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We examine which aspects of the confidence distributions – its shape, its bias toward higher or lower
values, and its ability to distinguish correct from erred trials – are idiosyncratic of the who (individual
specificity), the when (variability across days) and the what (task specificity). Measuring confidence
across different sessions of four different perceptual tasks we show that: (1) Confidence distributions
are virtually identical when measured in different days for the same subject and the same task, consti-
tuting a subjective fingerprint, (2) The capacity of confidence reports to distinguish correct from incorrect
responses is only modestly (but significantly) correlated when compared across tasks, (3) Confidence dis-
tributions are very similar for tasks that involve different sensory modalities but have similar structure,
(4) Confidence accuracy is independent of the mean and width of the confidence distribution, (5) The
mean of the confidence distribution (an individual’s confidence bias) constitutes the most efficient indi-
cator to infer a subject’s identity from confidence reports and (6) Confidence bias measured in simple per-
ceptual decisions correlates with an individual’s optimism bias measured with standard questionnaire.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Every decision we make is earmarked with a confidence label
that influences how we learn, how we communicate our decisions
to others and when to stop deliberating and commit to a course of
action. For instance, a student stops studying for an exam when he
thinks he knows enough to get a good grade. To be useful, confi-
dence has to reflect the true likelihood of being correct. In the pre-
vious example, the student may not pass the exam if he thinks he
knows more than he actually does.

However, research in behavioral economics and cognitive
sciences has repeatedly shown that the capacity of confidence to
distinguish correct from incorrect knowledge – henceforth referred
as the accuracy of confidence – can vary markedly between sub-
jects for a given task. This variability has been related to individual
differences in brain structure and function (Barttfeld et al., 2013;
Fleming, Weil, Nagy, Dolan, & Rees, 2010). An assumption of this
line of research is that there is a shared system for confidence
judgements and hence that the accuracy of confidence in different
tasks will yield similar scores for a given individual.

Recent studies have investigated this hypothesis. Pleskac and
collaborators have shown that a single process can explain confi-
dence in choices made in perceptual (line discrimination and ran-
dom dot motion) and cognitive (city size inference) tasks (Pleskac
& Busemeyer, 2010; Yu, Pleskac, & Zeigenfuse, 2015). Moreover,
they show that a model based on a single process to compute con-
fidence in different domains can explain what factors control the
degree of correlation between tasks. Song and colleagues found
positive correlations in the accuracy of confidence for two tasks
that required discrimination of orientation or contrast (Song
et al., 2011). McCurdy and colleagues found weaker (but signifi-
cant) correlations between the accuracy of confidence judgments
based on mnemonic and perceptual decisions (McCurdy et al.,
2013). Moreover, they found distinct cerebral correlates of confi-
dence accuracy for each task suggesting the existence of function-
ally segregated confidence systems in the human brain. Baird and
colleagues (Baird, Smallwood, Gorgolewski, & Margulies, 2013)
showed a non-significant correlation between confidence accuracy
for memory and for perception and different connectivity patterns

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2015.10.006&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2015.10.006
mailto:sigman@df.uba.ar
http://dx.doi.org/10.1016/j.cognition.2015.10.006
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT


Table 1
Number of sessions and trials per task and subject.

Task Sessions Trials per session

Auditory 3 200
Contrast 3 300
Luminance 2 640
Partial report 3 384
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(with the prefrontal cortex as a shared hub) accounting for the
variance in the accuracy of mnemonic or perceptual confidence
judgments. Hence, the results are somehow mixed suggesting –
as was the case in the old literature of intelligence (Spearman,
1904) – that coherence in confidence reports across tasks may be
very different, ranging from strong correlations in tasks with sim-
ilar structures and shared features to moderate or almost negligi-
ble correlations in less related tasks.

In this manuscript we sought to examine which aspects of the
confidence distributions – its shape, its bias toward higher or lower
values, and its ability to distinguish correct from erred decisions –
are idiosyncratic of the who (individual specificity) and the what
(task specificity).

2. Methods

2.1. Participants

Twenty-three participants (12 female; mean age 24 ± 1.7 years)
completed a total of eleven experimental sessions, as detailed in
Table 1. All had normal or corrected-to-normal vision. All partici-
pants gave written informed consent, and the local ethics commit-
tee approved the study.

2.2. Tasks

Each participant performed four different tasks (Fig. 1). All tasks
were performed in front of a 1900 CRT computer monitor, at a dis-
tance of �60 cm. After each choice, subjects reported the degree
to which they considered their choice likely to be correct (termed
‘confidence’) by using a computer mouse to select a point on a
scale (�13� to 13� in the horizontal meridian), which ranged from
‘guessing’ (left) to ‘full certainty’ (right). Subjects were explicitly
asked to use the full range of the scale. No feedback was provided.

