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Second-order data were measured using high-performance liquid-chromatography with diode array detection
(HPLC-DAD) for a number of wine samples, which were directly injected in the HPLC-DAD system without
sample pre-treatment. The data were arranged in data matrices whose modes were elution time and UV–visible
absorption wavelength, and processed by extended multivariate curve resolution coupled to alternating least-
squares (MCR–ALS). The individual data matrices were organized in a row-wise augmented data matrix sharing
the time subspace, due to the high spectral similarity among several sample components. This required previous
time alignment of the chromatograms using a suitable synchronization algorithm, in order to produce a bilinear
augmented datamatrix to be processed byMCR–ALS. The latter algorithm led to resolved component chromato-
grams and spectra, from which component scores could be estimated, which are proportional to the relative
component concentrations in each studied sample. The matrix of sample scores was then submitted to principal
component analysis, which was applied for data exploration according to grape varietal and geographical origin.
The results showed that the present data generation and analysis are useful for the discrimination of all samples
of the Malbec varietal from the remaining ones, but achieved partial success regarding geographical origin.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Wine is a complex matrix composed of water, ethanol and a variety
of chemical compounds such as peptides, proteins, carbohydrates,
thiols, and phenolic compounds [1]. The latter ones can be classified
into flavonoids (flavanols, flavonols, dihydroflavonols, and anthocya-
nins) and non-flavonoids (phenolic acids, phenols, and stilbenes) [2].
Flavonoids share a common skeleton consisting of two phenolic rings
(A and B) linked by a heterocyclic pyran ring (C), as shown in Fig. 1.
Anthocyanins and flavanols are particularly abundant in grape and
wine and are essential to wine quality. Indeed, anthocyanins are the
red pigments of grapes and are responsible for the color of red wines,
whereas flavanols contribute to taste (especially astringency and bitter-
ness) [3]. Due to the presence of aromatic rings in their structure, most
phenolic compounds present in wine absorb UV–visible radiation with
an absorptionmaximumat 280 nm,with the exception of anthocyanins
(520 nm), flavonols (360 nm) and phenolic acids (320 nm) [2].

Due to the complexity of wine data obtained by usual instrumental
techniques, it is not possible to resolve or quantify all the chemical
constituents present in wine. Therefore, the combination of these
techniques with chemometric analysis can reveal latent patterns in
the data, which may enable classification of the samples in terms of
ieri).
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varietal, geographical origin, aging, adulteration, etc. [4]. Several instru-
mental techniques have been employed for wine classification, such
as gas chromatography–mass spectrometry (GC–MS) [5–7], high-
performance liquid chromatography with diode array detection
(HPLC-DAD) [8,9] or liquid chromatography coupled to mass spectro-
metric detection (LC–MS) [10–12], proton nuclear magnetic resonance
(1H NMR) [13,14], near-infrared spectroscopy (NIR) [15,16], capillary
electrophoresis (CE) [17,18] and elemental analysis [19,20]. To achieve
sample discrimination, the obtained data have been processed by differ-
ent chemometric algorithms such as principal component analysis
(PCA), linear discriminant analysis (LDA), partial least-squares-
discriminant analysis (PLS-DA), soft independent modelling of class
analogy (SIMCA), and artificial neural networks (ANN) [4].

In the past few years, several reports employed HPLC-DAD coupled
to chemometric tools in order to classify wines [21–26]. Nevertheless,
to our knowledge, there are no reports of wine classification by direct
injection HPLC-DAD without sample pre-treatment coupled to multi-
variate curve resolution–alternating least-squares (MCR–ALS) as data
processing algorithm. In this work we employed the latter combination
of techniques to attempt classification of wines by grape varietal and
geographical origin of some Argentinean wines. The application of the
MCR–ALS algorithm is usually made by joining the elution time–
spectral data matrices adjacent to each other sharing the spectral
subspace (i.e., by column-wise augmentation), creating the so-called
augmented data matrix before MCR–ALS decomposition. However, for
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Fig. 1. Representative structures of the three main families of phenolic compounds found in wine.
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reasons which will be clear below, we adopted the somewhat excep-
tional procedure of augmentation by sharing the time subspace (i.e.,
row-wise augmentation) [27,28]. This required previous alignment of
the chromatographic–spectral data matrix in order to alleviate the
time shifts between runs [29].

