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Abstract7

The accuracy with which humans can detect small chromatic differences varies through-8

out color space. For example, we are far more precise when discriminating two similar9

orange stimuli than two similar green stimuli. In order for two colors to be perceived as10

different, the neurons representing chromatic information must respond differently, and the11

difference must be larger than the trial-to-trial variability of the response to each separate12

color. Photoreceptors constitute the first stage in the processing of color information; many13

more stages are required before humans can consciously report whether two stimuli are14

perceived as chromatically distinguishable or not. Therefore, although photoreceptor ab-15

sorption curves are expected to influence the accuracy of conscious discriminability, there16

is no reason to believe that they should suffice to explain it. Here we develop information-17

theoretical tools based on the Fisher metric that demonstrate that photoreceptor absorption18

properties explain ≈ 87% of the variance of human color discrimination ability, as tested19

by previous behavioral experiments. In the context of this theory, the bottleneck in chro-20

matic information processing is determined by photoreceptor absorption characteristics.21

Subsequent encoding stages modify only marginally the chromatic discriminability at the22

photoreceptor level.23

1 Introduction24

Perception is the subjective experience that results from the entire brain, not just photoreceptors.25

Color discrimination tasks rely on the ability to detect small differences in the activity of higher26

brain areas when two stimuli of similar chromatic composition are presented. Human color27

discrimination ability has been measured by several authors with behavioral experiments first28

performed by Wright and Pitt (1934). In these studies, a bipartite field was presented to a29
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human subject. One half of the field, here called the reference field, was illuminated by a30

monochromatic beam, constructed by filtering a broad-band light source. The second half, the31

test field, was also monochromatic, and its wavelength was controlled by the observer. Initially,32

the two beams had the same wavelength and luminosity. The observer was instructed to displace33

the wavelength of the test field, until the first noticeable difference in hue was perceived. At34

this point, the difference ∆λ between the reference and test wavelengths was calculated. This35

difference constitutes the discrimination error, that is, the interval in wavelengths below which36

the two colors cannot be perceptually discriminated. The discrimination error was reported to be37

a W-shaped function of wavelength, as displayed in Fig.1A (Wright and Pitt 1934; Pokorny and38

Smith, 1970). Different curves correspond to different subjects. For all subjects, discrimination

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Previous experimental results of human color discrimination ability. A: Discrim-

ination error ∆λ as a function of the wavelength λ of the reference beam, measured in behav-

ioral experiments for 9 different subjects. All subjects exhibit a local maximum at λ ≈ 550

nm. Subjects are separated in 3 groups, depending on the shape of the curve at λ ≈ 450 nm.

Top: Subjects exhibiting a local maximum. Middle: Subjects exhibiting a shoulder. Bottom:

Subjects with monotonically decreasing errors. Data from Wright and Pitt (1934) and Pokorny

and Smith (1970). B: MacAdam ellipses (MacAdam 1942) in the CIE 1931 xy chromaticity

diagram, reporting the region in color space that is confounded with the center. As customary,

each ellipse is enlarged 10 times in each dimension for better visualization.

39

errors were large towards the two borders of the visible spectrum, and at around 550 nm, roughly40

at the center of the visible spectrum where luminosity sensitivity is maximal (Sharpe et al.41

2005). At short wavelengths, the data show some variability across subjects. We have therefore42

separated the 9 curves into 3 groups (displayed in different panels), depending on whether the43

discrimination error exhibited an additional maximum at approximately 450 nm (top panel),44

only a shoulder (middle panel), or a monotonic behavior (bottom panel).45

In 1942, David MacAdam (1942) broadened these discriminability experiments testing the46

ability to distinguish any two neighboring points in the entire color space, not just the subset of47

light beams composed of a single wavelength. The concept of color, in fact, cannot be restricted48
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to wavelength. Blends of wavelengths produce a new chromatic sensation that emerges exclu-49

sively from the mixture, the hue of which differs from the hues of the individual components. In50

order to test human chromatic discrimination ability in the entire color space, MacAdam mea-51

sured ellipses in the CIE 1931 xy chromaticity diagram, here shown in Fig. 1B. Points in this52

space represent hue and saturation, and are independent of the total luminosity. Each ellipse in53

the diagram indicates the area in color space (multiplied by 10, for better visualization) inside54

which two different stimuli cannot be discriminated.55

In this study, we test how much of the results in Fig. 1 can be explained from a given noise56

model. The basic assumption is that two colors can be discriminated when the trial-to-trial57

variability of their neural representations is smaller than the difference of the corresponding58

means. The discriminability d′ of two colors is proportional to the square root of the Fisher59

information (Seung and Sompolinsky, 1993). The Fisher information, in turn, introduces a60

notion of distance in color space. Hence, our working hypothesis is that two colors become61

distinguishable when the Fisher distance between them is larger than a given fixed minimum:62

the detection threshold.63

Fisher Information has been successfully used as a tool to disclose computational strategies64

in the nervous system for decades (see for example Abbot and Dayan 1999, Dayan and Abbot65

2001, Brunel and Nadal 1998) and continues to be widely employed (Ganguli and Simoncelli66

2014, Wei and Stocker 2015). Within the Fisher framework, two previous studies (Clark and67

Skaff 2009; Zhaoping et al. 2011) have derived the discrimination accuracy expected by an ideal68

observer that only has access to the number of photons absorbed by the three types of cones.69

Both studies were restricted to light beams composed of a single wavelength, and succeeded70

in explaining the W-shaped function of Fig. 1A. Our starting point is the work of Zhaoping et71

al. (2011). We first express the main result of their work in terms of an analytical expression72

for the discrimination error. We use the theory to speculate how putative tetrachromat subjects73

perceive the chromatic space. In the case of trichromats, we interpret the subject-to-subject74

variations in Fig. 1A as resulting from the reported variability in the composition of the human75

retina. More importantly, we derive new information-theoretical tools that expand the analysis76

to the entire chromatic space, beyond monochromatic light beams. By considering mixtures77

of wavelengths, we provide a theoretical framework to also explain Fig. 1B. By focusing our78

attention on the curved border of the chromatic space of Fig. 1B, we also recover the previous79

result with monochromatic light beams of Fig. 1A.80

Our analysis concludes that 87% of the variance of MacAdam’s data can be explained by81

properties of photoreceptors alone. Discrimination errors reported in behavioral experiments82

are the result of the entire chain of hue-dependent computations intervening in chromatic per-83

ception. Therefore, the agreement between experiment and theory implies that the bottleneck84

in chromatic information processing seems to be mainly determined by photoreceptor activity.85

