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We propose the use of a learning procedure to identify regions of similar dynamics in speckle image
sequences that includes more than one descriptor. This procedure is based on the application of a naive
Bayes statistical classifier comprising the use of several descriptors. The class frontiers can be depicted so
that the proportion of identified regions may be measured. To demonstrate the results, assembly of an
RGB image, where each plane (R, G, and B) is associated with a particular region (class), was labeled
according to its biospeckle dynamics. A high brightness in one color means a high probability of the pixel

belonging to the corresponding class, and vice versa.

OCIS codes:  030.6600, 110.6150, 100.4993.

1. Introduction

Dynamic speckle phenomena due to either biological
or industrial samples usually show different beha-
viors when the surface is not homogeneous. Measure-
ments of local activity can be used to recognize and
show regions of similar activity [1] in heterogeneous
samples. Interpretation of the results in terms of the
physical origins that produce the dynamics has only
been solved for a few cases. Doppler shifts and other
time-varying phenomena compete to give rise to a
complex time behavior that is hard to assign to sim-
ple reasons. Classification, identification, and mea-
surement of regions with similar activities are
important both for research and for industrial
applications.
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In the context of the classification of pixels based
on their features, a class is a set of pixels that is
similar (according to a specific criteria) in the feature
space. Each class represents a different area in
the image.

However, this task is not always easy, and some
difficulties appear in classification or grouping in
classes when using only one descriptor.

The time evolution of intensities of each pixel of a
biospeckle I(x,y,t) is a time series presenting a noisy
appearance (see Fig. 1). Several features have been
extracted from these time patterns, taking into ac-
count properties, such as the dynamic range, time-
frequency features, long-term correlation tendencies,
and fractal dimension, among others.

The space behavior of the dynamic speckle pattern
is, in a certain sense, a texture, and so a huge set of
descriptors might be used for its characterization.
Haralick et al. suggest several different texture
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Fig. 1. Pixel intensity over time.

descriptors that have been used to describe speckle
activity, and several others can be added [2].

Generally a single descriptor is not enough to
characterize differences among speckle patterns. In
particular, dealing with biological samples (fungi,
bacteria, apples, corn, grains, fruits, and tissues) is
more difficult than a surface phenomenon like a
paint drying process when it comes to phenomena
characterization.

Different phenomena show different behaviors,
and it is not easy to classify their profiles as belong-
ing to a single class. Several descriptors have been
defined in the literature, for example, spectral bands
[3], Fujii measure [4], wavelet entropies [5], fuzzy
granularity [6], morphological descriptors [7], Hurst
coefficient [8], vortices [9], full width at half-
maximum (FWHM) [10], cumulants [11] and other
descriptors of the autocorrelation function [12],
empirical mode decomposition [13], laser speckle
contrast analysis (LASCA) [14], and dynamic
range [15].

Each one has advantages and shortcomings for the
characterization of different phenomena, some of
which are commented upon next.

Dynamic range is very fast to compute and is in-
sensitive to nonuniform illumination given the con-
dition that the amplitude of the variation in the
pattern is a linear function of the activity.

The Fujii method works in the temporal domain. It
provides a good discrimination among regions if the
image is uniformly illuminated, but the information
that it provides may be misunderstood in regions
with low illumination.

In the LASCA method a local contrast is estimated
that does not require more than single frame with a
carefully chosen integration time. As it requires op-
eration on spatial windows, the spatial resolution is
lower than in other methods. If the spatial windows
do not overlap, a tiled image is generated.

Spectral bands work in the frequency domain, and
their ranges permit discrimination of the activity of
the sample in different frequency ranges. In this
sense this approach is a multiple-descriptor one.
It requires a high number of frames and thus

cannot be applied to characterize nonstationary
phenomena.

Vortices require very few frames (could be as few as
two), and they are useful to characterize low activity,
but it is difficult or impossible to implement it for
higher activity levels.

The Hurst coefficient describes persistent or
long-term correlations and is related to the fractal
dimension. It requires many frames and high compu-
tational cost and cannot be used for nonstationary
phenomena.