(i) Auditory discrimination task (Aud)

Two pure tones were presented sequentially, each one lasting
300 ms separated by an inter-stimulus interval of 500 ms. The
pitch of the first tone was randomly selected in the range of
300–700 Hz. Subjects had to press keyboard key 1 (2) to indicate
that the pitch of the first (second) tone was the highest. The differ-
ence in pitch between the first and second tone was adjusted with
a Quest procedure to keep accuracy levels at 75% correct (Watson &
Pelli, 1983).

(ii) Contrast discrimination (Con)

This forced choice visual discrimination task was adapted from
(McCurdy et al., 2013). Each trial started with participants fixating
a central red dot (diameter of 0.56�) on a gray background (50 cd/
m2) for 800 ms. On each trial, two circular targets appeared on
screen (3�, eccentricity of 6�) for 300 ms, or until the subject
responded. One of the targets contained only white noise, and
the other a grating of random orientation (spatial frequency of 2
cycles per visual degree) superimposed with white noise. Subjects
indicated which target contained the grating. The difficulty of the
task was controlled by the contrast of the grating, adjusted with
a Quest procedure to keep accuracy at a 75% correct (Watson &
Pelli, 1983).

(iii) Luminance discrimination (Lum)

The task was adapted from Zylberberg, Barttfeld, and Sigman
(2012). Each trial started with participants fixating a central red
dot (diameter of 0.56�) on a gray background (50 cd/m2) for
200 ms. Two flickering patches, were presented on the horizontal
meridian, centered at ±1.04� from fixation. Each patch was com-
posed of four vertical, spatially adjacent bars (0.14� � 0.56�). The
luminance of the bars was updated every 50 ms, sampling from a
Gaussian distribution with a standard deviation of 10 cd/m2. The
mean of this distribution equaled the luminance of the background
for one of the patches and was set higher for the other (referred as
the ‘‘target”). Participants pressed key G (H) to indicate that the
brighter patch was on the left (right). The trial was aborted if sub-
jects did not respond before 800 ms from the onset of the flickering
stimuli. The mean luminance of the target was adjusted online to
keep the proportion of correct responses at 75% (Watson & Pelli,
1983).

(iv) Partial report (ParRep)

This task was adapted from (Graziano, Parra, & Sigman, 2010;
Graziano & Sigman, 2008, 2009) where further details of the exper-
iment can be found. Twelve letters (font Time New Roman of
height 1.2�) were presented simultaneously for 16 ms. The letters
were chosen randomly from the alphabet without repetition. Let-
ters were arranged on a circle around the fixation, at an eccentric-
ity of 5.2�. A red dot (0.1�) on an array of blue dots (with the same
configuration as the letters) indicated the position of the target.
Participants had to report, using a standard keyboard, the letter
in the position cued by the red dot. The time between the offset
of the array of letters and the onset of the cue (ISI) was selected
pseudo-randomly, with possible values of [24, 71, 129, 200, 306,
506, 753, 1000] ms.

2.3. Data analysis

2.3.1. Metacognitive ability
For each task we measured (i) an individual’s ability to correctly

discriminate between stimulus alternatives, and (ii) the ability of
confidence judgments to discriminate between correct and incor-
rect responses (Fleming et al., 2010; Maniscalco & Lau, 2012;
Persaud, McLeod, & Cowey, 2007), measured for each session as
the area under the Receiver Operating Characteristic (ROC) curve.
To construct ROC curves, we calculated the parametric function
(on the parameter x) of cumulative probabilities p(confidence < x|-
correct) and p(confidence < x|incorrect). The ROC was calculated
independently for each session (Fig. A.1). We determine the accu-
racy of confidence as the area between the ROC curve and the x-
axis, referred as Area Under the Curve (AUC), which ranges from
0 to 1. An AUC of 1 indicates that confidence reports perfectly dis-
tinguish correct from incorrect responses, while an AUC �0.5 indi-
cates that there’s a large overlap in the distribution of confidence
reports for correct and incorrect responses (Galvin, Podd, Drga, &
Whitmore, 2003).

