), and

Cauchy–Schwartz inequality we have that∣∣〈Rk, v〉∣∣ = ∣∣〈Rk, v − vk〉
∣∣ �

∑
T ∈Tk

ηk(T )
∥∥∇(v − vk)

∥∥
ωk(T )

=
∑

T ∈T +
p

ηk(T )
∥∥∇(v − vk)

∥∥
ωk(T )

+
∑

T ∈Tk\T +
p

ηk(T )
∥∥∇(v − vk)

∥∥
ωk(T )

� ηk
(T +

p

)∥∥∇(v − vk)
∥∥

Ω+
p

+ ηk
(Tk \ T +

p

)∥∥∇(v − vk)
∥∥

Ω0
p
,

where, for any Ξ ⊂ Tk we hereafter denote (
∑

T ∈Ξ η2
k (T ))

1
2 by ηk(Ξ). Taking into account Proposition 1 and the bounded-

ness of the discrete solutions (cf. Remark 5) we have that ηk(Tk \ T +
p ) � ηk(Tk) � 1, and therefore,∣∣〈Rk, v〉∣∣ �

(
ηk

(T +
p

) + ‖hpχΩ0
p
‖L∞(Ω)

)|v|H2(Ω),

due to interpolation estimates.
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In order to prove that 〈Rk, v〉 → 0 as k → ∞ we now let ε > 0 be arbitrary. Due to (24), there exists p ∈ N such that

‖hpχΩ0
p
‖L∞(Ω) < ε.

On the other hand, since T +
p ⊂ T +

k ⊂ Tk and the marking strategy is reasonable (cf. (19)),

ηk
(T +

p

)
�

(
#T +

p

)1/2
max
T ∈T +

p

ηk(T ) �
(
#T +

p

)1/2
max

T ∈Mk

ηk(T ).

Now, by Lemma 5, we can select K > p such that ηk(T +
p ) < ε, for all k > K .

Summarizing, we have proved that

lim
k→∞

〈Rk, v〉 = 0, for all v ∈ H2(Ω) ∩ H1
0(Ω).

Finally, since H2(Ω) ∩ H1
0(Ω) is dense in H1

0(Ω), this limit is also zero for all v ∈ H1
0(Ω). �

As a consequence of Theorem 6 we now prove that u∞ is the solution of problem (2).

Theorem 7 (The limiting function is the solution). If u∞ denotes the solution of (23), then u∞ is the solution of problem (2), i.e.,

a(u∞; u∞, v) = L(v), ∀v ∈ H1
0(Ω).

Proof. Let u∞ be the solution of (23). If v ∈ H1
0(Ω), and {uk}k∈N0 denotes the sequence of discrete solutions computed with

the Adaptive Algorithm, then∣∣a(u∞; u∞, v) − L(v)
∣∣ = ∣∣a(u∞; u∞, v) − L(v) − a(uk; uk+1, v) + a(uk; uk+1, v)

∣∣
�

∣∣a(u∞; u∞, v) − a(uk; uk+1, v)
∣∣ + ∣∣〈Rk+1, v〉∣∣

�
∣∣a(u∞; u∞, v) − a(uk; uk, v)

∣∣ + ∣∣a(uk; uk − uk+1, v)
∣∣ + ∣∣〈Rk+1, v〉∣∣

� ‖Au∞ − Auk‖H−1(Ω)‖∇v‖Ω + Ca
∥∥∇(uk − uk+1)

∥∥
Ω

‖∇v‖Ω + ∣∣〈Rk+1, v〉∣∣
� C A

∥∥∇(u∞ − uk)
∥∥

Ω
‖∇v‖Ω + Ca

∥∥∇(uk − uk+1)
∥∥

Ω
‖∇v‖Ω + ∣∣〈Rk+1, v〉∣∣,

where we have used that A is Lipschitz (cf. (7)) and a is bounded (cf. (5)). Using Theorem 4, Lemma 3 and Theorem 6 it
follows that the right-hand side in the last inequality tends to zero as k tends to infinity. �

As an immediate consequence of Theorems 4 and 7 we finally obtain the main result of this article.

Theorem 8 (Main result). Let {uk}k∈N0 denote the sequence of discrete solutions computed with the Adaptive Algorithm. If α(· , ·)
satisfies assumptions (3) and (20), then {uk}k∈N0 converges to the solution u of problem (2).

We conclude this section with a couple of remarks.