The purpose of the presentwork is tomodel direct injection LC-DAD
data for wine samples with MCR–ALS, in order to extract information
which may allow for wine discrimination according to varietal and
geographical origin. The results of this data exploration indicate that
theMalbec varietal can be adequately discriminated from the remaining
ones, while only partial success is obtained regarding the geographical
origin of samples.

2. Experimental section

2.1. Reagents and standards

HPLC grade acetonitrile were purchased from Panreac (Barcelona,
Spain), formic acid from Cicarelli (Rosario, Argentina) was pro analysis
grade and used directly. Ultrapure water (18.2 MΩ cm) was obtained
from a Milli-Q water purification system (Millipore Corp., Bedford,
USA).

2.2. Wine samples

The 27 wine samples were obtained from red grapes of V. vinífera L.
of eight varieties [Aspiran (A), Bonarda (B), Cabernet Sauvignon (C),
Malbec (Ma),Merlot (Me), Sangiovese (Sa), Syrah (Sy) and Tempranillo
(T)], harvested in 2012 from thirteen collaboratingwineries ofMendoza
and San Juan (Argentina), including an experimental winery from
Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Cuyo,
Mendoza, Argentina. The thirteen wineries were: Galán (A, B, C, Ma,
Me, T), CoViTu (B, C, Ma, Me, T), experimental winery FCA (C, Ma,
Me), San Rafael (Ma, Sy), Agrelo (Ma, Me, Sa), San Juan (Cs, Ma -two
samples-, Sy), Mayor Drummond (Cs), La Consulta (Sy), Plantago
(Ma), and Albahaca (Ma). The wine samples from each winery were
collected directly from fermentation tanks at the end of malolactic
fermentation, transferred under nitrogen to completely filled amber
glass bottles, and stored at 4 °C to ensure their preservation until their
analysis in the laboratory.

2.3. HPLC-DAD

The optimization of HPLCmethodwas based on thework developed
by de Villiers et al. [8]. Prior to analysis, wine samples were filtered
through a 0.45 μm pore size nylon membrane (Aura Industries Inc.,
New York, USA) without further treatment, and a volume of 20 μL of
every sample was injected directly into the chromatographic system,
consisting of a Hewlett-Packard 1100 series HPLC equipped with a
degasser model G1322A, a quaternary pump model G1311A, and a
photodiode array detector model G1315A (Agilent Technologies,
Palo Alto, USA). Separation was performed on a reversed-phase column
Lichrocart 250–4 Purospher STAR RP-18e column (Merck, Argentina)
(250 mm × 4 mm, 5 μm particle size) with a Security Guard Gemini
C18 guard cartridge (Phenomenex, USA) (4 mm × 3 mm) at 25 °C.
Two mobile phases were employed for elution: A (water/formic acid,
99:1, v/v) and B (acetonitrile/formic acid, 99:1, v/v), and the gradient
profile was as follows: 0% B (min 0); 3% B (min 1); 15% B (min 10);
30% B (min 25); 50% B (min 35); 95% B (min 40); and 0% B (min 45).
The flow rate was 1.0 mL min−1. Each sample was run by triplicate,
and good repeatability was observed. No changes were detected in
cromatographic parameters as retention time, and peak shapes and
areas in a reference sample that was run at the beginning and at the
end of the analysis. All the analyses were conducted with the same
guard column cartridge, keeping the maximum working pressure in
the range 165–170 bar, being 250 bar the maximum recommended
working pressure for the column used in this study. Diode array detec-
tion proceeded from 200 to 600 nm with a bandwidth of 2 nm and a
data acquisition of five points per second. The presence of formic acid
in the elution solvents is needed to maintain the pH below 2.5, thus en-
suring that anthocyanins are present as a single species (flavylium
cation).