2.3.2. Kullback–Leibler (KL) distance and hierarchical clustering
We used the Kullback–Leibler divergence to measure similarity

between two confidence distributions. Confidence reports from
each session were binned in 20 categories of equal length covering
the full probability scale. For each subject, we obtained the distri-
bution of confidence ratings for each of the eleven experimental
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Fig. 1. Schematic depiction of the perceptual tasks and performance metrics. (a) Subjects performed four different tasks. In the Auditory Discrimination Task (Aud), subjects
were presented with a sequence of two tones, and had to decide which of the two was higher-pitched. In the Contrast Discrimination Task (Con), subjects were presented
simultaneously with two noisy patches and had to choose the one containing a grating. In the Luminance Discrimination task (Lum), subjects had to decide which of two
flickering patches had a higher average luminance. In the Partial Report task (ParRep), subjects were flashed with an array of letters. At a variable SOA after the offset of the
array, a red cue was presented and subjects had to report the identity of the letter that was previously at the position signaled by the cue. (b) The area under the Type-II ROC
curve (AUC) was used as a measure of the accuracy of confidence reports. The average proportion of correct responses and the AUC is shown for each subject, sorted by AUC.
Except for the partial report task, difficulty was adjusted online with a Quest procedure to maintain the proportion of correct responses at �75%.
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sessions, and computed the Kullback–Leibler divergence for every
pair of sessions. We then built a matrix where each entry M(i,j)
represents the average over subjects of the within-subject diver-
gence of sessions i and j:

Mði; jÞ ¼ 1
Ns

XNs
s¼1

XNb
k¼1

ln
Pi;sðkÞ
Pj;sðkÞ

 !
Pi;sðkÞ

where Ns = 23 is the number of subjects, Nb = 20 is the number of
bins used to discretize the confidence distribution and Pi,s(k) is
the proportion of confidence responses which fall on bin k for the
confidence distribution obtained in session i of subject s. The ele-
ments above the main diagonal of the matrix (shown in Fig. 3b)
were used to create a hierarchical cluster tree using the minimum
of the pairwise distance to determine the distance between clusters
– single-linkage clustering (Hastie et al., 2009).
2.3.3. Features that characterize the distribution of confidence reports
We also used three scalar metrics to characterize the similarity

of the confidence distribution across sessions: the mean confidence
rating (l), the standard deviation (r), and a multimodality index
(mi). The latter measures the tendency of confidence reports
(obtained from a single session) to be organized around multiple
peaks as opposed to a single peak. We used Hartigan’s dip test
statistic, as this non-parametric test is consistent for testing any
unimodal against any multimodal distribution (Hartigan &
Hartigan, 1985). A larger mi indicates higher probability of reject-
ing the hypothesis of unimodality. Significance was tested ranking
the empirical dip value against 5000 random samples of uniform
distributions of sample size equal to the real data (Hartigan &
Hartigan, 1985).

2.3.4. Decoding a subject’s identity from her confidence distributions
We studied whether a classifier can identify the subject identity

based on different features of the distribution of confidence, with a
multinomial logistic regression model. In multinomial regression,
each class (here subject) has its own linear discriminant function f c:

f c ¼ bc
0 þ bc

1 � sesþ bc
2 � X for c ¼ 1; . . . ;nsuj

where ses is the session number (as dummy variable) and the bs are
the fitted coefficients. We performed three different regressions
where X was either the mean (l), standard deviation (r) or multi-
modality index(mi) of the confidence distribution. The probability
that the data from a session (ses and X) corresponds to subject s fol-
lows the softmax distribution:

pðsÞ ¼ expðf sÞP
kexpðf kÞ

For classification, the predicted subject for each session is cho-
sen as the subject class with the highest probability. The accuracy
of the decoder is determined by the percentage of sessions that
were correctly classified.

We quantified the classification efficacy of each parameter by
comparing it against values obtained from a distribution of surro-
gated data. We generated a matrix Ap(sub,ses) such that each entry
(sub,ses) has the value of the parameter (p) for subject (sub) and
session (ses). We compared the values obtained from the classifica-
tion with surrogates of the data in which we random shuffled the



