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The title compound, C12H16BrO2, is an interesting case of a

simple organic molecule making use of five different types of

intra- and intermolecular interactions (viz. conventional and

nonconventional hydrogen bonds, and �–�, Br� � �Br and

Br� � �O contacts), all of them relevant in the molecular and

crystal structure geometry. The molecules are strictly planar,

with an intramolecular O—H� � �O hydrogen bond, and

associate into two-dimensional structures parallel to (201)

through two different types of halogen bonding. The planar

structures, in turn, stack parallel to each other interlinked by

C—H� � �� and �–� contacts. Also discussed are the relevant

structural features leading to the rather low melting point of

the compound.

Comment

Noncovalent interactions have been the subject of both

theoretical and experimental studies for many years and they

continue to receive increasing attention. Hydrogen bonding

was certainly the first such interaction to be extensively

studied, followed by �–� and C—H� � �� interactions. The so-

called ‘halogen bond’, where the main feature is a highly

polarized halogen species (Desiraju & Parthasarathy, 1989;

Metrangolo et al., 2007; Metrangolo et al., 2008), has also been

known for decades, but was ‘rediscovered’ only recently. In

fact, the number of studies dealing with halogen bonds has

increased rapidly in the last five years (Metrangolo & Resnati,

2008). In spite of some controversy about the fundamental

nature of some of these noncovalent interactions (Palusiak &

Grabowski, 2008; Rissanen, 2008) and the lack of a deep

understanding of some of them (Sinnokrot & Sherrill, 2006;

Zhang et al., 2007), they are all currently and successfully used

as tools in crystal engineering, in biomimetic processes

involving molecular recognition and in the molecular design of

advanced materials, including magnetic materials and liquid

crystals.

The relative strengths of these interactions are neither

predictable nor understandable in a straightforward manner.

Several authors have tried to establish, for a given compound

(or series of compounds), which of these interactions is ulti-

mately responsible for the resulting structure (Gavezzotti,

2008). In other cases, the simultaneous presence of different

types of noncovalent interactions has been viewed as a

competitive process (Csoregh et al., 2001), and the underlying

question was which of the interactions would prevail over the

others, thus determining the supramolecular arrangement.

Among the interactions we shall deal with in the present

paper, the least common are those of the C—X� � �O and C—

X� � �X—C types (X is a halogen). The main aspects of the

former are quite close to those of a conventional hydrogen

bond and, accordingly, its most conspicuous geometric char-

acteristics are a rather large C—X� � �O angle (>150�) and an

X� � �O distance shorter than the sum of the van der Waals

radii. The second type, instead, is rather more complex from a

descriptive point of view, but the main aspects could be

summarized as follows. If �1 is the larger of the two C—X� � �X
angles and �2 the smaller, then two kinds of C—X� � �X—C

interactions can be envisaged (Desiraju & Parthasarathy,

1989): the (so-called) I1 interactions have �1 = �2, while those

of type I2 have �1 � 180� and �2 � 90�. In both cases, the

X� � �X distance is shorter than the sum of the van der Waals

radii.

The title compound, (I), presents an interesting case of a

simple organic molecule displaying a range of different types

of intra- and intermolecular interactions, viz. Br� � �Br and

Br� � �O contacts, conventional and nonconventional hydrogen

bonds, �–� interactions and extremely weak (though non-

negligible) van der Waals interactions maximized by the

parallel array of hydrophobic alkyl chains. We have found all

of them to be relevant to a greater or lesser degree for the

molecular and crystal structure geometry of (I).

Fig. 1 shows a molecular view of (I), displaying the labelling

scheme and the intermolecular interactions (to be discussed

below). Bond distances and angles are unexceptional and

comparable with the recently reported related structures 1,2-

dibromo-4,5-dimethoxybenzene, (II), and 1,2-diiodo-4,5-

dimethoxybenzene (Cukiernik et al., 2008). The most

conspicuous characteristic of the molecule is its overall

planarity (average deviation from the least-squares plane =

0.032 Å, with a maximum deviation of 0.092 Å for atom C7), a

property enhanced by the intramolecular O2—H2A� � �O1

bond (Table 1 and Fig. 1). This least-squares plane almost

contains a centre of symmetry (0.124 Å away from the plane),

which in turn generates a planar dimer through a head-to-

organic compounds
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head C—Br� � ��Br—C type I2 interaction (Table 3 and Fig. 1).

The Br� � �Br distance [3.676 (1) Å] indicates this interaction to

be rather weak; a survey of similar contacts in the Cambridge

Structural Database (CSD; 2009 Version; Allen, 2002) showed

511 cases reported, covering a range from 3.30 to 3.70 Å, with

a median (maximum occurrence) at 3.62 Å.

