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Phase diagram of a cyclic predator-prey model with neutral-pair exchange
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In this paper we obtain the phase diagram of a four-species predator-prey lattice model by using the proposed
gradient method. We consider cyclic transitions between consecutive states, representing invasion or predation,
and allowed the exchange between neighboring neutral pairs. By applying a gradient in the invasion rate parameter
one can see, in the same simulation, the presence of two symmetric absorbing phases, composed by neutral pairs,
and an active phase that includes all four species. In this sense, the study of a single-valued interface and its
fluctuations give the critical point of the irreversible phase transition and the corresponding universality classes.
Also, the consideration of a multivalued interface and its fluctuations bring the percolation threshold. We show
that the model presents two lines of irreversible first-order phase transition between the two absorbing phases and
the active phase. Depending on the value of the system parameters, these lines can converge into a triple point,
which is the beginning of a first-order irreversible line between the two absorbing phases, or end in two critical
points belonging to the directed percolation universality class. Standard simulations for some characteristic
values of the parameters confirm the order of the transitions as determined by the gradient method. Besides,
below the triple point the model presents two standard percolation lines in the active phase and above a first-order

percolation transition as already found in other similar models.
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I. INTRODUCTION

In multispecies systems, cyclic competition represents a
situation in which each species cyclically dominates some
other in a such way that no one species is competitively
superior to all others. The simplest and most studied lattice
model of cyclic competition is composed by three species and
it is equivalent to the children’s game “rock-paper-scissors”,
where rock breaks scissors, scissors cut paper, and paper covers
rock. Several versions of the cyclic three-species model have
been studied in recent years in contexts related with pattern
formation [1,2], population dynamics [3], theory of games [4],
and others. Despite its simplicity, the rock-paper-scissors-like
dynamics was found in different experimental systems such
as plant communities [5], evolution of reproductive strategies
[6], and in studies on bacteria diversity, both in vitro [7]
and in vivo [8]. Also, several lattice Lotka-Volterra models
are examples of three-species models with cyclic dynamics,
such as the predator-prey or the susceptible-infected-recovered
models [9,10] and the forest-fire models [11,12].

The critical behavior of three-species lattice models with
cyclic competition can present an active phase, in which the
different species coexist, and an absorbing phase, where only
one survives, depending on the interaction rules among the
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involved species and the value of the control parameters. When
four or more species are considered, a new ingredient appears:
the mutual protection between noninteracting species (called
“neutral pairs”), which leads to the formation of defensive
alliances, preventing the invasion of predators. The defensive
alliances allow the presence of new phases composed just
by neutral pairs. In fact, the cyclic predator-prey model with
several species can exhibit a very complex behavior [13,14].
For example, depending on the parity of the number of the
considered species, the steady-state densities are strongly
affected, leading to a parity law [15] that affects the system
dynamic properties. As expected, with the inclusion of more
species the cyclic models become more relevant, for example,
for biological and ecological systems. This happens since real
trophic networks have usually a larger diversity, represented
by the number of different species [14]. However, from the
theoretical point of view, the inclusion of several species in
cyclic models represents an increase in fluctuations and slow
domain dynamics leading to large time-consuming numerical
calculations [16], making it difficult to handle.

In this paper we study a four-species cyclic predator-
prey model. By changing the invasion rate of prey sites by
neighboring predators, the model presents an active phase,
where the four species invade each other cyclically, and
two symmetric absorbing phases, composed by only two
noninteracting species (neutral pairs). The transitions between
the active phase and the absorbing phases were previously
shown to be continuous, belonging to the directed percolation
universality class [16,17]. For the case of symmetric predation,
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this model has also been studied with the inclusion of an
exchange probability between neighboring neutral pairs [16].
In the latter case, a transition between an active phase and one
of two possible symmetric absorbing phases was observed.

Our goal in this paper is to study the phase diagram for
the four-species cyclic predator-prey model with neutral-pairs
exchange, in which the main results and conclusions are
obtained by means of the gradient method (GM) [18-20].
For some characteristic values of the parameters, the results
have also been verified by using an approach with standard
simulations. In the case of the GM, we apply a linear gradient
in the invasion rate parameter, which allows for the presence
of different phases in the same simulation. The study of a
single-valued interface between the different phases gives the
critical point of the irreversible phase transition. Also, the
consideration of a multivalued interface brings the percolation
threshold. The study of the fluctuations of the interfaces
allows us to identify the corresponding universality class in
the case of second-order transitions, while for the first-order
transitions, we are able to study the universality class of the
interface itself. In that way, the GM can help us to decide the
order of an irreversible phase transition [18-20]. Therefore,
we show that the present cyclic four-species model presents
two lines of irreversible first-order phase transition between
the two symmetric absorbing phases and the active phase.
Due to the exchange between neighboring neutral pairs, the
reactive window shrinks, finishing in a triple point that is
the beginning of a first-order irreversible line between the
two absorbing phases. On the other hand, when the exchange
between neighboring neutral pairs is absent, the lines of
irreversible first-order phase transition end in critical points
that belong to the directed percolation universality class, as
previous results [17]. For some characteristic values of the
parameters, the results have also been verified by using an
approach with standard simulations. We also show that below
the triple point the percolation transition lies on the active
phase, and has a standard percolation behavior. On the other
hand, above the triple point, when the active region disappears,
the model presents a first-order percolation transition.