Cumulants, obtained from the autocorrelation of
the pixel time history, have a well-defined physical
meaning in terms of Voigt profile, Doppler broaden-
ing, and eventually the Wolff effect. It requires many
frames and is not meaningful for nonstationary
processes [16].

The FWHM of the autocorrelation function has
also been employed [10] and shows similar features
to cumulants.

Empirical mode decomposition demands high com-
putational cost given the iterative process features,
requires many frames, and in some cases assigns
the same values to different types of activity.

In this paper we propose the use of more than one
descriptor considering a priori knowledge and super-
vised learning. It uses known samples (as classified
by an expert) to find the typical behavior of pixels of
each class in order to characterize regions of a sam-
ple with different properties. We use a multivariate
supervised classifier for obtaining an automatic pro-
cess that optimizes decision making. In this case it is
based on the recognition of a color plane, it could be
implemented with a machine vision system, and the
supervised classifier would be tuned for the detection
of events of interest.

As an example we show (a) learning of the behavior
of healthy regions, bruised regions, and inert regions
in a bruised fruit and (b) application in the classifica-
tion of different fruits of the same kind that were not
included as data during the learning procedure.

The aim is then to improve classification, avoiding
confusions between classes, and to identify regions
with similar dynamics.

The classification problem involves the selection of
features, in this case dynamic speckle descriptors, as
well as an adequate classifier. The performance and
some features of the different descriptors are de-
scribed in [17] for morphologic ones and in [15] for
some others.

Given that the phenomenon to be classified, i.e., to
identify regions of similar activity, is highly depen-
dent of the observed specimen, we propose the use
of a supervised classifier. That is a classifier trained
by using known behaviors. Specifically, we propose
the use of the naive Bayes classifier. In spite of its
strict statistical requirements, it has shown great
efficacy in a broad range of applications [18].

In order to select the set of descriptors with the
lowest computational cost and in turn to achieve
the best performance for the identification of the
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phenomenon, we used the method of wrapping fea-
ture selection. In the example that we chose to illus-
trate the method, the set of descriptors is formed by
dynamic range, Fujii descriptor, and wavelet entropy.
This descriptor set blends a time-frequency descrip-
tor (wavelet entropy) and two descriptors that work
in the time domain (dynamic range and Fujii), given
the best confusion matrix, as a quality assessment
method.

Two different methods are proposed to display the
classification results: one is the assembly of an RGB
image, where each color plane (R, G, and B) is asso-
ciated with the probability of belonging to a particu-
lar class (three classes, one per color plane). Each
pixel of the RGB image has three components, each
computed as an estimation of the probability of be-
longing to a particular class. The RGB color plane
of each pixel is enhanced according to the probability
of belonging to the corresponding class and vice ver-
sa. In this way the overlap of the memberships of dif-
ferent classes is shown as a combination of basic
colors.

The other way of showing the results is by consid-
ering the naive Bayes classifier outcome, which we
present as a single-plane color image. Each pixel is
colored with the hue associated with one particular
class. This class is computed according to the combi-
nation of the Bayesian model with a decision rule
that selects the most probable hypothesis of belong-
ing to a class. Hence, in the results, every pixel shows
a well-defined color that permits its analysis by
visual inspection.

2. Description of the Method

A. Naive Bayes Classifier

We propose a supervised approach to classify regions

of images of speckle patterns according to the dy-

namic features of the observed phenomenon. In par-

ticular we address the naive Bayes classifier, which

as is widely known assigns the most likely class to a

given sample described by its feature vector [18].
Let us define:

¢ Dis arandom variable vector whose values are
vectors of feature values D = [dj]j=1 ..... m

e ( is a random variable whose values are the
classesc, and k =1,...,n.

e P(C=c,/D=d)=P(c/d) is the conditional
probability that a sample belongs to a class c;, given
that it has a feature vector d.

e PMD=d/C=c,) =P(d/cy) is the conditional
probability of obtaining a particular descriptor vector
belonging to class c;.

e P(C =c¢;) is the unconditional probability of
obtaining a sample of ¢, class.

e P(cp) is the a priori probability that a sample
belongs to class ¢, and £ =1, ...,n.