2.4. Software

All calculationsweremade usingMATLAB software (version 7.0, The
Mathworks Inc., USA). Chromatographic time alignment was per-
formed using the COSHIFT algorithm [30] included in the software de-
veloped by Tomasi et al. [31]. MCR–ALS was implemented using the
graphical interface provided by Tauler in his web page http://www.
mcrals.info/ [32]. Principal component analysis was run using an in-
house MATLAB code. All programs were run on an HP Pavilion dv5-
2043la microcomputer with an Intel Pentium P6000, 1.86 GHz micro-
processor and 6 GB of RAM. UV–visible data were exported from the
HPLC-DAD system as.csv (comma separated values) using the HP
ChemStationRev.A.05.02 software for subsequent data processing
under MATLAB.

Preliminary LC-DAD data analysis showed absorption signals in the
range 200 to 260 nm corresponding to the HPLC solvent that was
subtracted from the original data before chemometric analysis. To
carry out this study in acceptable computational times, it was necessary
to reduce the data obtained in theHPLC-DAD runs. Therefore, each sam-
ple subject to analysis consisted of an array of 2400 × 170 data points
(0–40 min taken in steps of 1 s and 262–600 nm taken in steps of
2 nm, respectively).

3. Theory

3.1. MCR–ALS

The first step inMCR–ALS is to roughly estimate the number of com-
ponents, which can be simply performed by visual inspection of singular
values or principal component analysis (PCA) plots for the experimental
data matrix [32,33]. This initial number of components can be

http://www.mcrals.info/)
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afterwards refined, checking for their fit and reliability. The assumed bi-
linear model in MCR–ALS is analogous to the generalized Lambert–
Beer's law, where the individual responses of each component are addi-
tive. In matrix form, this model is expressed as:

D ¼ C ST þ E ð1Þ

where D (size J × K) is thematrix of experimental data, C (size J × N) is
a matrix whose columns contain the concentration profiles of the N
components present in the samples, ST (size N × K) is a matrix whose
rows contain the component spectra and E (size J × K) collects the ex-
perimental error and the variance not explained by the bilinear model
of Eq. (1).

The resolution is accomplished using an iterative ALS procedure
[33–35]. In each iteration, new C and ST matrices are obtained under a se-
ries of constraints (non-negativity, unimodality, closure, etc.) to give phys-
ical meaning to the solutions, to limit their possible number for the same
data fitting, and to decrease the extent of possible rotation ambiguities
[36]. Iterations continue until an optimal solution is obtained that fulfills
the postulated constraints and the established convergence criterion.

The procedure described above can be easily extended to the simul-
taneous analysis of multiple data sets or data matrices if they have at
least one datamode (direction) in common. For instance, if the different
data sets have been analyzed by the same spectroscopic method, the
possible data arrangement and bilinear model extension are given by
the following equation:

Daug ¼
D1
D2
…
DI

2
664

3
775 ¼

C1
C2
…
CI

2
664

3
775S

T þ
E1
E2
…
EI

2
664

3
775 ¼ CaugS

T þ Eaug ð2Þ

where Daug is the augmented data matrix, constructed from I individual
data matrices [37]: D1, D2, …DI. Each of these data matrices has size
J × K, where J is the number of rows and K is the number of columns.
In this column-wise augmentation mode, the data matrices are placed
on top of each other, giving the matrix Daug of size IJ × K, which keeps
the same number of columns in all of them, and where the different
data matrices share their column vector space, Caug is the column-
wise augmentedmatrix of size IJ × N, andEaug is the corresponding aug-
mented error matrix.