Fig. 2. Correlation of confidence accuracy within and across tasks. (a) Each dot represents for a single subject, the AUC value for a pair of tasks indexed by row and column.
Elements of the main diagonal (same perceptual task, in red) were constructed by plotting the AUC values of the last two sessions against each other. For off-diagonal
elements (different perceptual tasks, in blue), we first averaged AUC values across sessions for each experiment before plotting them against each other. Inside each graph, the
dotted line represents the best fitting straight line, and the dashed line represents the identity. The significance of the Pearson’s correlation coefficient is indicated in each
graph: n.s.: not significant; x: p-value < 0.05; xx: p-value < 0.005; xxx: p-value < 0.0005. (b) Pearson’s correlation coefficients for the AUC values extracted from every pair of
sessions. Correlation coefficients computed from sessions of the same (different) task are shown in red (blue). Colored vertical lines indicate the mean value of the correlation,
and shaded areas indicate s.e.m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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elements on each column of the matrix Ap(sub,ses). This results in a
permutation of the subject identity for each session. This proce-
dure allows us to obtain a measure of the variance of the distribu-
tion in surrogated data that can be used to assign a probability to
the null hypothesis. We did so by comparing the measured classi-
fication accuracy (in the empiric data) to the distribution of classi-
fication accuracy obtained from 10,000 different runs of surrogated
data.

To assess whether lwas a better predictor than AUC, we imple-
mented a nonparametric bootstrap algorithm (Efron & Tibshirani,
1994). We generated a bootstrap distribution based on 1000 boot-
strap samples. For each sample, we repeated the regression analy-
sis including only a subset of participants, which were obtained as
a random sample with replacement from the pool of all subjects.
For each bootstrap sample, we computed the classification accu-
racy for regressors l and AUC. We considered l to be a better pre-
dictor than AUC if it was so for at least 95% of the bootstrap
samples.
2.3.5. Life Orientation Test (LOT-R)
Participants completed the Life Orientation Test (LOT-R), a test

devised to measure individual differences in generalized opti-
mism/pessimism (Scheier, Carver, & Bridges, 1994), in its Spanish
version (Perczek, Carver, Price, & Pozo-Kaderman, 2000). The test
includes statements like ‘‘I’m always optimistic about my future”
and ‘‘I rarely count on good things happening to me”. Subjects indi-
cate the extent to which they agree with each statement selecting
one out of five alternatives: ‘‘I agree a lot”, ‘‘I agree a little”, ‘‘I nei-
ther agree nor disagree”, ‘‘I disagree a little”, ‘‘I disagree a lot”. Each
response is given a score from 1 to 5, with 5 being the most com-
patible with an optimistic trait. Participants responded to nine
statements, six of which were relevant (three ‘fillers’). Final scores
range from 30 (maximal optimism) to 6 (maximum pessimism).
3. Results

Each participant performed four different perceptual tasks
(Fig. 1a). The four tasks span a set of typical parameters in percep-
tual experiments: (a) visual vs. auditory discrimination, (b)
reaction-time vs. fixed duration, (c) fixed or freely-varying perfor-
mance, (d) decisions between events separated in time or in space,
(e) binary or multiple-choices and (f) decisions based on symbolic
or analogical stimuli. All tasks had a common structure where par-
ticipants made a perceptual decision (choice) followed by a judg-
ment about the confidence in their choice. Participants reported
confidence in a Likert scale (Likert, 1932) by clicking on a horizon-
tal line, which span the range from complete guessing on the left to
absolute certainty on the right. Each participant completed
between two and three sessions of each task, for a total of eleven
sessions (days). The proportion of correct responses for each sub-
ject, experiment, and session is indicated in Table A.1.
3.1. Metacognitive ability within and across tasks

We used the area under the Type-II ROC curve (AUC) to measure
the accuracy of confidence (Galvin et al., 2003). The AUC curve
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measures the degree to which confidence reports distinguish cor-
rect from incorrect responses (see Section 2). AUC values were
above 0.5 for every subject and experiment, indicating that all sub-
jects were reliably above chance in assigning confidence judg-
ments relative to correct and error trials (Fig. 1b).

To determine whether the individual variability in AUC in one
task is predictive of AUC in other tasks, we computed the Pearson’s
correlation coefficient across all pairs of tasks (Fig. 2a). Correlation
coefficients of the distribution of individual AUC measured in dif-
ferent sessions of the same task consistently showed high positive
values (Fig. 2a, diagonal, red dots). The AUC values obtained from
different tasks typically resulted in weak but positive correlations
(Fig. 2a, in blue).

To investigate whether there is a consistent within-subject cor-
relation of AUC, we computed the correlation for every pair of ses-
sions. The average correlation coefficient was significantly positive
both within (one-sided T-value = 7.24, df = 9, p < 5 � 10�5) and
across (one-sided T-value = 2.97, df = 44, p < 0.005) tasks (Fig. 2b).
Correlations coefficients were significantly higher when obtained
from sessions that belonged to the same experiment (one-sided
T-value = 5.96, df = 53, p < 10�6).