We organized the paper as follows. In Sec. II we introduce
the four-species cyclic predator-prey model. The realization
of the GM for this system is shown in Sec. III. Results
from the Monte Carlo simulations obtained by applying
the GM are discussed in Sec. IV, and by using standard
simulations in Sec. V. Finally, our conclusions are stated in
Sec. VL.

II. MODEL

In the present four-species cyclic predator-prey model, each
site i of a square lattice of linear size L is occupied by a
single species labeled as 0; = 1,2,3, or 4. The system evolves
through the invasion of prey sites by neighboring predators
with the cyclic rule

1-2—-3—-4—>1, (1)

where the arrows mean that the left species can invade
a neighboring site occupied by the right species. Since
the opposite invasions are forbidden, the model presents
irreversibility, which leads to the existence of absorbing states.
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TABLE I. The invasion probabilities [/(o; — o;)] that a site i
invades a site j, given in terms of the normalized parameter a (0 <
a < 1). The invasion direction is given by Eq. (1).

01 \0; 1 2 3 4
1 0 a 0 0
2 0 0 l—a 0
3 0 0 0 a
4 1—a 0 0 0

Invasion of neighboring sites depends on the invasion
parameter a and it occurs with probability /(o; — o), as
shown in Table I. The parameter a regulates the asymmetry
between the odd and even species. For a = 1/2 all predations
occur with the same probability, whereas for a > 1/2 (a <
1/2) odd (even) species are favored. The alliance between
odd species or between even species leads to the formation
of neutral pairs, which prevents invasion of predators. For
simplicity, we call the even species as species A and the odd
ones as species B.

In Fig. 1(a) the axis represents schematically the parameter
a. For a = 1/2 we have a stationary steady state with both
species present with the same probability. This active phase
is labeled as active A + B. As the invasion parameter a
increases, the species B is favored. For a large enough value
of a the active state is no longer possible and the system
passes to a phase composed only by species B, where no more

(@)
Inactive A Active A+B Inactive B
< * ‘ o >
a A 0.5 GB a
(b) 40p
$ 2.
p=prP,
< T T >
a, 0.5 ag a

FIG. 1. System parameters a and p of the four-species cyclic
predator-prey model. (a) In the line of invasion parameter (p = 0),
there is a reactive symmetric window around a = 1/2 (thick line)
composed by even (A) and odd species (B). The points a = a, and
a = ag are critical points to an A absorbing state (¢ < a4) andtoa B
absorbing state (a > ag), respectively. (b) The vertical axes represents
the exchange probability between neighboring neutral pairs, p. For
the symmetric invasion parameter (¢ = 1/2) there is an active (thick)
line, until the point p = p., where the system becomes trapped in
one of the symmetrical absorbing states. The dashed line p = py
represents the points on the plane where the gradient in a is applied.
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predation is possible and, therefore, constitutes an absorbing
phase (inactive B). As shown in Fig. 1(a), these two phases
are separated by a critical point at a = ap, which has been
observed as belonging to the directed percolation universality
class [17]. Clearly, for decreasing a, there is a symmetrical and
equivalent critical point (a = a4) between the active A + B
phase and an inactive A phase. Therefore, one has a reactive
window between a4 and ag.

The other relevant parameter for the present model is the
exchange probability p, by which neutral pairs (1 and 3, or
2 and 4) can exchange their positions. In Fig. 1(b), p is
represented by the vertical axes. The model’s behavior as
a function of p was already studied considering symmetric
interactions, that is with a = 1/2 [16]. For this case, the
performed Monte Carlo simulations have shown the existence
of a critical point p = p.. In this way, the active A + B
phase is present for p < p., while for p > p. the system
becomes irreversibly trapped in one of the two symmetric
absorbing states. This spontaneous symmetry breaking has
been suggested to be of first order, but the results are not
conclusive [16].

We have studied here the a-p phase diagram by Monte
Carlo simulations, which were carried out as follows: a square
lattice with linear size L is randomly filled by the four species,
with one entity per site. We choose a pair of neighboring sites
(i, j) and try an invasion with probability I(o; — o) given by
Table 1. Additionally, if the (i, j) pair is neutral, the exchange
between i and j occurs with probability p. Due to the exchange
and invasion rules, the number of entities is conserved. In one
Monte Carlo step we perform L? trials to invade or exchange.

III. APPLYING THE GM

In the standard simulation scheme the parameters shown
in Fig. 1(b) are maintained fixed, so that each point of the
plane is simulated independently. Here, in accordance with
the proposed gradient method (GM) [18-20], we study the
model by applying a gradient in the invasion parameter a.
This means that, for a square lattice of size L and a fixed value
of the exchange p, the parameter a changes linearly as

a(j)=Jj/L, 2

where j is the column number (1 < j < L). This results in
different invasion probabilities on different columns of the
lattice. In Fig. 1(b) the dashed line indicates schematically
the points of the phase space, which are being simulated with
the GM in one single run for p = py. If there are transition
points within the range of a, this gradient allows for the
definition of interfaces between the distinct phases. Studying
these interfaces one can determine the critical behavior of the
transitions that occur in the system [18-20].