Remark 7. The problem given by (1) is a particular case of the more general problem:{−∇ · [α(·, |∇u|2A
)A∇u

] = f in Ω,

u = 0 on ∂Ω,

where α : Ω × R+ → R+ and f ∈ L2(Ω) satisfy the properties assumed in the previous sections, and A : Ω → Rd×d is
symmetric for all x ∈ Ω , and uniformly positive definite, i.e., there exist constants a,a > 0 such that

a|ξ |2 � A(x)ξ · ξ � a|ξ |2, ∀x ∈ Ω, ξ ∈ Rd.

If A is piecewise Lipschitz over an initial conforming mesh T0 of Ω , i.e., there exists CA > 0 such that∥∥A(x) − A(y)
∥∥

2 � CA|x − y|, ∀x, y ∈ T , ∀T ∈ T0,

then the convergence results previously presented also hold for this problem.

Remark 8. We have assumed the use of linear finite elements for the discretization (see (9)). It is important to notice that
the only place where we used this is in Proposition 1. The rest of the steps of the proof hold regardless of the degree of the
finite element space. The use of linear finite elements is customary in nonlinear problems, because they greatly simplify the
analysis. The numerical experiments of the next section show a competitive performance of the adaptive method for any
tested polynomial degree (up to four).
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5. Numerical experiments

We conclude this article reporting on the behavior of the adaptive algorithm for some particular nonlinear problems.
In the first subsection we study the convergence rate in terms of degrees of freedom for an exact solution and different
functions α(· , ·). In the second subsection we show the performance of the algorithm when approximating an unknown
solution of a prescribed curvature equation.

5.1. Exact solution

Let us consider the problem{−∇ · [α(|∇u|2)∇u
] = f in Ω,

u = g on ∂Ω,
(26)

where Ω ⊂ R2 is the L-shaped domain given in Fig. 1. In the following examples, in order to study experimentally the
behavior of the Adaptive Algorithm, we consider (26) with different choices of the function α, defining f and g in each
case so that the solution of the problem is the function u depicted in Fig. 1, given in polar coordinates by

u(r,ϕ) = r
2
3 sin

(
2

3
ϕ

)
. (27)

We consider the Adaptive Algorithm using different marking strategies, namely, global refinement, maximum strategy with
θ = 0.7 and Dörfler’s strategy with θ = 0.5 (see [13]).

Fig. 1. The domain Ω where the problem (26) is posed and the function u which is the solution of the problem in each example.

Fig. 2. The function α(t) = 1
1+t + 1

2 , of Example 1 satisfies the properties we require to guarantee the convergence.
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Fig. 3. Error versus DOFs for Example 1. We present the H1(Ω)-error between the exact solution and discrete solutions, versus the number of degrees
of freedom (DOFs) used to represent each of them. We note that the convergence rate is optimal for the considered adaptive strategies, but not for
global refinement, due to the fact that the solution u is not sufficiently smooth. In this case, α(t) = 1

1+t + 1
2 satisfies all the properties established to

guarantee the convergence with linear finite elements. The numerical experiments suggest that the method converges with optimal rate for any polynomial
degree.

Fig. 4. The function α(t) = 1
1+t + 1

10 of Example 2 does not satisfy α(t2) + 2t2α′(t2) > 0 for all t > 0.
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Fig. 5. Error versus DOFs for Example 2. We present the H1(Ω)-error between the exact and discrete solutions, versus DOFs. We observe that the method
does not converge, but the error stagnates around 10−2. Since α(t) = 1

1+t + 1
10 does not satisfy the condition which guarantees uniqueness of solutions,

and based on the fact that the a posteriori error indicator does tend to zero (see Fig. 6) we conclude that the method converges to another solution of the
same problem, different from the one given by (27).

We implemented the Adaptive Algorithm using the finite element toolbox ALBERTA [13]. We iterated the algorithm until
the global error indicator was below 10−6 or the number of degrees of freedom exceeded 5 × 105. We tested the limits of
our theory by trying with some functions α which did not satisfy all the assumptions of the theoretical results above.