Using the Bayes’ theorem, the probability of a
sample belonging to a region on its descriptor basis
is stated as

728 APPLIED OPTICS / Vol. 52, No. 4 / 1 February 2013

P(d/ci)

P(cy/d) = P(cp) x P@) 1)
where
P(d) =) P(c;)P(d/c;). 2)
=1

Since P(c;/d) is unknown, the Bayes’ rule combines
the estimation of P(d/c;), P(c;), and P(d) to get an
estimate of P(c./d).

We assume that all possible events fall into exactly
one of n classes. Also, the a priori probabilities P(c;)
are unknown and variable according to the experi-
ments. Therefore, to make them independent of the
manual assignment of the training sample, we as-
sume that prior probabilities P(c;) are equal. There-
fore, we can write Eq. (1) including Eq. (2):

P(d/cy)
" P()P(d/c;)
_ P@/ey)

" P@/c;)’

P(c;,/d) = P(c) x

= P(cy/d)
3)

The naive Bayes model assumes that the occur-
rence of a particular value of any descriptor is statis-
tically independent of the occurrence of any other
one; hence, the distribution of d conditional on ¢,
can be decomposed as follows:

P(d/c;) = [ [ P(d;/cp). @)
Jj=1

Then Eq. (3) becomes

[T, P(d;/cr)

P(cp/d) = :l=1 Hj’ilP(dj/Ci).

%)

An estimation of P(dj/c;) can be approximated
with relative frequencies by considering the training
data set. To estimate the parameters of the feature’s
distribution, we propose generating nonparametric
models, where their structure is determined from
the data. The kernel density estimation is a data-
smoothing technique where inferences about the po-
pulation are made based on a finite data sample [19].
Having collected training samples of feature vectors
corresponding to known classes, the a priori prob-
abilities P(d;/c,) are estimated.

If the problem addressed is the classification of im-
age pixels that are limited to three classes, the result
of each P(c;,/d)|;-1... 3is fed into a color channel of an
RGB image. The RGB color model is an additive color
model in which red, green, and blue light are added
together to reproduce a broad array of colors. Thus,
its ability to display midtones is exploited as a way
to show the probability of belonging to the three
classes. Thus, for example, a region that is seen in
yellow is due to it simultaneously having a similar



membership level to the classes of the red and green
channels.

When P(c;/d) is computed, classification can be op-
timally obtained. Hence, the expected number of mis-
classifications can be minimized by assigning a class
with a feature vector d to the region c; for which
P(c,/d) is highest.

To obtain a single plane image, the combination of
the Bayesian model with a decision rule is used. One
common rule consists in selecting the hypothesis
that is most probable; this is known as the maximum
a posteriori (MAP) decision rule. The corresponding
classifier is the function classify, defined as follows:

. [, P(d;/ck)
classify(dy, ...,ds) = arg max J ,
v e LTI Pdi/e)

(6)

where “arg max” stands for argument of the maxi-
mum; that is to say, pixelwise, the maximum over
the set of the three class probabilities.

B. Descriptor Selection

For each dynamic laser experiment several descrip-
tors are computed from the image sequences on a
pixelwise basis. Then a set of intensity images
assembled with the descriptor values is built.

In order to test the performance of this method, we
evaluate the segmentation of bruising regions of
apples, which are not yet visible. It has been stated
that this region exhibits different bioactivity with
respect to the nonbruised ones [10].

For each class (pixels presenting similar activity
levels), upon a set of regions of different samples
selected by an operator over an image (regions corre-
sponding to the classes to detect), a probability den-
sity function is estimated using a kernel density
estimation approach. Hence, based on a finite data
sample, inferences about the population are made
with this estimation. In our example, we propose
identifying three classes: bruised apple region,
healthy apple region, and inert (control) zone.