Figure 2(a) shows a typical snapshot obtained by the GM
considering a horizontal gradient in the parameter a given
by the equation (2), for p = 0. In the right-hand side of the
sample we can see the absorbing phase composed by species 1
and 3, whereas in the left-hand side we have the absorbing
phase composed by species 2 and 4. In the center of the
sample it is possible to see the reactive window, where all
species are present. In Fig. 2(b) we show the mapping of
species 2 and 4 (1 and 3) to A (B) species for p = 0. Note
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that Figs. 2(a) and 2(b) correspond to the same snapshot. The
simplest interface associated with one phase (say phase B),
called the single-valued interface (SVI), is defined by the set of
sites SVI = o; withi = 1,...,Ngy,, belonging to this phase
(phase B) that is in contact with at least one site of the other
phase (phase A), and is located on the rightmost side of the
sample in each row i. The SVI is represented in Fig. 2(b) by
dark gray circles. Since the definition of the SVI is made row
by row, one has that Ngy; = L. From the above definition one
can obtain the location of the SVI interface (the mean value of
the invasion parameter) by the equation

1
aSv1

= Y a(o), 3)

N
SVI Gesvi

and the width of this interface, by
1
sviI
w' = [a(o) — aSVI]2. 4)
(7. 2,

The associated critical exponent «, related to the width of
the interface, is given by the scaling relation

wSVI o (%) , (5)

where the exponent « is associated to the spatial correlation
length critical exponent v [19,21] by

l—«
V= .

(6)

Also, in order to detect the percolation transition we define a
multivalued interface (MVI). For the case of B phase one first
determines all B-occupied sites in contact with the massive
B cluster located on the right of the sample. These sites,
connected by means of nearest neighbors, are denoted as the
“land”. The A-occupied sites are linked through both nearest-
and next-nearest-neighbor sites and form a large cluster that is
termed the “sea”. The sites not connected with the two large
clusters of land and sea are identified as “islands” and “lakes”,
respectively, but they are irrelevant. In fact, the MVI interface
is given by the “seashore” where land and sea are in contact.
The MV is represented in Fig. 2(b) by light gray squares. We
can see that the number of sites belonging to the MVI (Nyy )
is greater than Ngy; = L. The same equations (3)—(6) can be
considered by taking the set of points MVI instead of the set
SVI, in order to determine the percolation threshold and its
characteristic exponents.

Note that we have presented the construction of the SVI
and MVI for the B phase. It is also possible to construct
both interfaces for the A phase. However, since the model is
symmetric with respect to a = 1/2, the results are completely
equivalent. For a more detailed discussion about the definitions
of SVI and M VI the reader can see the references [18-20]. All
the simulation results presented in the next sections are related
to the B phase.

o

IV. RESULTS FROM GM

In Fig. 2 we show the snapshots of typical steady states
of the system as obtained with the GM for the cases of
p = 0 [Figs. 2(a) and 2(b)], p = 0.005 [Figs. 2(c) and 2(d)],
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FIG. 2. Snapshots of the system with a horizontal gradient in the
parameter a for a lattice of size L = 400. (a) and (b) correspond to
the case p = 0, (c) and (d) correspond to p = 0.005, and (e) and (f)
correspond to p = 0.025. In the left figures the species 1, 2, 3, and
4 are represented by black, light gray, dark gray, and white squares
respectively. In the right figures the species 2, 4 (A) are represented
in white, and 1, 3 (B) in black, while dark gray circles correspond to
SVI and light gray squares belong to MVI. Note that for some rows
the SVI and M VI sites coincide, mostly for higher values of p. More
details are in the text.

and p = 0.025 [Figs. 2(e) and 2(f)]. We recall that we
considered a horizontal gradient in the parameter a, as given by
Eq. (2). After a relaxation of Tiejax = 10° Monte Carlo steps
(MCs), we have measured our stationary data during the
next At = 10° MCs. These simulations correspond to the
three characteristic zones as can be seen in Fig. 1(b): the
horizontal axes (p = 0); one horizontal line below of p.
(p = 0.005); and one horizontal line above the p. (p = 0.025).
In Figs. 2(a), 2(c), and 2(e) we can observe the presence
of two absorbing phases, one composed only by species 2
and 4 (A particles), on the left-hand side of the sample, and
other one composed only by species 1 and 3 (B particles), on
the right-hand side of the sample. The absorbing phases are
separated by an active zone where the four species are present.
Figures 2(b), 2(d), and 2(f) exhibit the mapping of even and
odd species into A and B phases, respectively, and the SVI and
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FIG. 3. The width of the SVI (wgy;) and MVI (w,,y,) interfaces
as a function of the gradient (A = 1/L) for p = 0 (circles), p =
0.005 (stars), and p = 0.025 (triangles). The lines are power-law
fits. From the fits (dashed lines) we obtained agy; = 0.58(36) for
p =0, agy; = 0.711(11) for p = 0.005, and agy; = 0.753(14) for
p = 0.025; and ay;v; = 0.383(8) for p = 0, ayyv; = 0.438(17) for
p = 0.005, and apyy; = 0.748(6) for p = 0.025.