Example 1 (Optimal convergence rate when α satisfies the hypotheses). As a first example, in order to study experimentally the
rate of convergence of the Adaptive Algorithm, we consider

α(t) = 1

1 + t
+ 1

2
, t > 0,

which satisfies the hypotheses to guarantee the convergence (see Fig. 2), i.e., α is a C1-function, and there exist positive
constant ca and Ca such that

ca � α
(
t2) + 2t2α′(t2) � Ca, ∀t > 0, (28)

and

α is monotone decreasing, i.e.,α′(t) � 0 for all t > 0. (29)

In Fig. 3 we plot the H1(Ω)-error versus the number of degrees of freedom (DOFs), for finite elements of degree � =
1,2,3,4. In this case, the rate of the convergence is optimal for adaptive strategies, that is, ‖u − uk‖H1(Ω) = O (DOFs−�/2

k ).
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Fig. 6. Indicator versus DOFs for Example 2. We present the global error indicator ηk(Tk) versus DOFs used to represent each discrete solution. We note
that for the adaptive strategies the global error indicator decreases with the optimal rate for the H1-error, although the error does not tend to zero (see
Fig. 5). In this case, α(t) = 1

1+t + 1
10 does not satisfy the condition which guarantees uniqueness of solutions. It seems that the method converges to another

solution of the problem.

Fig. 7. The function α(t) = − 1
2 e− 3

2 t + 1 of Example 3 satisfies the hypothesis (28) but is monotone increasing.
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Fig. 8. Error versus DOFs for Example 3. We present the H1(Ω)-error between the exact and discrete solutions, versus DOFs. We note that the convergence

rate is optimal for the considered adaptive strategies, although the function α(t) = − 1
2 e− 3

2 t + 1 is not monotone decreasing. This could mean that this
hypothesis is not necessary for the convergence of the Adaptive Algorithm, which performs better than expected by our theory.

Fig. 9. The function α(t) = 2 −
√

t
1+√

t
of Example 4 satisfies our assumptions which do not require that α is Lipschitz continuous.
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Fig. 10. Error versus DOFs for Example 4. We present the H1(Ω)-error between the exact and discrete solutions, versus DOFs. We note that the convergence

rate is optimal for the considered adaptive strategies, even though the function α(t) = 2 −
√

t
1+√

t
has an infinite derivative at 0. This example falls inside

the theory, and the fact that α is not Lipschitz continuous does not destroy the optimality of the sequence of discrete solutions.

For global refinement, the observed order of convergence is DOFs−1/3
k for all tested polynomial degrees, due to the fact that

the solution u belongs to H1+δ(Ω), for all 0 < δ < 2
3 , and does not belong to H1+2/3(Ω).

Note that, although the theory only guarantees the plain convergence for linear elements (cf. Theorem 8), the numerical
results suggest that the method works for any polynomial degree (see Remark 8), and the convergence rate is optimal.

Example 2 (About the hypothesis (28)). We consider the function

α(t) = 1

1 + t
+ 1

10
, t > 0,

which is monotone decreasing, i.e., satisfies (29), but not (28), as it is shown in Fig. 4. Since (28) guarantees the well-
posedness of problem (26) (uniqueness and stability), we could be facing an example with multiple solutions.

In Fig. 5 we plot the H1(Ω)-error versus the number degrees of freedom, for different polynomial degrees. For � = 3
and � = 4 the algorithm stopped with an indicator below the desired tolerance 10−6, although the error is around 10−2 in
all cases. On the other hand, as we can see in Fig. 6, the global error indicator decreases with optimal rate for the adaptive
strategies, indicating that the adaptive algorithm may be converging to another solution of the nonlinear problem, different
from the one given by (27).

Based on this remark, it seems that the adaptive algorithm converges to a solution u1 such that ‖u − u1‖H1(Ω) ≈ 10−2.
We recall that α does not satisfy the condition (28) which guarantees the uniqueness of solutions.

Example 3 (About the hypothesis (29)). We consider
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Fig. 11. Reliability of global indicator ηk(Tk). We present plots of the quotient ‖∇(u − uk)‖Ω/ηk(Tk) versus DOFs for Example 1 (top left), 3 (top right)
and 4 (bottom), for polynomial degree � = 1. Even though the global indicator ηk(Tk) is not an upper bound for the error, it behaves as such when using
selective refinement strategies (Maximum or Dörfler), but it seems that it underestimates the error when uniform global refinement is performed in each
step of the algorithm. The behavior for higher polynomial degrees � = 2,3,4 is similar.

α(t) = −1

2
e− 3

2 t + 1, t > 0,

which satisfies the hypothesis (28) related to the well-posedness of the problem but not (29), because α is monotone
increasing (see Fig. 7).