3.2. Confidence distributions as individuals’ fingerprints

The shape of confidence distributions differed markedly across
participants: some distributions were bimodal, others were packed
in a high confidence mode, others a single and wide bell-shaped
distribution with close to zero mean. In contrast with this broad
variability across participants, the shape of the confidence distribu-
tions was extremely consistent across sessions of the same task for
the same participant. In fact, confidence distributions for individ-
ual participants were almost overlapping for different sessions of



Fig. 4. Correlation of average confidence within and across tasks. Same as Fig. 2, but using the average of confidence (l) instead of the AUC.
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the same task (Fig. 3a). Across different tasks, confidence distribu-
tion showed larger variability (Fig. 3a). To formalize these observa-
tions, we computed the Kullback–Leibler divergence (KLdiv) to
measure the distance between confidence distributions. For each
subject, we computed the KLdiv for every pair of sessions (a total
of 112 comparisons). After averaging across subjects, we obtained
a matrix M(i,j) which measures the average distance between ses-
sions i and j (Fig. 3b, left). The visualization of similarity matrix
confirms that confidence distributions have very similar shapes
for all participants when measured in different sessions of the
same task. It also shows that the shape of confidence distributions
for the contrast and auditory discrimination task were very similar,
less so to the luminance discrimination task. The partial report task
(as could be expected due to large differences in performance)
shows instead much higher scores of dissimilarity. These observa-
tions were confirmed by a hierarchical cluster analysis, which
revealed four clear clusters (coded in different colors in Fig. 3b,
right), each grouping together the sessions that belonged to the
same task. The four clusters further organize into two clusters,
with the partial report task separated from the rest. Hence, the
clustering analysis reveals that the similarity in the usage of the
confidence scale is supramodal, as we failed to observe a clear sep-
aration between auditory and visual tasks.

3.3. Confidence bias within and across tasks

The previous analysis highlights the similarity of confidence
distributions across sessions. To study which features of the distri-
butions are more consistent across sessions and tasks, we
extracted from each distribution of confidence, the mean (l;
referred as ‘bias’), standard deviation (r), and an index of the mul-
timodality of the distribution (mi). The mi represents the degree to
which the distribution of confidence in one session is multimodal
as opposed to unimodal, measured by the statistic for Hartigan’s
dip test for unimodality (Section 2).

We observed very strong correlations in the bias (l) across ses-
sions of same task (Fig. 4a). The correlation coefficient between
sessions of different experiments was also significantly positive
for every comparison (Fig. 4a). This indicates that an individual’s
confidence bias is consistent across tasks. Across the population,
the mean correlation coefficient was highly significant both when
the session belonged to the same (p < 10�6, one sided T-value = 38,
df = 9) and different (p < 10�6, one sided T-value = 25.9, df = 44)
tasks (Fig. 4b). In Figs. A.2 and A.3 we show the same analysis for
the standard deviation and multimodality index of the confidence
distribution, which were also highly significant both within and
across tasks. Table A.2 shows the value of each index for every sub-
ject, experiment and session.

Together, these results indicate that the features that character-
ize the shape of the confidence distributions are a more robust fin-
gerprint of a participant than the confidence accuracy as measured
by the AUC. We formalize this assertion with a multinomial logistic
regression analysis used to map each session to an individual sub-
ject. In different regression analyses we used l, r, mi, or AUC as
independent regressors. Classification accuracy was 16.2%, 10.3%,
10.7%, and 7.9% for regressors l, r, mi, or AUC respectively. All
these values are above chance level of 4.35%. However, the statis-
tical power of these parameters was very different. Classification
power for the three parameters of the distribution was highly sig-
nificant (p < 10�3) while classification power for the AUC was only
marginally significant (p = 0.053). A nonparametric bootstrap test
(Efron & Tibshirani, 1994) revealed that the classification accuracy
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for l was significantly higher than for AUC (p < 0.02, N = 1,000
bootstrap samples). The classification capacity of these parameters
was synergic which was revealed by the fact that the accuracy of
the decoder increased significantly to 37.1% with a multinomial
regression that includes all four features simultaneously.