The amount of possible descriptors is too large to
run an exhaustive search process for obtaining a fea-
ture subset that satisfactorily performs the classifi-
cation task. In order to choose the best descriptor
subset to achieve the region identification, a wrapper
feature selection algorithm based on a stochastic
search process was run. A wrapper method considers
the classifier inside the search process; i.e., the cho-
sen features are appropriate to be used with the con-
sidered classifier, but it does not mean that they are
optimal for other classification schemes [20].

We used a genetic algorithm as the search process,
configured to maximize the classification rate (num-
ber of pixels successfully classified against the total
number of pixels). In addition, we built a fitness func-
tion that favorably weighed the time-dependent
descriptors in relation to those involving transfor-
mations in the frequency domain. This was done

in order to reduce the computational cost, so, based
on our previous heuristics, we tried to obtain
only one frequency-based descriptor (for example, a
wavelet-based one), and we gave more weight to time
features than the other frequency features. These
conditions were considered in the search process
as constraints.

A subset of three descriptors was obtained using
the above-mentioned wrapper method. These fea-
tures capture the speckle dynamic over the range
of intensities, displaying encouraging results to
differentiate biospeckle activities regions in bruised
fruits [12]. These are the difference between images
and a spatial-temporal approach like the dynamic
range, generalized differences or Fujii, and wavelet-
based entropy.

Therefore, for the particular case of the classifica-
tion of image sequences of apples, we segmented
their areas into three classes: bruised, healthy and
inert (control area, where any biospeckle activity is
assured) regions.

1. Dynamic Range [15]

Rx.y = maX(Ix,y.t) - min(lx.y,t)7 (7

where max() and min() are the maximum and mini-
mum values reached by the intensity of the pixel over
time, respectively. This measure is similar to the
maximum height of the profile used in surface rough-
ness characterization.

Given that the dynamic range descriptor is sensi-
tive to intensity amplitude and that the aim is to
discover variations between regions, a scaling of
the intensity image stack to the [0, 255] range must
be previously performed. In this way it compensates
for differences in the illumination conditions among
experiments.

2. Fujii [4]

N
- |Ixy(n) - Ix,y(n - 1)|
Foo= 2w + L@ =Dl ®

where I, ,(n) is the intensity level at (x,y) in frame
n and n=1...N indicates the frame number in
the image sequence. This measure has proven to be
a very good estimation of activity when there are no
local variations in the illumination of the sample.

3. Discrete Wavelet Transform Shannon Entropy
Descriptor [5]

After the development of the time profile in each
pixel in discrete wavelet transform coefficients C;,
the following wavelet-based entropy can be defined
(which has been successfully applied in biospeckle
characterization):
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where E'” is the mean energy at j scale in a temporal
window 7 of the intensity over time, in the N; discrete
wavelet transform (DWT) coefficients in the resolu-
tion level j.

Then the total energy at window i is

ng)tal = ZEJ('Z)’ (10)
J
and the relative energy at window i is
 EY
(O
p; = 150 1n

total

Therefore, the Shannon entropy in the window is

0 _ (@) (@)
Sw,, = -2 _p; nlp;).

J<0

(12)

This measure describes how evenly energy is
distributed among the different frequencies.

With these three descriptors as an example we
plotted the continuous value of the pixel probability
of each class. Then we arranged the three images
(one per class) to build an RGB color model image
(using the three planes).

Finally, by combining the probabilistic model with
the MAP rule, we defined a classifier that detects the
estimation of each pixel belonging to the class where
the probability is at its maximum. This result is
presented as an intensity image (gray scale).

3. Experimental Results

We conducted a series of experiments to assess the
performance of the method. They were aimed to
segment, by using an RGB color model, regions of
the samples with different activities.

The experimental setup used to detect bruising in
apples [5,8,12] is shown in Fig. 2.