In the case of data matrices augmented row-wise, the individual
data matrices are placed one adjacent to the other, giving the matrix
Daug of size J × IK, which keeps the same number of rows in all of
them, and where the row vector space is shared:

Daug ¼ D1D2…DI½ � ¼ C ST1 ST2 … STI
h i

þ ET
1 ET

2 … ET
I

h i
¼

¼ C STaug þ ET
aug

ð3Þ

where all symbols are as in Eq. (2).When data fulfill the trilinearmodel,
both types of matrix augmentations, column- and row-wise, are equiv-
alent. However, when data do not fulfill the trilinear model (but they
still fulfill the bilinear model), the two types of augmentation are not
equivalent: matrix augmentation should be performed in the mode
where chemical rank (mathematical rank in absence of noise) is better
preserved, i.e., where it is equal to the number of chemical constituents.
This implies that the response profiles of the components in this mode
are invariant, and do not change from sample to sample. In many
cases, particularly in chromatographic–spectral analysis, such a situa-
tion is not achieved, and the chemical rank is only preserved in one of
the two modes of matrix augmentation [37]. In this latter case it is
usual to perform a column-wise augmentation sharing the spectral sub-
space among the samples, because of experimental changes in elution
profiles from run to run, both in shape and peak position. However,
this requires that the various sample component present different spec-
tra, so that selectivity is achieved in the spectral mode. Column-wise
augmentation was initially attempted in this work, but several sample
components showed almost identical spectra (e.g., all anthocyanin
compounds absorbing at ca. 520 nm cannot be resolved from each
other in this way). Therefore, we decided to employ the less common
augmentation by sharing the time subspace, or row-wise augmentation
above [27,28]. However, this requires that the elution time traces were
aligned before MCR–ALS data processing, in order to have a common
elution profile for a given component in all samples. After decomposi-
tion in this augmentation mode, the scores for each constituent are
computed as the sum of the elements of the corresponding profile in
each of the sub-matrices of Saug according to:

ai;n ¼
XK

k¼1

si k;nð Þ ð4Þ

where i identifies the sample, n the constituent, j each of the data
points or channels in the sub-matrix along the non-augmented mode
and si(k,n) the element of the Si matrix [see Eq. (3)] at channel k for
component n.

3.2. Principal component analysis

After MCR–ALS decomposition of the augmentedmatrix, a matrix of
scores is obtained, of size I × N (I = number of samples, N = number
of constituents), which could in principle be employed for sample
discrimination. However, if N N 3 it is preferable to reduce the dimen-
sionality of the score matrix using PCA, which usually concentrates the
variance in a smaller number of principal components (PCs). Usually
two of them are employed to build a plot of sample positions in score
space, achieving sample discrimination. The outcome of PCA is thus:
(1) the PC values for each sample, from which the first two are used
for discrimination, and (2) a loading matrix, which shows the relative
contribution of eachMCR–ALS score to each of the PC, helping to choose
the true discriminating variables [38].

4. Results and discussion

4.1. LC-DAD data pre-processing

Fig. 2A shows the chromatographic–spectral landscape obtained for
a specific sample (Aspiran varietal, Galánwinery) after injection into the
HPLC-DAD system. From this latter figure, specific chromatographic
traces can be obtained at selected wavelengths: Figs. 2B and C show
the corresponding elution time profiles for the same sample at 280
and 520 nm respectively. Due to the fact that most of the flavonoids
absorb at 280 nm, Fig. 2B shows a large number of unresolved compo-
nents at this latter wavelength. On the other hand, comparatively less
components appear in the chromatogram of Fig. 2C at 520 nm, which
however implies the presence of several anthocyanin compounds.

The complexity of the studied samples, which can be gathered from
the visual inspection of Fig. 2, requires suitable data processing algo-
rithms to extract hidden features, or to resolve individual sample
components in terms of their chromatograms and spectra. Among the
various algorithms allowing to process sets of data matrices such as
those presently studied, one should select a methodology which is
able tomodel the particular data structure at hand. One specific proper-
ty of the present data is the existence of changes in the elution time
profile for a given component from run to run. The algorithm of choice
under these conditions is multivariate curve resolution–alternating
least-squares (MCR–ALS). As discussed in a previous section, this latter
methodology frequently builds an augmented datamatrix by placing all
individual sample matrices adjacent to each other in a column-wise
augmentationmode. This allows one tomodel, after suitable constraints
during the fitting phase, the varying time profiles of the sample compo-
nents in the various samples.