We wished to ascertain whether the shape of the confidence
distribution constraints the capacity of confidence judgments to
distinguish between correct and incorrect choices. For example,
in the limit case in which a participant is completely certain of
her choices (a distribution with l ¼ 1 and r ¼ 0), confidence judg-
ments won’t be able to distinguish correct from erred responses.
Yet, the relation between the distribution and accuracy of confi-
dence reports may not be significant for typical values of these
observables. We investigated the relation between the mean and
standard deviation of the confidence distribution and the AUC
(Fig. 5). First, we fit a second order polynomial to the relation
between AUC and l (Fig. 5a). This relation tended to be concave
(indicating that for extreme cases of very high or very low confi-
dence there is a slight decrease in the accuracy of the confidence
reports). However, the explanatory power of these fits was very
low (the average R2 for the data shown in Fig. 5a is 0.22) and did
not reach significance indicating that the subjective choice of
whether to report confidence in higher or lower average values
(which is persistent and reliable across sessions and experiments,
as described above) has a very weak effect on the accuracy of the
confidence system. Similarly, an analysis of the linear and quadra-
tic relations between AUC and r (Fig. 5b) did not reach significance
indicating that subjects can report confidence within narrower
regions of the confidence scale without affecting its ability to dis-
tinguish between correct and incorrect responses.

3.4. Confidence bias is correlated with an individual’s bias toward
optimism versus pessimism

The previous analysis indicates that the mean of the distribu-
tion (l) is the most reproducible feature of how an individual
expresses confidence. It’s conceivable that l only reflects that sub-
jects use the scale differently, i.e. that the same point on the scale
represents different measures of correct probability for different
subjects. Alternatively, l could be an index of a subjects tendency
to be underconfident or overconfident, or, more generally, opti-
mistic or pessimistic.

We tested the degree to which the average confidence indexes a
subject’s generalized bias toward optimism versus pessimism. A
few months after the completion of the perceptual experiments,
we asked participants to complete the Life Orientation Test (LOT-
R), a test devised to measure individual differences in generalized
optimism/pessimism (Scheier et al., 1994). Eighteen of the twenty-
three participants completed the test. The bias toward optimism/
pessimism as measured with the LOT-R was strongly correlated
with the average confidence computed from the psychophysics
experiments �1 year earlier (Fig. 6).

4. Discussion

Our aim was to examine which aspects of the confidence distri-
butions are characteristic of the who (individual specificity) and
the what (task specificity). To this aim we conducted a large-
scale psychophysical experiment in which 23 subjects performed
11 sessions for a total of about 100.000 trials.

The summary of the main results of this study is:

(1) Most aspects of confidence distribution (AUC, mean, shape
estimators, variance) are highly reproducible across sessions
for the same individual in the same context.

(2) The precision of confidence reports to distinguish correct
and incorrect (AUC) trials is only modestly correlated when
compared across tasks.

(3) The distributions of confidence are – as said above in (1) –
almost identical for different sessions of a given individual
and task. Across tasks the distributions of confidence show
several important changes and regularities. First, similarity
of these distributions is not affected by modality. In fact,
confidence distributions where very similar for the contrast
and auditory discrimination tasks which are based on differ-
ent modalities but have very similar task structures. The task
that showed greater dissimilarity is the Partial Report Para-
digm. The space of parameters is too large to infer which of
the many factors that vary between tasks is the critical one.
It is natural to think that a main factor explaining why con-
fidence distributions for the partial report task were very
different from the rest is accuracy, which is close to 35% per-
cent on this task (where chance level is �3%) while in other
tasks it was held close to 75% with chance levels of 50%.
However, an interesting observation is that spikes of very
high (almost perfect) confidence where much more frequent
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in this low-accuracy task (Fig. 3). Two possible explanations
of this observation are that the partial report task is discrete
and based on symbols and not analog quantities, and that
the task has perceptual analogs of what psychologists have
referred as contrary, misleading or deceptive problems
(Lichtenstein, Fischhoff, & Phillips, 1977; May & Scholz,
1986). In the partial report task the subjects see an array
of letters and then are required to answer which letter was
presented in a given location. We demonstrated that spatial
transposition of a given shape is a frequent unconscious
operation which results in subjects being very confident
about a response which is perfectly correct within a flawed
scheme of reasoning, a sort of visual illusion (Graziano &
Sigman, 2009). The flaw is of course unnoticed to subject’s
introspection and subjects are hence highly confident as
they would also be in the wrong assessment of a visual illu-
sion. This presents an intrinsic methodological difficulty for
the study of universal aspects of confidence judgments
(Klayman, Soll, González-Vallejo, & Barlas, 1999).

(4) Despite the fact that there were large variations in the shape
of confidence distributions across tasks, the mean of this dis-
tribution was highly indicative of a subject’s identity. A
regression analyses showed that the average confidence
was a more efficient indicator of a subject’s identity than
the capacity of confidence to distinguish correct from incor-
rect decisions. In fact every single correlation of the average
confidence across different sessions (measured in different
days and performing different tasks) was positive.