Subsequent encoding stages either operate optimally or, if they do not, loose information in a86

color-independent manner.87
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2 Representations of color space88

Color is the subjective sensation that results when a light beam of spectrum I(λ ) impinges the89

eye. The set of all possible spectra has infinite dimension, since for a continuum of wavelengths90

λ the intensity I(λ ) can vary arbitrarily. The human visual system, however, is insensitive to91

most of these dimensions. Classical behavioral color-matching experiments demonstrated that92

for most observers, three monochromatic light sources, conveniently mixed, suffice to repro-93

duce all visible colors. Therefore, the human visual system projects the space of all possible94

spectra on a 3-dimensional subspace. All spectra sharing the same projection are metamers,95

that is, are perceived as indistinguishable. To represent colors as 3-dimensional vectors, here96

we use the coordinates (X ,Y,Z) defined in the CIE 1931 (Appendix A1). When two color vec-97

tors (X1,Y1,Z1) and (X2,Y2,Z2) only differ in their length (they are proportional to one another),98

they share the same hue and saturation, and can only be distinguished by their luminosity. In99

some applications, it is desirable to discard the luminosity dimension, and only retain the two100

remaining features. The CIE 1931 meeting also established a convention to carry out this re-101

duction, by transforming the coordinates (X ,Y,Z) into a new set of coordinates (x,y,Y ) defined102

by103

x = X
X+Y+Z

, y = Y
X+Y+Z

, Y = Y. (1)

The components x and y do not vary if X ,Y and Z are all multiplied by the same factor, so x and104

y no longer contain the luminosity dimension. The variable Y is associated with the sensation of105

brightness, since for monochromatic spectra, the wavelength dependence of Y closely resembles106

the apparent luminosity curve (Sharpe et al, 2005). MacAdam’s experiment was reported in CIE107

xy chromatic space (Fig. 1).108

3 Statistics of the photon shower109

For monochromatic light sources of mean intensity I and wavelength λ , the probability P(
−→
K |λ )110

that
−→
K = (KS,KM,KL) photons are absorbed by S,M and L cones is (Appendix A2)111

P[
−→
K |λ ] = ∏

i∈{S,M,L}

Poisson[Ki|Iqi(λ )], (2)

where Poisson(x|y) represents a Poisson distribution of the random variable x with mean y,112

qi(λ ) = βihi(λ ), the functions hi(λ ) are the spectral sensitivities of cones of type i illustrated113

in Fig. 2, and the parameters βi are the normalized cross sections associated with each fate of114

the photon. If A0 is the retinal area not covered by cones,115

βi =
WiAi

A0 +∑ j∈{S,M,L}W jA j
for i ∈ {S,M,L}, β0 =

A0

A0 +∑ j∈{S,M,L}W jA j
(3)

where Wi is the number of photoreceptors of type i, and Ai is the cross section of each cone.116
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Figure 2: Quantal cone fundamentals for S (blue), M (green) and L (red) cones, and their

analytic approximations. Thin lines: Data from Stockman and Brainard (2009). Thick lines:

fitted equation hi(λ ) = exp[−(λ −λi)
2/σ2

i ] with λS = 442.1 nm, λM = 542.8 nm, λL = 568.2
nm, σS = 32.96 nm, σM = 52.8 nm, and σL = 64.76 nm.

The light source is now assumed to have an arbitrary spectrum I(λ ). Defining the coeffi-117

cients118

αi =
∫

I(λ ) qi(λ ) dλ , for i ∈ {S,M,L}, (4)

we show in Appendix A2 that119

P[
−→
K |I(λ )] = ∏

ℓ∈{S,M,L}

Poisson(Ki|αi). (5)

As expected, Eq. 5 reduces to Eq. 2 when the spectrum I(λ ) represents a monochromatic source,120

that is, for I(λ ) = I δ (λ −λ0).121

4 The geometry of color space122

In simple discrimination experiments, the perceptual properties of color are contained in the123

number of photons absorbed by S, M and L cones. The probability that S, M or L cones absorb124

KS, KM and KL photons, respectively, depends on the properties of the impinging light beam.125

Here we consider two types of experiments: Monochromatic beams of fixed intensity and vary-126

ing wavelength, and light sources composed of arbitrary spectra. In the first case the light beam127

is characterized by the wavelength λ , and in the second case, by the vector (αS,αM,αL). Dis-128

tances in color space—in λ space, or in (αS,αM,αL) space—are defined by the effect on the129

number of absorbed photons
−→
K caused by changes in the composition of the light source. The130

Fisher information J is a metric tensor (Appendix A3) that defines scalar products and dis-131

tances in color space. In the monochromatic case, since λ is a 1-dimensional parameter, the132

Fisher tensor reduces to the scalar133

J(λ ) =−

〈

∂ 2

∂λ 2
lnP

(

−→
K |λ

)

〉

P
(−→

K |λ
)

, (6)
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where the angular brackets indicate average with respect to the indicated distribution. In the case134

of arbitrary mixtures of wavelengths, J is a tensor represented by a 3×3 matrix. In coordinates135

−→α = (αS,αM,αL) its components are136

Ji j =−

〈

∂ 2

∂αi∂α j

lnP
(

−→
K |−→α

)

〉

P
(−→

K |
−→α
)

. (7)

The Cramér-Rao bound relates the Fisher tensor to the accuracy with which the random137

vector
−→
K can be used to estimate the coordinates of color space. Formally, this means that138

the mean quadratic error of any unbiased estimator of the wavelength λ or the coordinates139

(αS,αM,αL) from the absorbed photons
−→
K is bounded from below (Appendix A3).140

Metric tensors define scalar products. In Fig. 3A we see how such products operate in the

Figure 3: Scalar products in the space of parameters. A: The Fisher information metric

tensor defines scalar products between two vectors −→α a
and −→α b

with common origin at location
−→α (Eq. 8). B: The set of all vectors at a constant distance from location −→α defines an ellipsoid,

whose principal axes are displayed with dashed lines.