In Fig. 8 we plot H1(Ω)-error versus the number of degrees of freedom, for finite elements of degrees � = 1, 2, 3, 4. Note
that in this case the optimal convergence rate DOFs−�/2 is still observed for the adaptive algorithm. This is an indication
that the assumption (29) about α being monotone decreasing can be superfluous, and only an artificial requirement for the
presented proof (see Lemma 2). A more detailed study about this hypothesis is subject of future research, and beyond the
scope of this article.

Example 4. Finally, we consider an extreme case, with

α(t) = 2 −
√

t

1 + √
t
, t > 0,

which satisfies (28) and (29), but limt→0+ α′(t) = −∞, as can be observed in Fig. 9. This means that α is not Lipschitz
continuous. Since we only require that |tα′(t)| is bounded (cf. (28)), it still satisfies the assumptions of the convergence
theory, and optimality is observed regardless of the fact that limt→0+ α′(t) = −∞.

Fig. 10 shows H1(Ω)-error versus DOFs, for polynomial degrees � = 1,2,3,4. We obtain optimal convergence rate
DOFs−�/2 for the adaptive strategies. Thus, even when α is not Lipschitz, the convergence rate is optimal. As a consequence
we conclude that it should not be necessary to make additional assumptions in order to prove optimality.



Author's personal copy

528 E.M. Garau et al. / Applied Numerical Mathematics 61 (2011) 512–529

Fig. 12. Adaptive meshes obtained when solving the prescribed mean curvature equation (30) with polynomials of degree 1 (top), 2 (middle), 3 (bottom). The
meshes correspond to iteration count 10 (left), 15 (middle) and 20 (right). It is worth observing the higher grading presented by the meshes corresponding
to higher polynomial degree.

Error versus Indicator. As we pointed out in Remark 4 the residual Rk is not an upper bound for the error. Nevertheless,
we tested the practical behavior of ηk(Tk) as an error indicator in the Examples 1, 3 and 4, when the solution converges
to the known solution (27). Our findings for polynomial degree � = 1 are reported in Fig. 11, the behavior is similar for
degrees � = 2,3,4. We observe that when adaptive refinement is used in each step of the algorithm, using for example the
maximum strategy or Dörfler’s strategy, the ratio ‖∇(u − uk)‖Ω/ηk(Tk) remains bounded above and below, indicating that
it may be reasonable to use ηk(Tk) in a stopping criterion for the algorithm. However, the indicator ηk(Tk) underestimates
the error ‖∇(u − uk)‖Ω when the global refinement strategy is used in Examples 1 and 4. A reliable error indicator for the
stopping criterion is ηk(Tk) + ‖∇(uk − uk−1)‖Ω which is a computable upper bound for the error.
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5.2. Unknown solution

In this section we use the Adaptive Algorithm to approximate a solution to a prescribed mean curvature problem. We
consider the problem⎧⎨

⎩−∇ ·
[ ∇u√

1 + |∇u|2
]

= f in Ω = (−1,1) × (−1,1),

u = 0 on ∂Ω,

(30)

with

f (x) =
⎧⎨
⎩

5 if |x| � 1/3,

−3 if 1/3 < |x| � 2/3,

0 otherwise.

The function α(t) = 1/
√

1 + t corresponding to this equation does not fulfill (28) because α(t),α′(t) → 0 as t → ∞. Never-
theless, for many right-hand side functions f , as the one stated above, the solution belongs to W 1,∞(Ω). This implies that
|∇u| is bounded and α could be replaced by a function satisfying (28) without changing the solution. This is not needed in
practice, but is rather a theoretical tool for proving that the assumptions hold in some sense.

We experimented with several right-hand sides f and observed that the method performs robustly whenever u ∈
W 1,∞(Ω). When the solution has an unbounded gradient, the method produces a sequence with a maximum value in-
creasing to infinity. This is a drawback of our method, since it cannot be used to approximate singular solutions (not
belonging to W 1,∞(Ω)), if α does not satisfy (28).

We present in Fig. 12 a picture of the solution obtained with our method and several meshes at different iteration
steps, for polynomial degrees 1, 2 and 3. It is worth observing the stronger grading obtained for higher polynomial degrees.
Since the solution belongs to H2(Ω) a sequence of quasi-uniform meshes would be optimal for linear finite elements [7],
although the adaptive method refines a bit more where the curvature of the solution is higher. When using polynomial
degree � = 2,3 adaptivity plays a more essential role, since the solution being approximated does not belong to H3(Ω),
whence quasi-uniform meshes would not be optimal. The adaptive method for polynomial degrees � = 2,3 concentrates the
refinement around the discontinuities of the right-hand side function f .
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