Fig. 2. A) A typical chromatographic-wavelength landscape. B) Chromatographic trace at
280 nm. C) Chromatographic trace at 520 nm.

Fig. 3. Illustration of the application of the COSHIFT algorithm for chromatographic align-
ment to a typical sample. Black line, reference trace at 280 nm, blue line, an unaligned
chromatogram at the same wavelength, and red line, aligned chromatogram.
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However, the successful application of this technique requires that
sufficient selectivity exists in the spectral mode. If several sample
components display very similar or identical spectra, they cannot be
resolved into individual components byMCR–ALS. In this case, one via-
ble alternative is to perform a row-wise matrix augmentation [27,28].
The requirements for resolution in this augmentation mode are: (1)
selectivity in the chromatographic data mode, and (2) time synchroni-
zation or alignment of the chromatograms in such a way that compo-
nent peaks have the same shape (although the area under the peak
may differ) in different samples.

Many different algorithms are available for chromatographic–
spectral matrix alignment [29]. Some of them shift an entire chromato-
graphic matrix with respect to a reference one by a number of data
points, without modifying the peak shapes or the time distance
between peaks. More powerful methodologies exist, however, which
are able to warp the chromatograms, changing peak positions and
shapes. They are in principle necessary to process long chromatographic
runs such as those presently studied. Among the latter ones the follow-
ing have been reported: Interval Correlation Optimized Shifting
(ICOSHIFT) [39], DynamicMulti-wayWarping (DMW) [31], Correlation
Optimized Warping (COW) [40], Correlation Optimized Shifting
(COSHIFT) [31], etc. All these possibilities were probed to the present
data, with optimum results using the latter COSHIFT algorithm, which
operates by shifting a data matrix in both the row and column direc-
tions, in order to get maximum matrix-correlation from the RV-
coefficient (which is a multivariate generalization of the squared Pear-
son correlation coefficient), assuming that peak widths are invariant.
It is important to notice, in this regard, that we did not detect significant
changes in chromatographic peak shapes from run to run. As an exam-
ple, Fig. 3 shows a zoom selection of the chromatographic profile at
280 nm of a typical sample (Malbec varietal, Galán winery) before
(blue line) and after (red line) the application of this algorithm, in
which the finally obtained alignment is apparent. The sample used as
reference (black line,Merlot varietal, CoViTuwinery)wasutilized as ref-
erence for the alignment of the remaining ones.
4.2. MCR–ALS resolution of LC-DAD data

After COSHIFT chromatographic alignment of all samples, MCR–ALS
analysis was applied to the row-wise augmented data matrix, namely,
an array of 2400 × 4590 data points as explained in Section 3.1. As a
first step before data resolution, the number of components was esti-
mated by principal component analysis of the augmented data matrix,
inspecting a plot of singular values as a function of increasing number
of trial components. In this way, 10 components were selected, which
explained 94.37% of the data variance; after the tenth component, no
further significant decrease in the singular values was detected. Addi-
tionally, this initial estimate was confirmed by processing the LC-DAD
data with MCR–ALS with more components as initial estimate (i.e., 12,
15 and 20, with 95.41%, 96.54% and 97.67% explained variance, respec-
tively), with results which did not significantly differed from those ob-
tained with 10 components as initial estimate. On the other hand,
principal component analysis of the column-wise augmented data ma-
trix, namely, an array of 64,800 × 170 data points, as explained in
Section 3.1, showed that only 3 components were needed to explain
97.39% of the data variance (components 4 and 5 only explained
1.37% and 0.52% respectively), revealing that more components can in
principle be resolved in the row-wise augmented data matrix.