MVl interfaces corresponding to the B (right) phase. One can
note that the coexistence region (composed by the four species)
is observed for a smaller range of the parameter a as the value
of p increases [compare Figs. 2(a), 2(c), and 2(e)]. This effect
is translated on the mapping of Figs. 2(b), 2(d), and 2(f) by
the smaller number of island and lakes (and consequently by
a less rough MVI) for higher values of p. Also, from Fig. 2
we can see that, whereas for p = 0.025 MVI and SVI almost
coincide, for p = 0 and p = 0.005 this is not even true.

We can gain further insights into the transitions presents
in Fig. 2 by studying the SVI interface, for the case of the
irreversible phase transitions (IPTs), and by studying the M VI,
for the case of the percolation transition (PT). We recall that
the results presented below for the IPTs and PT are related to
the B phase.

A. Irreversible phase transitions

In Fig. 3(a) we exhibit the width of the SVI (wgy;) as a
function of the gradient A = 1/L, for p =0, p = 0.005, and
p = 0.025, and using square lattices of size L = 400, 600, 800,
1000, 2000, and 3000. For all these values of p, the curves are
well fitted by a power law which, by the use of Eq. (5), one
can obtain the exponent «. Particularly, for p = 0, a careful
analysis of agy; shows the presence of finite-size effects and
the results depend slightly on the considered lattice size, as
already observed in other models studied through the GM [18,
22,23]. Therefore, we have obtained agy; = 0.58(36) for p =
0,a5y; = 0.711(11) for p = 0.005, and a5y ; = 0.753(14) for
p = 0.025.

Besides, by using Eq. (6) with the value of « as obtained
from Fig. 3(a), we calculate the exponent vgy;. In Fig. 4 we
show the exponent vy, for different values of p. We observe
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FIG. 4. The exponent vgy; as a function of the neutral exchange
probability p. The long-dashed line indicates the correlation length
vpp = 0.733 [25] expected for the DP universality class, the dashed-
point line indicates the correlation length vgpz =2/5 [26] for
the KPZ universality class, and the short-dashed line represents
the correlation length vgy = 0.35 [26] for the EW universality
class. The arrow indicates the estimated value for the triple point
(p = Pr =0.013 £ 0.005).

that for p = 0, when the neutral pair exchange is absent,
we have vgy; = 0.72(12), which is marginally compatible
with the exponent of the correlation length of the directed
percolation (DP) universality class, whose value is vpp =
0.733(4) [24,25]. This result is in agreement with that already
obtained by Szabo and Szolnoki [17] for p = 0, who have
characterized this transition by means of standard simulation
methods, as a second-order IPT belonging to DP class.

In contrast, for small non-null values of p we observe
in Fig. 4 a sudden decrease of vgy;. This strong change
reflects the underlying effect due to the exchange probability p.
Note that the presence of a very little exchange p = 0.0005,
modifies the exponent considerably (from v & 0.7 to about
v & 0.40). This observation clearly suggests a change in the
nature of the transition due to the condition p # 0. For higher
values of p we can see from Fig. 4 that the exponent is almost
unchanged until p = Pr ~ 0.013. For values of p higher than
Pr another subtle decrease in the vgy; is observed. This new
value is maintained for high values of p.

In the Fig. 4 we indicate by horizontal lines the theoretical
values of the perpendicular length correlation exponents for
the direct percolation (DP) universality class vpp = 0.733,
for the Kardar-Parisi-Zhang (KPZ) universality class vgpz =
2/5, and for the the Edwards-Wilkinson (EW) universality
class vgw = 0.35 [26]. We can observe, for 0.005 < p < Pr,
values of the exponent vgy; compatible with the exponent
vgpz = 2/5, while for p > Pr the value of vgy; is around
vgw = 0.35. It is worth mentioning that in the case of the
EW and KPZ exponents, these exponents characterize the
universality of a self-affine interface, not a true second-order
transition. In fact, if there is a first-order transition present, our
method generates the interface associated to this transition
[18-20]. For this case, due to the absence of a diverging
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correlation length in the first-order transition, one has that
the overall behavior is dominated by the divergence of the
correlation length of the self-affine interface.

So that, the analysis of the SVI suggests that in the
present cyclic predator-prey model the neutral pair exchange
probability p changes the nature of the observed irreversible
phase transitions: from a second-order phase transition for
p =0, to a first-order phase transition for p > 0. Also, the
nature of the first-order phase transition seems to change, at
some point Py where the interface behavior changes from KPZ
to EW universality class. Looking at the snapshots of Figs. 2(b)
and 2(d) we can observe that the reactive window present for
p = Oisreduced for p > 0. In addition, the snapshot Fig. 2(f)
for p = 0.025 > Pr suggests that the reactive window is zero
wide. Considering this observation, we can anticipate that
the change in the critical behavior of the interface, whose
universality class changes from KPZ to EW, should be related
to the nature of the first-order transition, that is one between
an active and an absorbing phase (with a reactive window
of nonzero wide) for small non-null values of p, to another
between two absorbing phases (with a zero-wide reactive
window) for high values of p. This question, as well as the
location of the critical points, will be seen with more detail
below in Sec. IV C. Before of this, let us discuss the percolation
transition through the study of the MVI.