An expanded low-power He—Ne laser (5 mW)
illuminated the apple, and successive subjective
speckle images were registered by a CCD camera
(f =50 mm, f/n=16). A set of 100 images
(300 x 300 squared pixels) was digitized to 8 bits
and stored in a computer. For the training stage

[ ]

CCD
CAMERA

@ sawveee

——

LASER

Fig. 2. (Color online) Experimental set up for the recording of
biospeckle images.
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we used the same experimental data as in [5,8,12].
A constant 25 Hz sampling frequency was used,
and the camera integration (exposure) time was
set to 40 ms.

Bruising that could not be detected by visual in-
spection was produced on an otherwise healthy apple
by letting a sphere fall on it (diameter, 21.9 mm;
weight, 133.6 g; height, 20 cm), and an inert object
was included in a corner of the image.

Image series were assembled into a three-
dimensional array; hence, each image series was as-
sembled with 90,000 intensity variations. A set of
three descriptors (range, Fujii and wavelet entropy)
obtained in the previous experiment was used to
train and test a naive Bayes model. Note that Fig. 3
shows the kernel density function estimated for each
descriptor for one of the classes (bruised area).

We computed the values of the three chosen
descriptors for each pixel of the training set of
100 images. For the DWT calculation we used the
Daubechies order 2 with five levels of decomposition.

In Fig. 4 we show images of a bruised apple sample
used as a training set employing different descrip-
tors: (a) DWT Shannon entropy descriptor, (b) range
descriptor, and (c) Fujii descriptor. The colored bar
shows the image intensity scale. In this sample the
bruised region is located at the middle bottom; mean-
while, the inert part is the right upper corner.

RGB images, colored according to the value of the
density estimation function for each class (bruised,
healthy and inert), are shown in Fig. 5, where the
red plane stands for the bruised area, the green
plane stands for the healthy tissue, and the blue
plane stands for an inert region corresponding to a
small metal piece introduced in the image field.

It can be seen that the inert, bruised, and healthy
regions are clearly distinguished. These results
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Fig. 3. Estimated probability density functions of the three
chosen descriptors for the bruised region of the training sample.



(a)

©

Fig. 4. Descriptor images of a bruised apple sample used as the training set: (a) DWT Shannon Entropy descriptor; (b) Range descriptor;
(c) Fujii descriptor. The color bar shows the image intensity scale. In this sample the bruised region is located at the middle bottom and the

inert part is in the right upper corner.

00

(a) (b)
(a) RGB image created with the results of computing the Bayesian model of the sample in Figure 4. Blue plane is associated with

the inert region, the green plane with the healthy region and the red plane the bruised region. (b), (c) and @ composition of four expanded
pixels.

Fig. 5.

are consistent with those previously obtained
from similar experiments in the past (see references).

After computing the a posteriori probability for
each class P(c;/d) [Eq. (5)], we proposed the assign-
ment of each pixel to that class (bruised, healthy, or
inert area) that achieves the MAP. Combining
the probabilistic model with the MAP decision
rule (a thresholding operation), we obtained the re-
sults of the naive Bayes classifier. The results are
shown in Fig. 6. In these images the red regions in-
dicate bruising, the blue area indicates the inert re-
gions, and the green areas indicate the healthy
regions. In addition to the already-known regions
that here are well identified, there is a region with
unknown activity origin, a line following the border
of the knife edge used as an inert object in the right
upper part, that has not been previously identified
(Fig. 7 in [5]). It is now clearly identified as light
coming from a reflection that belongs to one of the
learned categories (the healthy class).

After this characterization as a learning step, the
probabilities were calculated for an (assumed un-
known) different set of images in a similar situation
of bruising in a different apple, but in this case we
removed the inert region.

The results are shown in Fig. 7. The (previously
assumed unknown) bruising region of the sample

is correctly identified. Notice that there are no blue
regions because there was no inert region in the
object. Its removal did not introduce any confusion
in the results.