In addition, the dimers are laterally linked to each other

through a C—Br� � �O bond (Table 4 and Fig. 1) to which a

similar analysis can be applied. A CSD search provided some

1400 cases covering (with a significant population) the range

2.90–3.37 Å, with a median of 3.20 Å, a value significantly

shorter than the Br� � �O distance in (I) [3.28 (1) Å]. The

interaction serves to form planar strips two molecules wide,

with the hydrophobic organic tail oriented outwards in a

comb-like structure. These combs interdigitate in a classical

packing array of parallel hydrophobic alkyl chains, thus

maximizing the van der Waals interactions, with minimum

C� � �C approach distances in the range 3.86 (1)–3.90 (1) Å.

The outcome of these interactions is the formation of planar

two-dimensional structures parallel to (201) (Fig. 2). These

structures in turn interact with their nearest neighbours,

3.60 (5) Å apart, through two different types of interactions,

also shown in Fig. 1, namely a C—H� � �� bond (Table 1 and the

upper portion of Fig. 1) and a �–� contact (Table 2 and the

lower portion of Fig. 1).

Thus, the crystal structure of (I) is the result of an intricate

balance between a diversity of interactions covering a vast

range, from medium strength (halogen bonding) down to

weak (interchain van der Waals contacts).

Although all these interactions seem to provide the stability

of (I), the geometric requirements of some of them tend to act

as restraints for the others to reach more optimized geome-

tries. For example, closer Br� � �Br or Br� � �O approaches would

conflict with the setting up of proper �–� or aliphatic chain

interactions. The resulting compromise renders the structure

stable, but not as stable as might be anticipated from the

presence of potentially strong C—Br� � �Br—C and C—Br� � �O
interactions.

This relative weakness in (I) is evidenced in the rather low

melting point of 326 K, well below those found in structurally

analogous compounds with a similar display of nonbonding

interactions, e.g. 1,2-dibromo-4,5-dimethoxybenzene (Cukier-

nik et al., 2008), (II), which has a melting point in the range

362–364 K. Since the main difference between these two

molecular structures lies in the lateral chain, present in (I) but

lacking in (II) (see scheme), it is tempting to look in this

direction to find the reasons for such a weakening. [The

hydrogen bonding in (I) is intramolecular and so can be

disregarded from the present analysis.]

From a structural point of view, the presence of this

aliphatic chain favours a head-to-head arrangement with

interdigitated tails. From an energetic point of view, the

contributions of the aliphatic chains to the total melting

enthalpy can be roughly estimated as 22–25 kJ mol�1, taking

3.7–4.1 kJ mol�1 as the melting enthalpy of one mole of CH2

or CH3 groups (Weast, 1986; Seurin et al., 1981). This value

accounts for ca two thirds of the measured melting enthalpy

(37 kJ mol�1; see Experimental), thus supporting our previous

suggestion. It seems that conformational freedom at the

aliphatic chain level allows the system to override the stronger

interactions, thus melting at a moderate temperature. This

kind of distribution analysis of the melting enthalpy is often

found in the field of molecular liquid crystals (LC), materials

structurally related to (I) in the sense that they also usually

present ‘localized’ (stronger) and van der Waals (weaker)

interactions in synergic co-operation. Indeed, the molecular

description of several types of LC phases involves molten

aliphatic chains and more or less oriented interacting cores.

The presence in (I) of a halogen-bonding-based ‘extended

core’ might in principle induce some LC character, even if,

from its molecular structure, (I) is not expected to exhibit LC

behaviour as its aromatic part is not long enough. As a matter

of fact, we have not found any evidence of LC phases in (I), a

result that can be ascribed to the previously discussed weak-

organic compounds
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Figure 2
A packing diagram for (I), showing the (201) plane formed by the
interdigitated strips. [Symmetry codes: (iii) 2� x, 1� y, 2� z; (iv) x, 1 + y,
z.]

Figure 1
A molecular view of (I), showing the atom-labelling scheme. Displace-
ment ellipsoids are drawn at the XX% probability level [Please
complete] and H atoms have been omitted for clarity. Dashed lines
indicate the intra- and intermolecular interactions present. Heavy lines
denote molecules in the reference plane and lighter lines denote
molecules in the planes above and below the reference plane. [Symmetry
codes: (i) 1� x, 1� y, 1� z; (ii) 2� x, 1� y, 1� z; (iii) 2� x, 1� y, 2� z;
(iv) x, 1 + y, z.]

Files: c/fg3087/fg3087.3d c/fg3087/fg3087.sgml FG3087 FO IU-0912/45(16)4 912/38(16)4 (106.8) FG3087 PROOFS C:FO:2009:65:1:0:O1–O

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114



ness of the C—Br� � �Br—C and C—Br� � �O interactions. In

particular, the few LC based on halogen bonding known to

date are based on one of the strongest types of halogen bond,

viz. involving N atoms as donors and I atoms bound to elec-

tron-withdrawing groups as acceptors (Bruce et al., 2008).

Finally, the influence of chain length on melting point has

been extensively studied in LC (Demus, 1998). Short-chain

compounds usually melt at higher temperatures, since in these

structures the localized interactions prevail. On increasing the

chain length, it is often observed that the melting point

decreases to a certain limit, rising again afterwards. The

accepted explanation for this behaviour is based on the

structure-disturbing effect associated with middle-length

aliphatic chains, in accordance with the ideas herein suggested

for (I).