B. Percolation transitions

Using the same set of simulations, the GM allows us to
analyze the percolation transition from the behavior of the
MVL. As in the case of irreversible phase transitions and the
properties of the SVI, further insights into the percolation
transition can be given by the exponent of the interface width
w in Eq. (5). Figure 3(b) shows the width of the MVI (wyv ;)
as a function of the gradient A = 1/L, for p = 0, p = 0.005,
and p = 0.025. As we can see, a power-law behavior is found,
from which we have obtained «,;y; = 0.383(8) for p =0,
ayyr = 0.438(17) for p = 0.005, and apy; = 0.748(6) for
p = 0.025.

From the values of a;y; we can also obtain the exponents
vyvs as we have made in Fig. 4 for the SVI. However, for
p =0 we have vyy; = 1.67 £ 0.04, which is far from the
expected value for the standard percolation exponent vgp =
4/3 [27]. In fact, we found that the exponent v,y ; presents a
maximum around p = 0.001 and decreases continuously until
p ~ 0.013, where it reaches a value close to vgy = 0.35,
corresponding to the EW universality class (data not shown
here).

We will see below that these poor results for vy, can
be understood by the spatial proximity of the other phase
transitions. This is the main disadvantage of our method, which
can generate spatial correlations between transitions separated
by few lattice units leading to the occurrence of interference
effects that hinder a more accurate determination of asy;, at
least for the lattice sizes used in this paper.

C. Phase diagram

In order to locate the phase transitions showed in Figs. 2
and 4 and the percolation threshold, we have calculated the
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FIG. 5. (Color online) Clusters densities for the (a) SVI (psy;)
and (b) MVI (pyv,) as a function of the invasion parameter a
for p = 0.004 and different lattice sizes. The insets show plots of
the intersection points between different (but consecutive) curves
against average values taken between consecutive gradients (1/L, and
1/L,), namely 1/L* = (1/L, + 1/L,)/2, which converges to a. =
0.5164 £ 0.0006 (a) and ape. = 0.5042 £ 0.0006 (b), represented by
the dashed lines.

cluster density of the SVI (pgsy;) and MVI (pyvy) for the
phase B, as a function of the invasion parameter a with a
gradient given by Eq. (2). These curves, for p = 0.004 and
different lattice sizes, are shown in Figs. 5(a) and 5(b).

The intersection point of the cluster density for different
gradients converges quickly to the transition point, as demon-
strated in previous works [18-20]. On each inset of Figs. 5(a)
and 5(b) the intersection point for consecutive gradients (or
lattice sizes), a*, is shown against the value of the mean
gradient. The dashed horizontal line represents our estimated
transition point, obtained from the linear fit of the intersection
points. For p = 0.004 our estimated values are a, = 0.5164 £
0.0006 and apere = 0.5042 4= 0.0006, respectively. In the same
way, we have obtained the critical points for the IPTs and
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FIG. 6. (Color online) Phase diagram of the cyclic predator-prey
model with neutral-pairs exchange p. The transition points (squares
and circle), and percolation threshold (triangles) were obtained from
the intersection point of the cluster density of the SVI (osy ;) and MVI
(pmvr), respectively. Pr is the tricritical point with coordinates py =
0.013 £ 0.005 anday = 1/2.For p = Othe transition pointsare a, =
0.4644 4+ 0.0007 and ap = 0.5356 & 0.0007, and the percolation
threshold are a;y,, = 0.4963 + 0.0027 and a”, . = 0.5037 + 0.0027.
Guides to the eyes: the dashed lines represent the first-order transition
[a.(p)] and the dotted lines represent the percolation threshold

[aperc(p)]-

the threshold percolation using the SVI and MVI interfaces
respectively, for several values of p. These results are drawn
in the plane (a,p) of the Fig. 6. Note that Monte Carlo
calculations were made just for B phase. However, by the
symmetry of the model, we can draw the complete phase
diagram of the system. The critical points for the A (a2) phase
are obtained from critical points of the B phase (a?) by means
ofa? =1—ab.

We have indicated in Fig. 6 the active AB region as the
phase where the A and B species are present, and the inactive
A and B phases as the absorbing phases composed only by A
and B species, respectively. We note that the reactive region
shrinks since p = 0 until it disappears for a value identified as
p = Pr. For p > Pr, our data show that the two transitions
coincide. From a careful inspection of data in Fig. 6, the critical
neutral-pair exchange is identified as Py = 0.013 % 0.005, and
because of the symmetry, it has horizontal coordinate given by
ar =1/2.

From Figs. 4 and 6 we can see that the model presents three
different critical behaviors: (i) for the line p = 0; (ii) for the
region given by 0 < p < Pr; and (iii) for the region p > Pr.
We will analyze each of these behaviors.