141

parameter space. The scalar product between two vectors −→α a
and −→α b

is142

〈−→α a,−→α b〉= (−→α a)T J(−→α ) −→α b, (8)

where the supra-script T represents vector transposition. The length of a vector −→α a
originated143

at −→α is then144

∣

∣

−→α a
∣

∣=
√

〈−→α a,−→α a〉=
√

(−→α a)T J(−→α ) −→α a. (9)

Equation 9 implies that the set of vectors at a constant distance of a certain −→α is a conic. Since145

the eigenvalues of the Fisher tensor are always non-negative, the conic is an ellipsoid (Fig. 3B).146

The directions of the principal axes of the ellipse are the eigenvectors of J(−→α ), which are also147

the eigenvectors of [J(−→α )]−1. The lengths of those axes are proportional to the inverse of the148

square root of the corresponding eigenvalues of J(−→α ), or equivalently, to the square root of the149

eigenvalues of [J(−→α )]−1. Since J depends on −→α , the size, excentricity and orientation of the150

ellipse may well vary from point to point.151

In Fig. 1B, the CIE 1931 xy chromatic space has coordinates (x,y). Each ellipse measured152

by MacAdam represents the set of points in color space where the first detectable chromatic153

difference with the point at the center is perceived. The ellipses represent the points at dis-154

tance δ from the center, where δ is the detection threshold. In this paper we aim at evaluating155
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up to which point the ellipses measured by MacAdam can be derived from the properties of156

photoreceptors.157

We now consider two different coordinate systems −→α and −→α ′
to represent colors. Let

−→
F be158

the vectorial function involved in the mapping between them:159

−→α ′ =
−→
F (−→α ). (10)

The matrix representation of the Fisher tensor transforms as (Appendix A3)160

J(−→α ) =CT J′(−→α ′) C, (11)

with C defined by the Jacobian matrix161

C =









∂F1

∂α1
. . . ∂F1

∂αd
...

...
∂Fd

∂α1
. . . ∂Fd

∂αd









. (12)

5 Discrimination of two similar wavelengths162

For a monochromatic light beam of fixed intensity I, Eq. 2 establishes a probabilistic mapping163

between each wavelength λ and the vector
−→
K . The components KS,KM and KL are converted164

to electrical signals by photoreceptors, and then processed by the rest of the brain. From the165

information-theoretic point of view, the data processing inequality (Amari and Nagaoka, 2000)166

ensures that the chromatic information encoded in later processing stages cannot exceed the167

amount of chromatic information contained in
−→
K . A conscious subject, therefore, cannot have168

better discrimination ability than that of an optimal estimator inferring the wavelength λ from169

photoreceptor activity, that is, from
−→
K . The optimal estimator is usually referred to as the170

ideal observer. The Cramér-Rao bound in this case reduces to its 1-dimensional form (Cramér,171

1946), ∆λ ≥ 1/
√

J(λ ), implying that the minimal error of the ideal observer is the inverse of172

the square root of the Fisher information J(λ ).173

Throughout the paper, spectral sensitivity curves were taken from the cone fundamentals174

reported by Stockman and Brainard (2009). In order to work with differentiable functions, the175

experimental curves were approximated by functions hi(λ ) = exp[−(λ −λi)
2/σ2

i ], with fitting176

parameters λi and σi, coinciding with the position of the peak and the width of the data. Both177

the original and the fitted curves are displayed in Fig. 2 (fitted parameters in the figure caption).178

Using this approximation, we insert Eq. 2 in Eq. 7 and get179

J(λ ) = I ∑
i∈{S,M,L}

[q′i(λ )]
2

qi(λ )
= 4I ∑

i∈{S,M,L}

(λ −λi)
2

σ4
i

e−(λ−λi)
2/σ2

i . (13)

The formal expression of Eq. 13 was derived by Dayan and Abbot (2001), and was first applied180

to the chromatic context by Zhaoping et al (2011). Here we provide the analytical expression at181
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the right of Eq. 13. Note that the amount of Fisher information is proportional to the intensity182

of the light source, in Eq. 13 represented by the mean number of photons I.183

In Fig. 4, we display the minimal estimation error ∆λ = 1/
√

J(λ ) obtained with Eq. 13, for

Figure 4: Minimal discrimination error ∆λ as a function of the reference wavelength λ ,

obtained from Eq. 13. Different curves correspond to different proportions of S (blue), M

(green) and L (red) cones, as indicated in the legends. For all wavelengths, the mean number of

photons was taken as I = 1000.

184

subjects whose retinas contain different proportions of S, M and L cones. To draw the figure,185

we set the mean number of photons to 1000, in order to match the experimental conditions,186

where weak photopic illumination was employed. The shapes of the theoretical curves are187

qualitatively similar to the ones measured experimentally (Fig. 1A).188

Previous studies have shown that there is substantial subject-to-subject variation in the pro-189

portions of different types of cones (Hofer et al. 2005). The variability in cone distribution190

suffices to explain the different types of behavioral results. Specifically, a shoulder appears in191

the short-wavelength region only for subjects whose proportion of S cones exceeds 2%, whereas192

a full local maximum requires βS ≥ 5%. The larger the proportion of S-cones, the higher the193

peak at ∼ 450 nm.194

The variability in the proportion of S-cones is the crucial factor determining the shape of195

∆λ . Humans also display a remarkable variability in the relative proportion of M and L cones196

(Roorda and Williams 1999), involved in Eq. 13 through the factors βM and βL. However, as197

long as the total amount βM +βL remains constant, relative variations do not modify the shape198

of the curve. The cone fundamentals of M and L cones are close to each other, so varying the199

relative proportion βM/βL produces a negligible effect in ∆λ .200

The theoretical framework developed here can also be used to predict the wavelength depen-201

dence of discrimination in observers that are not available for experimentation, either for their202

rarity, or for their non-human nature. Figure 5 displays the minimal discrimination errors in203

fortunate subjects endowed with 4 different types of cones. In panel A, bird vision is discussed.204

Absorption curves are approximately equidistant from each other (Hart et al. 2000) giving rise205

to accurate color discrimination abilities that extend further into the ultraviolet spectrum. Four206
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Figure 5: Minimal discrimination error ∆λ as a function of wavelength λ , obtained from a

generalization of Eq. 13 that considers 4 different types of cones. A. Top: Absorption curves

of estrilid finch (Hart et al. 2000) with local maxima at wavelengths λi = 368,445,508,565 nm,

and widths σi = 38.58,38.44,52.87,65.8 nm, respectively. Bottom: Predicted discrimination

error, with mean number of photons set to 1000. Parameters βi are set to 0.25 for all cones. B.