In order to validate our naive Bayes classifier, a
tenfold cross-validation method was used [21]. As a
result, the initial data set, extracted from five differ-
ent images of bruised apples, is divided into 10 sub-
sets. These sets contain cases of the three classes:
bruised, healthy, and inert apple regions. From these
sets only one subset is retained as the validation data

(a) (b)

Fig. 6. Naive Bayes classifier applied to the sample shown in
Figure 5 (training set): (a) results of the Naive Bayes classifier
and (b) blurred version of figure (a).
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(a)

()

Fig. 7. Results of a testing case. The Naive Bayes classifier discovers a bruised area in another apple sample not used in the training
phase (assumed unknown). (a) RGB image, (b) Naive Bayes classifier image, and (c) blurred image of the Naive Bayes classifier.

Table 1. Confusion Matrix Showing How Many Pixels of Each Class
are Correctly Identified (as a Percentage) in the Principal Diagonal”

Predicted Areas
Bruised Healthy Inert Sums
True areas  Bruised 7.13 1.98 0 9.12
Healthy 2.25 80.81 0 83.07
Inert 0 0.005 7.81 7.82
Sums 9.39 82.80 7.81 100

“The other elements of the matrix show how the incorrectly
detected pixels are distributed in the other classes.

for testing the model, and the other nine subsets are
used for training purposes.

Each cross-validation process is repeated 10 times,
with each of the 10 subsamples used once as a
validation set. Then, we obtained 10 results from
the validations, which we combined into a confusion
matrix (Table 1). The confusion matrix is shown as
the percentages of each pixel quantity over the whole
sample.

A set of measurements on this confusion matrix is
performed to assess the model’s quality. Accuracy is
the most commonly used metric to evaluate the
performance of a classifier: it is the probability of
new cases being correctly classified. If the confusion
matrix is given as a number of events, the accuracy is
computed as the sum of the principal diagonal ele-
ments divided by the total number of events. In
our case the achieved accuracy is 95.75%. The
Sensitivity or true positive rate represents the pro-
portion of items classified as belonging to a certain
class, from the total number of events that really be-
long to this class. This index is computed using the
principal diagonal item of the confusion matrix
divided by the sum of all elements of the row. The
proposed model achieves a sensitivity for detecting
a bruised area equal to 0.78, computed sensitivity
to detect a healthy region is 0.97, and that for the
inert zone is 0.99.

The precision for each class is defined in terms of
the proportion of items that should actually belong to
the class from among all the objects that are classi-
fied into this class. In the confusion matrix it is the
respective principal diagonal value divided by the
sum of the predicted class column. In our model

732 APPLIED OPTICS / Vol. 52, No. 4 / 1 February 2013

the precisions for the different -classes are
bruised area = 0.7598, healthy area = 0.9760, and
inert area = 1.

4. Conclusions

We have proposed the use of the naive Bayes infer-
ence model to combine more than one biospeckle
descriptor to segment areas of sample images in
the evaluation of dynamic laser speckle image se-
quences. The independence of the naive Bayes
probabilistic model cannot be warranted for all de-
scriptors and all types of samples and requires some
heuristic testing. Once a probabilistic model is ob-
tained, the evaluation of other samples, measured
under similar conditions, can be successfully and ra-
pidly achieved.

We have shown some results to illustrate the use of
the probability images. The use of this technique has
already found application in biology to distinguish
bacteria from fungi, where successful results have
also been obtained [22,23], as well as in agriculture
for measuring the proportions of phases of endo-
sperm in seeds (currently under development).

We expect that this procedure can be combined
with the use of self-organized maps [24] to investi-
gate samples in cases where no learning procedure
is available. The authors have already experimented
with unsupervised classifiers (self-organizing neural
networks), where no supervised training samples
are needed, which leads to the classification after
stage labeling. These results will be reported
elsewhere [25].

This work was supported by grant PICT 2008-1430
from the Agencia Nacional de Promocién en Cienciay
Tecnologia (ANPCyT), Consejo Nacional de Investi-
gaciones Cientificas y Técnicas (CONICET), Comi-
sién de Investigaciones Cientificas de la Provincia
de Buenos Aires (CIC), Universidad Nacional de
Mar del Plata (UNMDP), and the Universidad
Nacional de La Plata (UNLP), Argentina.
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