(i) First of all, we can note from Fig. 6 that the reactive
window (active A + B) presents its maximum extension
for p =0. Our estimate of the critical points for p =0
[schematically represented in Fig. 1(a) as a4 and apg] have
been obtained as a4 = 0.4644 3 0.0007 and ag = 0.5356 &
0.0007, whose values are in a good agreement with the
previous results of Szabo and Szolnoki [17], who have found
as = 0.4666 £ 0.0001 and ap = 0.5358 £ 0.0001. Besides,
from Fig. 4, we have shown that the exponent vgy,; for p = 0
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is compatible with the expected value for a second-order IPT
belonging to the directed percolation universality class, again
in agreement with the previous determination of Szabo and
Szolnoki [17].

(i1) In Fig. 6 we observe that from the critical points a4 and
ap emerge two symmetric lines. In the region 0 < p < Pr,
these critical lines separate the active A + B phase and the
inactive A and B phases, and then those merge in the point
Pr. As it was just observed, according to Fig. 4, for this region
our method generated an interface whose exponent vgy; is
compatible with the KPZ universality class. Then, we assume
that these two lines correspond to a first-order IPTs. We recall
that the first-order phase transition present in the Ziff-Gulari-
Barshad model [28] (ZGB) also presents an interface in the
KPZ universality class [18].

(iii) Finally, for p > Pr, as we can see from Fig. 6,
the model presents a transition line between two inactive
phases. Again, from Fig. 4, our method shows in this region
an exponent vgy; compatible with vgy. We assume that
these lines correspond to a first-order IPT, whose interface’s
behavior is given by the EW universality class. A similar
behavior is presented by the monomer-monomer reaction
model with attraction between different monomers whose
interface has been found in the EW universality class [29].

It is worth noting that the change in the universality class of
the first-order interface (from KPZ to EW) is due to the change
on the nature of the phase transition. Thatis, for0 < p < prit
is a transition between an active phase and an absorbing phase,
whereas for p > Pr, it is a transition between two absorbing
and symmetric phases. Besides, despite the similarity of the
results from the GM (see Fig. 3), these two transitions are
quite different. For the latter case there is no active stationary
states, since any finite system always reaches one of the two
symmetric poisoned states. In this case, the critical point must
be characterized by means of the dynamic behavior given by
the temporal evolution of the observables going to the poisoned
state, an outcome that is beyond the goal of this paper. This kind
of transition is well known and has been extensively studied
before, being the most important realization the monomer-
monomer reaction model [30-32].

By noting that in the point Pr three lines of first order
join, we have decided to call it “triple point”. Also, comparing
the Fig. 1 with our phase diagram (Fig. 6) we realize that the
point p., showed in Fig. 1(b), is actually the triple point of
our phase diagram of Fig. 6. Indeed, the value reported by
Szabo and Szolnoki as p. = 0.01331(1) [13] is in excellent
agreement with our determination.

From Fig. 6 we can see a pair of symmetric percolation
threshold lines for 0 < p < Pr: one of them between the
percolating A phase and the nonpercolating A phase [the
line at the left-hand side, here identified as a,{‘,,v ;(P)], and
the other one between the nonpercolating B phase and the
percolating B phase [the line at the right-hand side, here
identified as aZ,,(p)]. Also, comparing the location of the
MVI and SVI in Fig. 6 we can see that for 0 < p < Py, the
percolation transition occurs always into the reactive region.
At the triple point Pr the percolation transition line joins with
the first-order transition lines and, for p > Pr, the percolation
transition and the first-order IPT coincide. In this way, for
p = Pr the percolating A (B) phase and the inactive A (B)
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phase coincides, and the nonpercolating A (B) phase is exactly
the inactive B (A) phase. Therefore, beyond the triple point
the transition between the inactive A and B phases is also
a first-order percolation transition, as already found in the
ZGB model [18,20] and in a variant of the Schlogl’s second
model under a gradient constraint [33]. We recall that, in
order to have a first-order percolation transition from one
first-order IPT, the latter should present a massive jump in
the density of the majority species, at the transition point.
Thus, if the jump at the density in the IPT is large enough, the
poor phase does not percolate, while the rich one does, and
consequently the percolation remains trapped in the jump and
becomes of first order. In the present model, for p > Py, this
result is straightforward, since the jump at the critical point is
maximum, that is from pp = 0 (fora < 1/2) to pp = 1 (for
a > 1/2), and analogously for p4. Because of that, in the phase
diagram (Fig. 6) the critical lines a.(p) and ape(p) coincide
for p > Pr.

On other hand, below the triple point (p < Pr), both
the critical lines agy;(p) and ayv;(p) (see Fig. 6), and its
characteristic exponents vgy; and vy, are different. For this
case, at the transition point, the system moves from the active
phase, with high density of pp, to the inactive B, with density
pp = 1 (analogously for p,). Despite that we have a first-order
IPT, the jump in the density is not enough to trap the percolation
transition. So the percolation transition lies at the active region,
as can be seen from Fig. 6.