Top: Putative cone fundamentals of a human tetrachromat (Jordan et al. 2010). The additional

curve (in yellow) peaks at λy = 555 nm, and has width σy = 38.51 nm. Bottom: Predicted

discrimination error, with mean number of photons set to 1000. Parameters βi are set to 5%,

31.33%, 31.34% and 31.33% for S,M,Y , and L cones, respectively.

local maxima are visible in ∆λ , accounting for each of the 4 absorption curves.207

In panel B, we display the results for a putative human tetrachromat, for which the extra208

cone is hypothesized to lie between the M and L cones, as anomalous subject cDa29 studied by209

Jordan et al. (2010). In spite of the incorporation of an additional curve, the discrimination abil-210

ity of this subject is similar to that of normal trichromats. The substantial overlap between M211

and L absorption curves of trichromats implies that the addition of one more absorption curve in212

the same wavelength region makes virtually no difference. This does not mean that the putative213

tetrachromat of Fig. 5B perceives the same color space as trichromats, since the present dis-214

cussion is restricted to the discrimination of neighboring monochromatic beams. Color space215

also includes mixtures of wavelengths (see below), and some mixtures, for example the pur-216

ples obtained by mixing red and blue, are not metameric with any single monochromatic beam.217

Tetrachromats may perceive many more mixtures that cannot be mapped on the trichromat color218

space. Our analysis predicts, however, that their ability to discriminate neighboring monochro-219

matic beams remains essentially unaltered.220

5.1 Discrimination of spectra composed of mixtures of wavelengths221

To extend the previous analysis to the entire color space, the Fisher information should be222

written as a function of coordinates that describe the chromatic composition of an arbitrary223
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beam I(λ ). Equation 5 implies that the probability distribution of the absorbed photons
−→
K224

is blind to all aspects of the spectrum I(λ ) not contained in the vector −→α defined in Eq. 4.225

Replacing Eq. 5 in 7, we get226

J (−→α ) =







1
αS

0 0

0 1
αM

0

0 0 1
αL






. (14)

The metric tensor is diagonal, so the ellipsoids defining the points at constant distance of a227

given parameter −→α have their principal axes aligned with the coordinate axes. The square root228

of the inverse of J (−→α ) defines an ellipsoid around each color −→α where all points are at the same229

distance from the central point −→α (Fig. 6).

Figure 6: Ellipsoids indicating the regions of space −→α lying at a fixed distance of each

central point.

230

In order to compare with experimental data, we need to transform the metric tensor of231

Eq. 14 from the parameter space −→α to the CIE 1931 xy chromatic space where MacAdam232

reported the minimal discriminable ellipses. We perform the transformation in two steps. First,233

we change from (αS,αM,αL) to (X ,Y,Z), and then from (X ,Y,Z) to the triplet (x,y,Y ). So far,234

the two transformations are invertible. Once we have the Fisher matrix in the space xyY , we235

take the submatrix associated to the components xy alone, in order to compare with MacAdam’s236

experiment.237

Each of the two transformations involves a C-matrix defined in Eq. 12. If we call C1 the238

matrix of the first transformation, and C2 the one of the second, the two concatenated transfor-239

mations are implemented by a matrix C =C1C2. To calculate C1 we analyze the way the color240

matching functions transform, when passing from (αS, αM,αL) to (X ,Y,Z). By fitting a linear241

transformation between the two, we deduce that242





αS

αM

αL



=C1





X

Y

Z



 , with C1 =





0.038βS −0.043βS 0.48βS

−0.39βM 1.17βM 0.049βM

0.34βL 0.69βL −0.076βL



 .

To calculate C2, we invert Eq. 1 and find243

X = Y x/y Y = Y Z = Y (1− x− y)/y.
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Using Eq. 12, we obtain244

C2 =















Y
y

− xY
y2

x
y

0 0 1

−Y
y

−Y (1−x)
y2

1−x−y
y















.

With the resulting matrix C = C1C2, we calculate the Fisher tensor in space xyY , and then245

focus on the submatrix corresponding to the first two components. All the coefficients of the246

obtained 2× 2 submatrix are proportional to the luminosity variable Y . Hence, the lengths of247

the principal axes of the ellipses defining the equidistant colors are proportional to Y−1/2, and248

the area is proportional to 1/Y . Other than this scaling factor, the luminosity variable has no249

additional effect. Since all other variables appearing in the Fisher tensor are adimensional, the250

units with which we measure distances in the xy space are [Y ]−1/2. Here we use MacAdam’s251

unit of color difference (Wyszecki and Stiles 2000), implying that the distance between each252

central point and the ellipse measured by MacAdam is unity. In this system, the coordinate Y is253

adimensional.254

In Fig. 7 the ellipses at distance 1 from 31 center points are displayed. In A, βS is varied

Figure 7: Ellipses obtained by transforming the ellipsoids in Fig. 6. xy CIE chromatic co-

ordinates represented by the horizontal and vertical axes, respectively. A: Dependence of el-

lipses on parameters βS and Y . We set βM = βL = (1− βS)/2. B: Dependence of ellipses

on retinal composition, for Y = 2 × 105. The triangle represents the accessible area of the

space (βS,βM,βL). Indicated panels correspond to
−→
β = (βS,βM,βL) = (0.8,0.1,0.1) (top),

(0.45,0.1,0.45),(0.1,0.1,0.8),(0.1,0.45,0.45),(0.1,0.8,0.1) and (0.45,0.45,0.1) as we rotate

clockwise. As customary, ellipses are enlarged 10 times in each dimension for better visualiza-

tion.