In order to achieve successful resolution, non-negativity in both
spectra and chromatograms was applied during the least-squares fit,
until successive changes in residual fit were smaller than 0.1%. This typ-
ically required 30 iterations. MCR–ALS resolution was obtained with
good quality parameters, namely, fitting error (L.O.F.) of 5.99% and
7.69% (regarding PCA and experimental respectively) and 99.41% of
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explained variance. The result is shown in Fig. 4, in the form of a
common chromatographic profile for the 10 resolved constituents
(Fig. 4A) and a fragment of the augmented spectra corresponding to
four selected samples (Fig. 4B). Fig. 4 shows that several sample compo-
nents were resolved with maxima at ca. 520 nm, corresponding to
different anthocyanin compounds. This would not be possible in the
usual column-wise augmentation mode, because in the latter mode a
single spectrum is retrieved for all anthocyanin compounds, and our
intention was to differentiate this important class of compounds from
each other.

As fingerprint information, MCR–ALS renders the area under the
resolved spectral profile for each component in a particular sample.
This information was arranged into a matrix of size 27 × 10 (27
samples × 10 constituents). In order to reduce the dimensionality of
this latter matrix for intuitive discrimination purposes, principal
component analysis was applied to this fingerprint matrix, as discussed
in the next Section.4.3. PCA discrimination using MCR–ALS scores

In order to study the relation among theMCR–ALS fingerprint infor-
mation with the eight wine varietals and the thirteen wineries, the out-
put score matrix was subjected to principal component analysis (PCA).
Fig. 5A shows a typical score plot of first vs. second principal component
(45.40% and 24.06% of variance retained by PC1 and PC2 respectively).
In this figure, we can observe a partial discrimination into winery prov-
enance (i.e., geographical origin) of the samples corresponding to Galán,
CoViTu, San Juan, and San Rafael wineries from the remaining samples.
Moreover, a plot of first vs. third principal component (PC3, 13.40% var-
iance retained), shown in Fig. 5B, reveals that all samples corresponding
Fig. 4. Profiles for the ten constituents resolved by MCR–ALS from the augmented data
matrix in the spectral direction. A) Elution time profiles. B) Augmented spectral profiles
(only four representative samples are shown).

Fig. 5.Discrimination of wine samples from principal component analysis. A) PC2 vs. PC1.
B) PC3 vs. PC1.
to theMalbec varietal (the insignia argentine varietal) are discriminated
from the remaining samples.

Examination of the contribution of the constituents resolved by
MCR–ALS in each principal component reveals which compounds
were decisive for wine discrimination (Fig. 6A). Constituents No. 3 and
10 displayed the largest contributions to PC1 and PC2. For PC3, on the
other hand, in addition to No. 10, a contribution from No. 2 is detected.
Fig. 6B shows the resolved spectra of the relevant constituents, in which
it can be observed that constituents No. 2 and 3 have spectra with
absorption maxima at 520 nm (anthocyanins), whereas constituent
No. 10 has a spectrumwith an absorptionmaximumat 330 nm(pheno-
lic acids). This means that different anthocyanin compounds contribute
for discrimination by geographical origin, whereas for Malbec varietal
discrimination from the rest of the samples, both anthocyanins and
phenolic acids are needed.
5. Conclusions

Wine study was carried out by direct sample injection HPLC-DAD
without sample pre-treatment. The obtained data were processed by
MCR–ALS in the form of an augmented datamatrix, with a less common
row-wise augmentation with the data matrices sharing the time
subspace. To achieve this, it was necessary to perform previous time
alignment of the chromatograms using the COSHIFT algorithm. Thema-
trix of sample scores resolved by MCR–ALS was then submitted to PCA,
which allowed discriminating all Malbec varietals from the remaining
samples, and also to explore the wine samples by geographical origin,
in this case with only partial success. The results here obtained are
promising. Analysis of the constituents of each principal component
showed that anthocyanin compounds present in wine were crucial to
perform both types of discrimination.



Fig. 6. A) Loading composition of the first three principal components, in terms of the ten
MCR–ALS resolved components. B)MCR–ALS resolved spectra of components No. 2, 3 and
10.
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