Also, from Fig. 6, we can observe that the two percolation
transition lines [ajy,,; (p) and ay,,,(p)] are very close. For p =
0 their distance is about 0.007 and at the triple point they joint
each other. The poor values obtained in the previous section
for the exponent «yy; can be explained for the closeness
of the two percolation transition lines, since from Fig. 3(b)
we have that wyy; ~ 0.01 and the two MVI interfaces are
certainly interfering. This artifact could be avoided using
smaller gradients in order to make the distance between the
transition percolation lines greater than the width of the MVI
interface. That is, the following condition should be valid

wyvr < |agy(p) — ajyy(p)]- (7)

Anyway, the necessary lattice size to obey this condition in
the present model becomes prohibitive, particularly for values
close to Pr.

Figure 6 shows that also the presence of the first-order IPT
can hinder a more accurate determination of ¢y 7, mainly near
the triple point Py. In fact this effect was previously observed
for the ZGB [19], where nearby first-order transition is present.
On the other hand, when there are no nearby IPTs in the model,
one can evaluate the exponent o)y accurately [18-20,33].

It is important to note that Fig. 6 represents the complete p
versus a phase diagram of the system.

V. STANDARD SIMULATIONS

In order to compare and detect the differences in the
behavior of the first- and the second-order IPTs, we have also
performed extensive standard simulations for two values of p,
i.e., p =0 and p = 0.004. Here the algorithm is the same as
we have used with the GM (described in Sec. II), with the only
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difference that the invasion probability a is kept constant over
all the lattice at one fixed value.

Usually the simulation techniques for second- and first-
order transition are quite different. That is because first-
order transitions methods intend to avoid metastability and
to understand the hysteretic effects, whereas second-order
transitions methods intend to manage the critical slowing
down [34].

In the case of the first-order IPTs to absorbing states, one
of the simplest and most established methods to estimate
the critical point involves the calculation of the probability
of reaching the absorbing state [28]. In order to avoid
metastabilities, the initial conditions are chosen as half of the
lattice being in the absorbing phase and the other one being
in the active phase. Then, at the end of a simulation run, the
probability Py,s(a) of the system to reach the absorbing state
is calculated for a given value of the control parameter a. To
obtain confident estimated values, this prescription must be
performed a large number of times for each lattice size. Also
the simulation time must be long enough to ensure that the
final results do not depend on the length of the simulation.
Recently, it has been shown that P,ps(a) is a sigmoid function
from which it is possible to estimate the characteristic values of
a first-order IPTs [35]. Thus, the location of the transition point
(a.) is taken as the point where the probability of reaching the
absorbing state is equal to the probability of reaching the active
phase [that is Pys(a.) = 1/2] [28]. We refer to this method to
estimate a, as the equal probability criteria.

Since a. depends on the lattice size, we must take into
account finite-size effects. In the theory of first-order equilib-
rium transition it has been shown that defining one effective
size-dependent critical point (for example with the peak of the
susceptibility) we can extrapolate the thermodynamical value
by means of following rule

a.(L) = a.(L — 00)+ AL, (8)

where A is a constant and D is the dimensionality of the
system [34]. However, this relationship has been shown to be
valid, also for first order IPT transitions [28,35].

In order to implement this method here, the initial config-
uration is obtained by filling randomly a half of the lattice
with the four species and the other half with only B species.
Also, the lattice size ranges from L = 75 to L = 800, the total
simulation time considered is £, = 4 x 10°, and the number of
samples is n = 200 for smaller lattices and n = 100 for the
largest ones.

Figure 7 shows the estimated critical point a.(L) for
p =0.004 by using the equal probability criteria. Here
we plot the critical point a. against L~P, with D =2,
so that the straight line is a fit of the data according to
Eq. (8). We can observe a very good agreement with the
proposed power law for L > 100. The critical point at
the thermodynamic limit [a.(L — o0)], obtained from the
extrapolation given by Eq. (8), is a, = 0.5159(1). This value
is fully consistent with that one obtained from the GM, that
is a. = 0.5164 £ 0.0006. It should be stressed that the results
of Fig. 7 constitutes an additional confirmation that the IPT
for p = 0.004 is a first-order transition, in agreement with the
results showed in Fig. 6 obtained with the GM method.
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FIG. 7. Standard simulation results for the first-order phase
transition at p = 0.004: critical point a., obtained from the equal
probability criteria, as a function of L~?, with D = 2. The straight
line is a fit of the data by using the finite-size theory according to
Eq. (8). Inset shows a linear-log plot of the data. The obtained
extrapolated value [a.(L — o0)] is a. = 0.5159(1).

In order to compare the behaviors of the first- and
second-order IPTs, we have also performed similar standard
simulations for the case where the exchange probability is
absent (p = 0). Employing the same set of parameters and
initial conditions as in the previous case, we have determined
the probability of the system to reach the absorbing state for a
given value of the control parameter a [ Pys(a)].

For the continuous transitions the finite-size critical points
are governed by the correlation length exponent v. In this way,
the equivalent of Eq. (8), is given by

ac(L) = a.(L — 00)+ CL™'", ©

where C is a constant. This power law is usually applied to
estimate both critical points in equilibrium phase transitions
[34] and percolation thresholds in percolative transitions [27].
Here, we propose to use Eq. (9) in second-order IPTs with the
finite-size estimate for the transition points given by the equal
probability criteria.