255

within the physiological range. As βS increases (from left to right) the ellipses become smaller,256
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and more compressed along the direction (1,−1). Increasing the value of Y (from top to bottom)257

shrinks the ellipses.258

In B, we display the ellipses for several retinal compositions, without restricting the values259

of βi to the realistic range. In this context, any set of (βS,βM,βL) defines a possible retina, as260

long as all βi are positive, and the three of them sum up to unity. In the space of possible
−→
β261

vectors, these conditions define the triangle illustrated in Fig. 7B. As we move along the bottom262

border of the triangle, we confirm that the relative proportion of βM and βL does not change the263

ellipses qualitatively (three bottom panels). Increasing βS, instead (moving upward) reduces the264

size of the ellipses in the direction (1,1), and augments them along the direction (−1,1). In265

other words, increasing the proportion of βS helps discriminating blue vs. yellow stimuli, but266

has a detrimental effect on the discrimination of red vs. green. The ellipses corresponding to267

the inner area of the triangle smoothly interpolate those at the border.268

In order to compare with MacAdam’s experiment, we need to fit the parameters βS and Y ,269

both kept fixed during the experiment. To do so, we systematically vary βS ∈ (0,0.1) and Y ∈270

(0,106) and compare the theoretical ellipses evaluated at the 25 points measured by MacAdam271

with the 25 experimental ellipses. The optimal parameters are the ones that make both sets of272

ellipses maximally similar. To do so, we need a criterion of similarity between ellipses. Two273

concentric ellipses may differ in their size, their orientation, or their excentricity. In order to274

evaluate the three aspects simultaneously, and to adequately weigh the relevance of each, we275

define the distance between two concentric ellipses as the Kullback-Leibler divergence between276

two Gaussian distributions whose covariance matrices are defined by the tested ellipses. As277

the two distributions become more and more similar, the two ellipses merge into one another,278

implying a simultaneous match between size, elongation and excentricity. Averaging over the279

25 measured points, βS and Y are fitted by minimizing280

D =
1

25

25

∑
i=1

DKL

[

N (ri,Σ
th
i )||N (ri,Σ

e
i )
]

,

where the sum runs over the 25 colors tested by MacAdam, DKL is the Kullback-Leibler diver-281

gence, N (ri, Σ) is a normal bivariate distribution centered at the colors ri where MacAdam282

performed his experiment, and with covariance matrix Σ. The supra-index th represents the the-283

oretical matrix, and e the experimental one. The experimental covariance matrix is constructed284

from the reported ellipses: We calculate the matrix whose eigenvectors are in the directions of285

the principal axes reported by MacAdam, and whose eigenvalues coincide with the lengths of286

the principal axes. The theoretical covariance matrix is the inverse of the Fisher information.287

An analytical form for the Kullback-Leibler divergence for multivariate Gaussian distributions288

is derived in Duchi (2014). When D is employed as a fitting criterion, the goodness-of-fit may289

be defined in terms of an R2-value defined as R2 = 1−D/De, where De is the average Kullback-290

Leibler divergence between all experimental ellipses.291

In Fig. 8A we see the dependence of D with parameters βS and Y . The optimal values are292

βS = 2.1% and Y = 184,000, for which D = 0.36, and R2 = 0.87. In Fig. 8B, we see the model293

is effective in describing the variation of the size, orientation and excentricity of the ellipses294

throughout the chromatic space. More quantitatively, the obtained R2 value implies that the295

theory explains 87% of the variability of the experimental data.296
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Figure 8: Comparison between theory and experiment. A: Distance D between theoretical

and experimental ellipses as a function of parameters βS and Y . The green vertical line indicates

the location of the optimal parameter values βS = 2.1% and Y = 184,000. B: Ellipses measured

by MacAdam (green) compared to the ones derived from our theoretical model (red) for the

optimal parameters. As customary, each ellipse is enlarged 10 times in each dimension for

better visualization.

6 Discussion297

Here we derived a metric in color space from a noise model of the representation of color in298

the brain. Several classical studies have derived the minimal discrimination ellipses from line299

elements (Wyszecki and Stiles, 2000). Those theories used heuristic arguments to propose a300

distance in color space. Not being framed in the Fisher geometry, they do not entail a data301

processing inequality nor a Cramér-Rao bound. The advantage of the Fisher metric is that it302

brings along a rigorous mathematical framework, first, for deriving the metric from a noise303

model, and then, for transforming the metric from one space to another. Given the noise model,304

the Fisher metric is undisputable. Of course, there are many candidate noise models, depending305

on which neuronal processes are described. The confrontation of the derived Fisher ellipses with306

experimental data actually provides a systematic way to evaluate the adequacy of alternative307

noise models.308

Here we offer an attempt to perform such confrontation, using one particular noise model309

based on the sole description of the photon absorption process. We conclude that a simple310

Poisson model of the statistics of photoreceptor absorption account for ≈ 87% of the variance311

of the behavioral results in the xy chromatic space. Our theory also predicts that the minimal312

discrimination error is inversely proportional to the square root of the light intensity, follow-313

ing a Rose-DeVries law, originally reported in contrast discrimination thresholds at low light314

intensities (Rose 1948, DeVries 1943), and later confirmed for chromatic discrimination exper-315

iments (Rovamo et al 2001). Experiments show that this dependence holds in the low-intensity316
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photopic regime, but loses validity as the light intensity becomes larger (Rovamo et al 2001).317

Therefore, additional optic or neural color-dependent processing stages not contained in the318

Poisson photoreceptor model must come into play at high intensities.319

In spite of having neglected all subsequent color processing stages beyond absorption, even320

the voltage variations in the inner segments of photoreceptors, the distances derived from the321

Fisher approach reproduce a large fraction of the experimental variability. The derived ellipses322

are only guaranteed to coincide with the measured discrimination error when the Cramér-Rao323

bound is tight, that is, when further processing stages perform optimally, or at least, they do not324

introduce additional color-dependent distortions. A priori, there is no reason to believe that such325

should be the case. The similarity between the theoretical and the experimental results therefore326

suggests that photon absorption constitutes the crucial stage in the chromatic dependence of327

color processing ability, and it suffices to explain most of the structure observed in experimental328

data. All subsequent processing stages either perform optimally or, if they lose information,329

they do so in a color-independent manner.330

The Cramér-Rao bound of Eq. 26 is only valid for unbiased estimators, a more complex331

formula is required in the biased case (Cover and Thomas, 1991). However, in the presence of332

achromatic backgrounds (as in all experiments explored here), discrimination errors have been333

always reported to have zero mean, so we work under the assumption that the nervous system334

is able to implement at least one unbiased estimator, for which Eq. 26 holds. Different is the335

case where the target and test stimuli are presented against a chromatic background, where336

subjects have been reported to bias their estimation of the target stimulus away from the hue of337

the background (see for example Klaue and Wachtler 2015). In such cases, we suspect that the338

more complex form of the Cramér-Rao bound should be employed.339

The Fisher tensor determines the distance between neighboring colors; the distance between340

distant colors must be calculated by adding the infinitesimal distances encountered along a341

specific path. If one of the two colors lies at a border of the chromatic space, the path must342

be entirely contained inside the space. When the path connecting two colors is short, all the343

involved infinitesimal distances are obtained from essentially the same Fisher tensor, since the344