4.1. Accuracy of confidence

Many behavioral and theoretical studies have addressed previ-
ously under which circumstances confidence judgments are accu-
rate or inaccurate with some discrepancy on the mechanisms and
in the conclusions. Tversky and Kahneman have argued that confi-
dence judgments are often inaccurate because they rely on heuris-
tics and simplifications that yield systematic errors (Griffin &
Tversky, 1992; Tversky & Kahneman, 1974). It has also been sug-
gested that confidence judgments may not be precise due to unbi-
ased random variation or noise in the decision process (Erev,
Wallsten, & Budescu, 1994). Gigerenzer, Hoffrage, and
Kleinbolting (1991) criticized some of these conclusions arguing
that inaccuracies in confidence judgments may be due to selective
sampling of questions by the experimenter. In support of this
hypothesis, Juslin, Winman, and Olsson (2000) analyzed a large
set of studies (with random sampling) and showed that the aver-
age difference between confidence and accuracy was basically
indistinguishable from zero.

Previous studies have also measured the accuracy of confidence
judgments using – as we do in this study – a signal detection
approach (Fleming & Lau, 2014; Galvin et al., 2003; Zylberberg,
Roelfsema, & Sigman, 2014). Pleskac and colleagues developed a
2-stage dynamic signal detection (2DSD) theory which assumes
that evidence can continue to accumulate after the choice. By
increasing the amount of evidence that they collect during the sec-
ond stage of 2DSD (after choice), decision makers can increase the
resolution of their confidence reports (Pleskac & Busemeyer, 2010;
Yu et al., 2015).

An important question to this general aim is to understand the
reliability of the accuracy of confidence across difference sessions
and tasks. In our study the accuracy of confidence reports to distin-
guish correct and incorrect trials is only modestly correlated when
compared across tasks. The ‘‘half-empty or half-full glass” can be
described in a more clarifying manner. For each pair of sessions
of different tasks the correlation is weak. However, when all
possible pairs of sessions (for different tasks) are taken together,
the distribution of r values of the distribution is highly significantly
shifted toward positive values, revealing a more likely tendency
toward positively correlated measures.
4.2. Idiosyncrasies in the expression of confidence

In contrast to the modest reliability observed in the accuracy of
confidence, most aspects of confidence distribution (AUC, mean,
shape estimators, variance) are highly reproducible across sessions
for the same individual in the same context. The distribution of
confidence in a given task constitutes a subjective fingerprint. Con-
fidence distributions have a very high capacity to classify a sub-
ject’s identity.

More generally, our work conveys the idea that confidence is
not the mere report of an internal probability but that, instead, it
is expressed in an idiosyncratic manner. For some individuals col-
lapsed in a single mode, for others being expressed in two different
categories. There does not seem to be a universal language to
express probabilities. This is in line with many studies investigat-
ing how people convey uncertainty with words such as ‘‘possible”,
‘‘likely” ‘‘doubtful”. It has been generally found that each individu-
als uses different expressions to describe identical situations
(Wallsten & Budescu, 1995; Wallsten, Budescu, Rapoport, Zwick,
& Forsyth, 1986). In fact, Budescu and colleagues have shown that
they can reduce communication errors by a ‘‘translation” device
that standardizes an individual’s linguistic idiosyncrasy to map
uncertainty (Karelitz & Budescu, 2004). It also resonates with pre-
vious findings showing that individual differences in policies to
express confidence may be cultural, distinguishing groups of peo-
ple who express (verbally and numerically) continuous notions of
probabilities from those who express it in a more categorical
(all-or-none) fashion (Phillips & Wright, 1977). Phillips and Wright
have extended this idea beyond the domain of decision confidence
to argue that there are cultural and individual differences in the
way that people think and conceptualize probabilities and uncer-
tainty (Wright et al., 1978). Individual persistence in the policy
to express confidence has also been reported in a seminal study
by Adams and Adams (Adams & Adams, 1961) who reported a
grossly overconfident calibration curve of a schizophrenic who
believed he was Jesus Christ (Lichtenstein et al., 1977). Swets,
Tanner, Wilson, and Birdsall (1961) also observed that the calibra-
tion curves of each of their observers were widely different.