Figure 8 shows these estimated a.(L) against L~!/V, with
v = vpp = 0.733, the value of the correlation length exponent
for the DP universality class [25]. The straight line is a fit of
the data according to Eq. (9). Our extrapolated value for the
critical point is a, = 0.5359(1), which is fully consistent with
the estimated obtained by means of the GM for p = 0, that
is a, = 0.5356 £ 0.0007. Also both values are in agreement
with those obtained previously by Szabo and Szolnoki [17],
a. = 0.5358 £ 0.0001.

In this way, following the results from long standard
simulations for p = 0, the critical behavior of the system
is correctly governed by the DP exponent vpp = 0.733. In
contrast, for the same kind of simulations for p = 0.004, the
relevant exponent is the dimensionality D = 2, as expected
for a first-order transition. We remark that these results are
consistent with the phase diagram shown in the Fig. 6 and
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FIG. 8. Standard simulation results for the continuous phase
transition at p = 0: critical point a., obtained from the equal
probability criteria, as a function of L~"" with vpp = 0.733 [25].
The straight line is a fit of the data by using the finite-size theory
according to Eq. (9). The obtained extrapolated value [a.(L — 00)]
is a. = 0.5359(1).

with the discussions and results obtained in the preceding
sections.

VI. CONCLUSIONS

In the present work we have studied a four-species cyclic
predator-prey lattice model by using the gradient method and
standard simulations. We have obtained the phase diagram
using as relevant parameters the invasion rate a of prey sites
by neighboring predators, and the exchange probability p,
by which noninteracting species can exchange their positions.
Previous results for p =0 and a = 1/2 are recovered and
included here. By changing these parameters the model
can present an active phase (where the four species invade
each other cyclically) and two symmetric absorbing phases
composed by only two noninteracting species (neutral pairs).

In the absence of the exchange between neighboring neutral
pairs (p = 0) our results show the presence of two symmetric
continuous transitions: one between the active phase and
the absorbing A phase (a4 = 0.4644 4+ 0.0007) and other
one between the active phase and the absorbing B phase
(agp = 0.5356 +0.0007), in agreement with Ref. [17]. The
critical behavior of these points in both the gradient method
and standard simulations is dominated by the direct percolation
length correlation exponent, as expected for a continuous phase
transition in the DP universality class (v = 0.733) also in
agreement with previous studies [17].

When a non-null exchange probability p, between neigh-
boring neutral pairs, is considered the two continuous critical
points present for p = 0 become two transition lines between
the active A 4+ B phase and the absorbing A (B) phase (A for
a < 1/2 or B fora > 1/2). By increasing the exchange p the
reactive window, limited by these two transition lines, shrinks
and finishes in a triple point Py.
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We argue that the exchange probability p changes the order
of the phase transitions, which becomes first order for p > 0.
This effect is shown by means of the gradient method, which
detects an interface in this region compatible with the KPZ
universality class. Also, it is verified by means of standard
simulations (for p = 0.004) that the estimated transition point
obtained by the equal probability criteria, converges to the
thermodynamical one governed by the dimensionality D = 2,
as expected for a first-order transition. In contrast, for p > Py,
we observe a first-order line transition, with a = 1/2, between
two symmetric absorbing states with a zero-wide reactive
window. For this region the interface generated by the gradient
method shows a scaling behavior compatible with the EW
universality class. We recall that the change in the universality
class of the first-order interface (from KPZ to EW) is due
to the change on the nature of the phase transition. In fact,
for 0 < p < pr the model presents a transition between an
active phase and an absorbing phase, whereas for p > Pr, it
has a transition between two absorbing phases. The behavior
of these first-order transition lines are qualitatively similar to
that for the monomer-monomer reaction model with repulsive
interaction between the two different species. In the simplest
monomer-monomer model there is a reactive window of zero
width [29] and the interface, formed between solid domains of
each species, is in the KPZ universality class. However when
repulsive interactions acts, the interface has been associated to
the EW universality class [29]. We can argue that the repulsion
between different species in the monomer-monomer model,
causes the same effect that high values of the probability of
the interchange between neutral species in our model, that is
a smoother interface in the EW universality class.

One relevant point in the phase diagram is the locus where
the three lines of transition join (Pr). We have estimated
the coordinates for this triple point as Py = 0.013 4 0.005
with ar = 1/2. Szabé et al. have previously described this
point as a transition between an active phase and one of two
possible symmetric absorbing phases, and have estimated it
as been p. = 0.01331(1) [16]. Here we have shown that this
symmetry breaking point is actually a triple point, which plays
an important role in the first-order IPTs, since it separates
two different kinds of first-order IPTs with different interface
behavior.

Additionally, we have determined the percolation transi-
tion, and again, the triple point plays a central role (see
Fig. 1). In fact, it separates a standard-percolation line in the
SP universality class (for p < Pr), within the active A + B
phase, from a first-order percolation line (for p > Pr) that
coincides with the A-B first-order IPT.
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