Fisher metric varies smoothly with location. When comparing the theoretical and experimental345

ellipses, we have assumed that the Fisher distance between the central color and the ellipse346

could be calculated with a single Fisher tensor: the one of the center. To assess the validity of347

the approximation, we verified that inside each ellipse the eigenvalues of the theoretical Fisher348

tensor vary at most 1.27 %, and the inclination angle at most 0.97◦ (recall that all depicted349

ellipses have been enlarged 10 times in each dimension, for better visibility).350

We are aware of two other previous studies where chromatic discrimination ability was351

modeled by information-theoretical methods. The first one (Clark and Skaff, 2009) was based352

on stronger assumptions as the ones used here, since the properties of chromatic perception were353

explained in terms of a specific decoding process that takes place (explicitly or implicitly) in the354

visual system. Our work neither supports nor refutes the proposed decoding, we simply show355

that it is not strictly required to explain a large fraction of the variance in human discrimination356

ability. The second study was developed by Zhaoping et al. (2011). Their approach was the357

starting point for the present study. They also discussed how the Fisher metric varies with358
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mean light intensity. Instead here, we have focused on (a) providing an analytical formula359

for the monochromatic case, (b) extending the analysis to the whole chromatic space, and (c)360

discussing the discrimination ability of observers endowed with different retinal compositions.361

Chromatic discrimination ability is limited by the imprecision with which neighboring col-362

ors are represented in the brain. The stochasticity considered here regards the unpredictability363

of the exact proportion of photons captured by S, M and L cones, given that the three absorption364

curves overlap with each other. The variance of Ki is Kqi(1− qi), and is maximal when both365

qi and 1− qi are far from zero. For M and L cones, this condition is met at approximately366

550 nm, where both absorption probabilities are high. Human color discrimination error has a367

local maximum at ≈ 550 nm, roughly coinciding with the wavelength where humans perceive368

maximal luminosity (Sharpe et al. 2005). So far, this coincidence appeared as incidental. An369

analysis of the equations involved in our study, however, reveals that color discrimination abil-370

ity is determined by the derivative of the quantal cone fundamentals: The larger the derivative,371

the larger the value of the Fisher information (Dayan and Abbott, 2001). Since L and M cone372

fundamentals are very similar, and given that the variance is particularly large at ≈ 550 nm,373

the two maxima cannot be separated apart, and discrimination error peaks at a wavelength that374

is approximately the average of the wavelengths where L and M absorption curves reach their375

maxima. The coincidence, hence, is grounded on the mathematical properties of the Fisher376

information. If the number of S cones is large enough, a local maximum in discrimination er-377

ror is also achieved at the wavelength where the S-cone absorption curve peaks, ≈ 450 nm.378

Moreover, the theory also predicts how discrimination ability varies with retinal composition,379

suggesting that the variability in anatomical properties of different observers may account for380

the variability in the experimental data.381

Throughout our work, we have only considered cones, although rod absorption is also mod-382

ulated by wavelength. By a simple extension of our analysis, it is also possible to include rods in383

the evaluation of chromatic discrimination ability. However, since rods and cones have different384

luminosity sensitivity, the comparison with behavioral data should be performed with experi-385

ments where the total light intensity was controlled. The parameters βi scaling the relevance386

of each photoreceptor should also include a factor accounting for the different cross sections of387

rods and cones, and their differential sensitivity depending on the total luminosity. The analysis388

presented here is only valid for photopic illumination conditions (as reported by the experi-389

ments) where rods are assumed to be saturated. Extensions to other models, including rods or390

other optical and neural processes, are possible. Results can be expressed in the classical color391

spaces employed here, through the transformation formulas of Sect. 4.392
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Appendix393

A1: Transformations of the light spectrum leading to representations of394

color395

From the physical point of view, the spectrum I(λ ) provides a complete characterization of396

a light beam. The space of all possible spectra has infinite dimensions. Color matching ex-397

periments performed by Helmholtz and Young proved that by adjusting the intensity of three398

monochromatic sources of fixed wavelengths, human trichromats construct a beam that they399

perceive as visually indistinguishable from a target light source of arbitrary spectrum. Hence,400

the human visual system projects the high-dimensional space of all possible spectra onto three401

dimensions (Fig. 9). When the target light source is monochromatic and has wavelength λ , the

Figure 9: Transformations between different representations of the composition of a light

beam. Top: The most complete representation is the spectrum I(λ ), specifying the energy

density in each wavelength. The space of all possible spectra has infinite dimensions. Middle:

The human visual system can only perceive 3 dimensions. The projection from the space of

spectra to the space of chromatic perceptions is linear (Grassmann’s law). There are many

representations of the 3-dimensional space perceived by humans. One of them is the CIE 1931

XY Z color space (middle bottom). Each spectrum at the top projects to a single point in the

three-dimensional space by means of a non-invertible transformation. Bottom: The CIE 1931

xy chromatic space is a nonlinear transformation of the CIE 1931 XY Z space that eliminates

the luminosity dimension, and only keeps variations in hue and saturation. Each point of the

three-dimensional space maps onto a point in the xy space.