It is important to emphasize that in the present study subjects
report in a non-calibrated scale, and thus we cannot make precise
claims about whether a participant is over or under confident. Still,
we observed a significantly positive correlation between confi-
dence bias in the simple perceptual decisions we studied, and
the general optimism bias measured with standard questionnaire
(Scheier et al., 1994). Accordingly, while confidence bias is a highly
reproducible trait of how confidence is reported (Stankov &
Crawford, 1996), previous research has also identified that being
over or under confident and generally optimistic or pessimist is a
stable individual trait (Plomin et al., 1992). In the optimism/pes-
simism classification, there seems to be a bias toward optimism,
typically expressed in people believing that they will live longer
than average, underestimating divorce chances, health problems
and risks such as car accidents (Weinstein, 1980). Pessimism is
typical in patients with depressive symptoms indicating that speci-
fic populations may have a bias (the causality of this correlation is
not known) toward a specific policy of confidence (Drevets et al.,
1997). These findings are consistent with our observation that
the confidence bias is the most stable individual trait of confidence
distributions.
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4.3. Questions for future research

Some questions derive naturally from the present study, which
could be addressed in future studies:

(1) One natural question that derives from this observation is
which aspects of people’s personality are related to persis-
tent differences in confidence distributions, preserved across
days and tasks. As mentioned above, depression is associ-
ated with under-confidence (Drevets et al., 1997) but it is
likely that more subtle manifestations of personality, brain
function and structure, may predict average scores of confi-
dence in the same way that some cerebral structures (most
reliably the frontal cortex (Barttfeld et al., 2013; Fleming
et al., 2010; Lau & Rosenthal, 2011)) have been shown to
index the capacity of confidence judgments to distinguish
correct from incorrect decisions.

(2) A second question is what are the benefits and costs of typ-
ically reporting (and presumably feeling) within different
ranges of the continuum of confidence. This of course relates
to risk policies in decision making and becomes critical
when the outcomes of a decision are associated with differ-
ent values. Extreme overconfidence can lead to an underes-
timation of risk which can be harmful in the evaluation of
future events (Lovallo & Kahneman, 2003); for instance,
driving under the effect of alcohol when being over-
confident of one’s own driving abilities. On the other hand
moderate optimism can promote exploration and leads (or
is a cause of) better health (Scheier & Carver, 1987; Taylor
& Brown, 1988). Our study shows that, contrary to what
intuition may have suggested, the ability of confidence
reports to distinguish correct from incorrect decisions is lar-
gely independent from the confidence bias. The fact that
some subjects are responding with very high scores (and
then seemingly saturating and loosing precision in a narrow
range of confidence) leads to a re-scaling of confidence with-
out losing precision.

(3) A third question which remains to be addressed in future
studies involves the link between confidence bias, accuracy
and over and under confidence. In behavioral economics,
confidence studies have focused on individual tendencies
to be over- or under-confident, and the conditions that pro-
mote these two modes of operation (Griffin & Tversky,
1992). Only recently, neuroscientist begun to investigate
the neural correlates of confidence judgments (Kepecs,
Uchida, Zariwala, & Mainen, 2008; Kiani & Shadlen, 2009;
Komura, Nikkuni, Hirashima, Uetake, & Miyamoto, 2013;
Middlebrooks & Sommer, 2012). The approach taken by
the majority of neuroscience studies is to examine the struc-
tural and functional cerebral correlates that index confi-
dence accuracy (Baird et al., 2013; Fleming et al., 2010;
McCurdy et al., 2013). Focus on confidence accuracy has
somehow shadowed one of the initial aims of confidence
research, its calibration to an objective norm and its ten-
dency to be shifted toward overall higher or lower values
of confidence. Here we performed a step toward bridging
this gap, addressing the relation within individuals and
tasks, between confidence accuracy and bias.

(4) Few studies explored whether the way in which confidence
is reported has an influence on the calibration and resolution
of confidence (Overgaard & Sandberg, 2012). Klayman and
colleagues reported that the tendency toward overconfi-
dence is stronger when participants report confidence using
subjective confidence intervals instead of probabilities
(Klayman et al., 1999). Tunney and colleagues (Tunney &
Shanks, 2003) (Tunney, 2005) reported that the resolution
of confidence is higher when confidence is reported with a
dichotomic scale than when using a continuous scale. In
contrast, Dienes (2007) found very small differences in the
resolution of confidence for six different confidence scales
(with a slightly worst resolution when confidence was
reported with numerical categories). Confidence judgments
may also differ depending on the time at which they are soli-
cited. For instance, higher overconfidence is observed if con-
fidence is reported after each decision rather than after the
test is completed (Gigerenzer et al., 1991). These studies
are somehow orthogonal to what was investigated here,
focusing on a single task and inquiring about different
ways of conveying confidence. More studies are needed to
clarify whether confidence bias is a truly stable individual
property that will surface regardless of how confidence is
measured.
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