Experimental

2-(Hexyloxy)phenol was synthesized under typical conditions for

Williamson’s etherification, following a published procedure (Wan et

al., 2003), and was obtained in 38% yield. The title compound, (I),

was prepared by direct halogenation of 2-(hexyloxy)phenol using Br2
in a manner exactly analogous to that described in the synthesis of

1,2-dibromo-4,5-dimethoxybenzene (Cukiernik et al., 2008); full

experimental details are available in the archived CIF. Crystals were

obtained by slow evaporation of a solution of (I) in heptane.

Crystal data

C12H16Br2O2

Mr = 352.07
Triclinic, P1
a = 8.863 (4) Å
b = 9.140 (4) Å
c = 10.148 (6) Å
� = 65.70 (4)�

� = 79.43 (5)�

� = 64.03 (3)�

V = 673.6 (6) Å3

Z = 2
Mo K� radiation
� = 6.00 mm�1

T = 295 K
0.22 � 0.14 � 0.10 mm

Data collection

Rigaku AFC-6S diffractometer
Absorption correction:  scan
(North et al., 1968)
Tmin = 0.40, Tmax = 0.55

2800 measured reflections
2641 independent reflections

1775 reflections with I > 2�(I)
Rint = 0.053
3 standard reflections

every 150 reflections
intensity decay: <2%

Refinement

R[F 2 > 2�(F 2)] = 0.063
wR(F 2) = 0.183
S = 0.97
2641 reflections

146 parameters
H-atom parameters constrained
��max = 1.53 e Å�3

��min = �1.48 e Å�3

The H atom attached to atom O2 was found in a difference Fourier

map, further idealized (O—H = 0.82 Å) and finally allowed to ride. H

atoms attached to C atoms were placed in calculated positions

[C—H = 0.93 (aromatic) or 0.96 Å (methyl)] and allowed to ride;

methyl groups were allowed to rotate as well. Displacement para-

meters were taken as Uiso(H) = xUeq(parent), where x is 1.2

(aromatic) or 1.5 (methyl and O—H).

Data collection: MSC/AFC Diffractometer Control Software

(Molecular Structure Corporation, 1988); cell refinement: MSC/AFC

Diffractometer Control Software; data reduction: MSC/AFC

Diffractometer Control Software; program(s) used to solve structure:

SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:

SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL

(Sheldrick, 2008); software used to prepare material for publication:

SHELXTL and PLATON (Spek, 2009).

The authors acknowledge ANPCyT (grant No. PICT25409)

and UBACyT (grant No. X057 and a PhD fellowship to FC)

for financial support, the Spanish Research Council (CSIC)

for providing a free-of-charge licence to the Cambridge

Structural Database and Professor Judith Howard for the

donation of a Rigaku AFC-6S four-circle diffractometer. FDC

is a member of the research staff of Conicet.

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: FG3087). Services for accessing these data are
described at the back of the journal.
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Table 1
Hydrogen-bond geometry (Å, �).

Cg1 is the centroid of the C1–C6 ring. [Please check added text]

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O2—H2A� � �O1 0.82 2.13 2.688 (7) 124
C8—H8B� � �Cg1i 0.96 2.93 3.753 (8) 143

Symmetry code: (i) �x þ 1;�y þ 1;�z þ 1.

Table 2
�–� interactions.

Cg1 is the centroid of the C1–C6 ring, CCD is the centre-to-centre distance
(distance between ring centroids), SA is the mean slippage angle (angle
subtended by the intercentroid vector to the plane normal) and IPD is the
mean interplanar distance (distance from one plane to the neighbouring
centroid). For details, see Janiak (2000).

Group 1/Group 2 CCD (Å) SA (�) IPD (Å)

Cg1/Cg1ii 4.373 (5) 36.?(1) 3.60 (1)

Symmetry code: (ii) 2� x; 1� y; 1� z. [Please check angle for missing decimal place]

Table 3
C—Br� � �Br—C interactions (Å, �).

�1 = C0—Br0� � �Br0 0, the smaller of the two XB angles; �2 = Br0� � �Br0 0—C0 0, the
larger of the two XB angles. Expected values: �1 � 90� and �2 � 180� (for I2
type contacts) or �1 � �2 (for I1 type contacts). For details, see Desiraju &
Parthasarathy (1989).

C0—Br0 � � �Br0 0—C0 0 C0—Br0 C0 0—Br0 0 Br0� � �Br0 0 �1 �2

C1—Br1� � �(Br2—C6)iii 1.915 (1) 1.907 (1) 3.676 (1) 124.8 (1) 170.0 (1)

Symmetry code: (iii) 2� x; 1� y; 2� z.

Table 4
C—Br� � �O interactions (Å, �).

For details, see Desiraju & Parthasarathy (1989).

C—Br� � �O C—Br Br� � �O C—Br� � �O

C1—Br1� � �O2iv 1.915 (1) 3.280 (5) 158.4 (2)

Symmetry code: (iv) x; 1þ y; z.
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