402

three intensities required to construct the mixture define the color matching functions b̄(λ ), ḡ(λ )403

and r̄(λ ), whose functional shape depends on the wavelengths of the three sources than com-404

prise the mixture. The matching operation is linear, implying that the visual appearance of an405

arbitrary spectrum I(λ ) is governed by three numbers, defined as406

B =
∫

I(λ )b̄(λ ) dλ , G =
∫

I(λ )ḡ(λ ) dλ , R =
∫

I(λ )r̄(λ ) dλ . (15)
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If the wavelengths of the three fixed light sources are varied, the shape of the color match-407

ing functions changes. Different (R,G,B) representations have thus appeared, depending on408

the chosen wavelengths. In fact, any invertible linear transformation of one set of coordinates409

(R,G,B) yields a new set of coordinates (R′,G′,B′) equally valid, represented in Fig. 9 as one410

of the coordinate systems in the middle column. The new coordinates can also be obtained from411

integrals like Eq. 15, but with new functions b̄′(λ ), ḡ′(λ ), r̄′(λ ), derived from a linear transfor-412

mation of the old functions. In 1931, the International Commission on Illumination (CIE, for413

its initial in French) selected a particular set of coordinates (X ,Y,Z), associated with specific414

color matching functions usually notated as x̄(λ ), ȳ(λ ), z̄(λ ) (Wyszecki and Stiles, 2000).415

A2: Poisson absorption models416

In this appendix, we derive Eqs. 2 and 5. Repeated use is made of the formulas417

Binomial : (a+b)n =
n

∑
j=0

n!

j!(n− j)!
a j bn− j; Multinomial :

(

k

∑
i=1

ai

)n

= n! ∑
j1,..., jk

k

∏
ℓ=1

a
jℓ
ℓ

jℓ!
,

where the sum of the multinomial theorem runs over all sets of integers { j1, . . . , jk} fulfilling418

the conditions 0 ≤ jℓ ≤ n and n = j1 + . . .+ jk.419

Monochromatic light source of fixed intensity420

When a photon of wavelength λ impinges on the retina under central photopic illumination421

conditions, four outcomes are possible: The photon may be detected by a cone of type S, M422

or L, or it may pass undetected. The probability of each outcome depends on the fraction of423

S, M and L cones that tile the retina and on the probability that each cone absorbs a photon424

of wavelength λ , also called the spectral sensitivity of each cone. Once these parameters are425

known, from the statistical point of view, illuminating the retina with I0 photons of wavelength426

λ is equivalent to randomly distributing I0 balls into 4 boxes whose cross sections depend on427

the wavelength λ . The probability that NS,NM and NL fall on S,M and L-cones respectively,428

and that N0 do not fall on cones is429

P(
−→
N |I0) = I0! ∏

i∈{S,M,L,0}

β Ni

i

Ni!
, (16)

where
−→
N = (NS,NM,NL). The components NS,NM,NL,N0 are not all independent, since they430

must sum up to I0. Therefore, N0 is a shorthand notation for N0 = I0 −NS −NM −NL.431

When Ni photons reach a cone of type i, the probability that Ki of them are absorbed is a432

binomial distribution with absorption probability hi(λ ) (Fig.2),433

P(Ki|Ni) =
Ni!

Ki!(Ni −Ki)!
hi(λ )

Ki [1−hi(λ )]
Ni−Ki, for i ∈ {S,M,L}. (17)
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When these two processes are coupled sequentially, the fate of each photon is decided through434

the processes depicted in Fig. 10. The probability that KS,KM,KL photons are absorbed by

Figure 10: I0 photons of wavelength λ fall on S, M or L cones (colored boxes), or miss cones

altogether (black box). Each of the Ni photons that fall on cones of type i may either be absorbed

(and become one of the Ki photons absorbed by a photoreceptor of type i), or pass unabsorbed

(and become one of the ∆i photons not absorbed by a cone of type i). The total number of

photons absorbed by a cone of type i is Ki = Ni −∆i, and the number of photons that remain

unabsorbed is K0 = N0 +∆S +∆M +∆L. The process that transforms the K impinging photons

into (NS,NM,NL,N0) is governed by the multinomial distribution of Eq. 16, and the one that

transforms Ni into Ki, by the binomial of Eq. 17.

435

cones S,M,L and that K0 pass undetected is436

P(
−→
K |I0,λ ) = ∑

N>K

P(
−→
N |I0,λ ) ∏

i∈{S,M,L}

P(Ki|Ni), (18)

where the sum ranges over all vectors
−→
N =(NS,NM,NL) that fulfill the conditions NS ≥KS,NM ≥437

KM,NL ≥ KL and NS +NM +NL ≤ I0. Replacing Eqs. 16 and 17 in Eq. 18, defining the scaled438

absorption probabilities qi(λ ) = βihi(λ ), for i ∈ {S,M,L}, and q0(λ ) = 1− qS(λ )− qM(λ )−439

qL(λ ) and the the numbers ∆S,∆M and ∆L of lost photons (see Fig. 10)440

∆S = NS −KS, ∆M = NM −KM, ∆L = NL −KL,

we get, after some algebraic manipulations,441

P(
−→
K |I0,λ ) = I0! ∏

i∈{S,M,L,0}

qi(λ )
Ki

Ki!
. (19)

The derivation involved the use of the binomial theorem three times. The composition of the442

multinomial process of Eq. 16 and the binomial of Eq. 17 yields another multinomial distribu-443

tion governed by the scaled absorption probabilities, combining the parameters governing the444

two processes in play. In Eq. 19, the variables KS,KM and KL are not independent, since the445

distribution also includes a factor that depends on K0 = I0 −KS −KM −KL.446
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Monochromatic light source of variable intensity447

If the total number of photons I0 of wavelength λ is a stochastic variable governed by a Poisson448

distribution of mean I449

P[I0|I] = e−I II0

I0!
, (20)

then the probability of the absorbed photons is450

P[
−→
K |λ , I] =

+∞

∑
I0=0

P(
−→
K |I0,λ ) P[I0|I]. (21)

Replacing Eq. 19 and 20 in Eq. 21, and after some algebraic manipulations, we arrive at Eq. 2.451

A light source with variable intensity, hence, gives rise to absorbed photon counts KS,KM,KL452

that are independent from one another.453

Light sources of arbitrary spectrum454

We now consider a light source composed of photons of r different wavelengths λ j, where j455

ranges between 1 and r. The mean number of photons of the different wavelengths defines an r-456

dimensional vector
−→
I = (I(λ1), . . . , I(λr)). There are many ways in which S cones can absorb457

KS photons: All the KS photons may have the same wavelength λ1, half of them may have458

wavelength λ1 and the other half wavelength λ2, etc. Here we consider all the possibilities. We459

define G
j
S as the number of photons of wavelength λ j absorbed by cones S, and arrange these460

numbers in r-dimensional vectors461

GS = (G1
S, . . . ,G

r
S), GM = (G1

M, . . . ,Gr
M), GL = (G1

L, . . . ,G
r
L).

If the total numbers of absorbed photons are KS,KM and KL, the components of the three vectors462

defined above must sum up to these values, that is,463

∑r
j=1 G

j
S = KS, ∑r

j=1 G
j
M = KM, ∑r

j=1 G
j
L = KL. (22)

We call US, UM and UL the sets of all vectors GS, GM and GL whose components are non-464

negative integers fulfilling Eqs. 22. Mathematically, for i ∈ {S,M,L},465

Ui = {Gi/G
j
i ≥ 0 ∀ j &

r

∑
j=1

G
j
i = Ki},

The probability of cones S,M and L of absorbing
−→
K photons can be written in terms of the sum466

of all possible spectral compositions of the absorbed photons, namely,467

P(
−→
K |~I ) = ∑

GS∈US

∑
GM∈UM

∑
GL∈UL

r

∏
j=1

P[G
j
S,G

j
M,G

j
L|I(λ j)], (23)

where the probability P[G
j
S,G

j
M,G

j
L|I(λ j)] in the right-hand side of Eq. 23 is the same as the468

one of Eq. 2, but is now evaluated in a G-vector (as opposed to a K-vector). The sums represent469

the fact that many combination of wavelengths may contribute to the same
−→
K .470
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Replacing Eq. 2 in Eq. 23, and using the multinomial theorem, we get471

P(
−→
K |~I) = ∏

ℓ∈{S,M,L}

exp [−∑r
i=1 I(λi)qℓ(λi)]

Kℓ!

[

r

∑
j=1

I(λ j)qℓ(λ j)

]Kℓ

. (24)

Defining the coordinates (αS,αM,αL)472

αi =
r

∑
j=1

I(λ j)qi(λ j), for i ∈ {S,M,L}, (25)

Eq. 24 yields Eq. 5. If the spectrum contains a continuum of wavelengths λ with mean spectral473

energy I(λ ), the calculations performed here remain unchanged, except for the fact that the474

coefficients αi must be defined in terms of integrals (compare Eq. 4 and 25).475

A3: The Fisher geometry476

Here, the properties of the light beam that are relevant to color discrimination are represented by477

a vector of parameters −→α = (α1, . . . ,αd). In this appendix, the parameter −→α is not necessarily478

defined by Eqs. 4. For example, when applied to experiments performed with monochromatic479

beams, we can take d = 1, and −→α equal to the wavelength λ (or equivalently, any invertible480

function of the wavelength). In the case of mixtures, we may take d = 3, and −→α defined by481

Eqs. 4, or equivalently, as −→α = (X ,Y,Z). We may also consider d = 2 and −→α = (x,y).482

If the probability distribution of a random variable
−→
K depends on the parameter −→α , a notion483

of distance can be defined in the −→α space, quantifying the effect of changing −→α on P(
−→
K |−→α ).484

It may well be the case that in certain regions of the −→α space, a displacement of the parameter485

in a certain amount d−→α changes the distribution P(
−→
K |−→α ) radically, whereas in other regions486

the same displacement hardly has an effect. In these circumstances, distances in the −→α space487

vary from point to point: The same displacement d−→α corresponds to a large distance in the488

first case, and to small one in the second. The Fisher information introduced in Eq. 7 defines489

a metric tensor that gives rise to a notion of distance in parameter space: the length of a vector490

is given by Eq. 9, and the distance between two neighboring vectors −→α a
and −→α b

is the length491

of −→α a −−→α b
. The Cramér-Rao bound relates the Fisher tensor to the accuracy with which the492

random variable
−→
K can be used to estimate the parameter −→α . If the Fisher information is large,493

sampling
−→
K can provide a good estimate of −→α , if an efficient decoding procedure is used. A494

low Fisher information, in contrast, implies that P(
−→
K |−→α ) hardly varies with −→α and therefore,495

it is impossible to make (on average) a good guess of the value of −→α by sampling
−→
K , not even496

with an optimal decoding procedure. Formally, this means that the mean quadratic error of any497

unbiased estimator −̂→α (
−→
K ) of the parameter −→α is bounded from below. We define the mean498

quadratic error as a d ×d matrix E, with elements499

Ei j(
−→α ) =

〈[

α̂i(
−→
K )−αi

]

[

α̂ j(x)−α j

]

〉

P
(−→

K |
−→α
) .

The Cramér-Rao bound states that500

E(−→α ) · J(−→α )≥ 1, (26)
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where 1 is the identity matrix, and the inequality implies that all the eigenvalues of the matrix501

E · J cannot be smaller than unity. The Cramér-Rao bound of Eq. 26 can also be expressed502

as E ≥ J−1. Therefore, J−1 is the minimal mean quadratic estimation error. The larger the503

information, the smaller the error, and vice versa. The bound expressed in Eq. 26 is only valid504

for unbiased estimators, a more complex formula is required in the biased case (Cover and505

Thomas, 1991).506

In Sect. 2, several representations of the composition of a light beam were introduced. One507

may, for example, represent the light beam with the spectrum I(λ ), or with specific coordinates508

RGB, or with the CIE 1931 XY Z, or the reduced xy. Assume that new coordinates −→α ′
are defined509

from old coordinates −→α by means of a transformation
−→
F (see Eq. 10). If the elements of the510

Fisher information matrix for the representation −→α are known, one may calculate their value in511

the representation
−→
α ′. The transformation must be such as to preserve scalar products. If −→α a

512

and −→α b
are two infinitesimal displacements from the vector −→α , the transformed infinitesimal513

displacements −→α ′a
and −→α ′b

are defined from the first order expansion of
−→
F ,514

−→
F (−→α +−→α a) ≈

−→
F (−→α )+

[

(−→α a)T−→∇
]

−→
F (−→α )≡−→α ′+−→α ′a

−→
F (−→α +−→α b) ≈

−→
F (−→α )+

[

(−→α b)T−→∇
]

−→
F (−→α )≡−→α ′+−→α ′b

Therefore, −→α ′i =
[

(−→α i)T−→∇
]

−→
F (−→α ), for i ∈ {a,b}. Preserving the scalar product means that515

(−→α a)T J(−→α ) −→α b = (−→α ′a)T J′(−→α ′) −→α ′b.

Since the displacements −→α a
and −→α b

are arbitrary, we arrive at Eqs. 11 and 12. In general, the516

matrix C depends on the parameter −→α . Only if
−→
F is a linear transformation, C reduces to a517

constant matrix.518
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