
THE SOFTWARE ARCHITECTURE OF A DECISION SUPPORT
SYSTEM FOR PROCESS PLANT INSTRUMENTATION

VAZQUEZ G. E., FERRARO S. J., CARBALLIDO J. A., PONZONI I.,
SÁNCHEZ M.C., BRIGNOLE N. B.

Grupo de Investigación y Desarrollo en Computación Científica (GIDeCC)
Departamento de Ciencias e Ingeniería de la Computación - Universidad Nacional del Sur (UNS)

Av. Alem 1253 – 8000 - Bahía Blanca – ARGENTINA
Planta Piloto de Ingeniería Química (PLAPIQUI) UNS - CONICET

Complejo CRIBABB Camino La Carrindanga km 7 – CC717 - Bahía Blanca – ARGENTINA
e-mail: dybrigno@criba.edu.ar

Abstract: - In this work we present the framework of a new software package to carry out the classification of the
state variables in a process plant in order to determine the most convenient instrumentation configuration on the
basis of adequate mathematical models of plant behaviour at steady state. We have designed and developed robust
and efficient techniques for each step of the categorization task, the key modules being those for observability and
redundancy analysis. The individual performance of each module with both academic and industrial examples was
successful, revealing comparable or even better results than other existing techniques. Key aspects, such as
modularity, user-friendliness, reliability, flexibility, expansibility, functional scalability, and stand-alone
capabilities, were taken into account for the design of the integrated software.

Key-Words: - Instrumentation – Decision Support System – Observability – Redundancy – Software Engineering

1 Introduction
The instrumentation analysis of industrial plants
basically consists in choosing the most convenient
location, quantity and type of the measuring devices
to be installed in a plant so as to provide enough
reliable information to ensure complete knowledge of
the process and its behaviour. In this respect, it is
always desirable to make the design economically
attractive by tending to select a minimum number of
measurements. The central idea is to make use of a
steady-state mathematical model that adequately
represents the plant in order to calculate as many
process variables as possible from a reduced set of
strategically located measurements.

Given a certain process, the state variables (such
as flowrates, pressures, temperatures and composi-
tions) that have associated sensors that monitor their
values are called measured variables, the rest being
known as unmeasured variables. The instrumentation
analysis techniques are based on the classification of
these variables in order to determine which
unmeasured variables can be estimated from model
equations as functions of the measurements. The

classification of the unmeasured variables is known
as observability analysis (OA), whereas the
categorization of the measurements is called
redundancy analysis (RA). An unmeasured variable
is called observable when its value can be calculated
from the measurements by means of a model
equation. Otherwise, the variable is regarded as
unobservable. A measured variable is classified as
redundant when it can also be estimated as a function
of other measurements using model equations.

Various techniques have been proposed to carry
out the classification task. A critical review of
existing methodologies can be found in [1] and [2].
Depending on the nature of the procedures, two basic
approaches can be distinguished. One of them is
structural, while the other one is numerical. The
former is preferable because the non-numeric fea-
tures of the analyses makes them independent of the
operating points, thus leading to more robust results
and wider applicability ranges. Therefore, we de-
signed and implemented robust efficient algorithms
based on the structural approach, the core ones being
described in detail in [1], [2] and [3].

Instrumentation analysis always requires some
sort of direct user interaction so that the resulting
sensor layout is tailor-made to fulfil an assortment of
requirements, which comprise economic and produc-
tion objectives, as well as reliability considerations
and safety precautions. Therefore, a decision support
system (DSS) constitutes the ideal structure for an
integrated software package for instrumentation
design.

Due to the lack of powerful algorithms and effec-
tive well-designed software, the selection of plant
sensors has been traditionally carried out on the basis
of highly simplified mathematical models that fail to
represent process plants in a realistic way. This
frequently leads to erroneous classifications, which in
turn result in ineffective sensor layouts that tend to
provide incomplete knowledge of plant behaviour,
which is undoubtedly dangerous. If this risk is
overcome by the addition of lots of redundant sensors
at random, costs dramatically increase. The avail-
ability of the DSS tool described in this work will
effectively assist process engineers to obtain trust-
worthy results efficiently without costly unnecessary
overspecification, thus facilitating the complex clas-
sification task enormously and leading to significant
savings.

2 Design Objectives
The global purpose of this research line is to develop
effective tools for process plant instrumentation
design that take full advantage of available hardware
and software resources in order to achieve more
reliable operating policies in modern industry, also
taking into account plant economics and safety. In
terms of engineering software, our specific goal is to
produce a decision support system that provides the
most suitable sensor layout through the correct
classification of the variables that define the state of a
process plant under operation. This paper aims at
describing the software architecture of this DSS,
including aspects associated with the implementation
and testing strategy. The main software features to be
required were chosen with the overall purpose of
combining agile handling with rigorous analysis to
yield a package that is reliable, user-friendly, flexible
and expansible.

3 General DSS Framework
The DSS was conceived with the general structure
shown in Figure 1, where GM, IM, OM and RM are

the acronyms for the Generation, Initialisation,
Observability- and Redundancy-Analysis Modules.

Fig. 1 The DSS Framework.

The DSS executive is the organizer that provides
the logical sequence that triggers the execution of all
the modules. The role of the executive goes beyond
the mere interconnection between routines. It also
provides reports of intermediate results at key points
of the flow. Those outputs include feasible classi-
fication results as well as guidelines generated by the
decision support tools for the action to take if the user
decides it is necessary to make further improvements
in the proposed classification. A typical modification
consists in introducing sensors at convenient loca-
tions. In this respect, the program predicts the effect
of the incorporation of each measurement on the
classification results through its decision support
tools, thus helping the user determine which sensors
to choose in order to yield the desired results in the
next iteration of the whole procedure.

4 Software Characteristics
The architecture was planned so that the resulting
software exhibited the following useful capabilities:

Reliability: Trustworthy classification results are
achieved thanks to the use of a structural non-
numeric categorization approach and symbolic
analysis tools. The analysis methods can deal with
strongly non-linear mathematical models, and the
possibility of using rigorous representations, even for
complex process plants, ensures correct realistic
classification results. The core algorithms can lead to
the best structural pattern, which takes full advantage
of the mathematical model chosen to represent the
process plant under study.

Robustness: A wide range of problems can be
solved, including the instrumentation design of
complex industrial plants of huge size.

Efficiency: Fast execution is achieved by means of
adequate implementation strategies. Algorithmic
effectiveness, which aims at achieving high quality
results with a minimum amount of iterations, also
contributes to run-time reductions. In this respect, the
decision-support (DS) tools play a significant role by
providing judicious guidelines for the quick conver-
gence to a completely satisfactory final classification.

User-friendliness: The graphical user interface
was designed taking into account the standard input-
output presentation engineers are familiar with.
Results are displayed clearly and the actions to take
at the decision-making stages in order to mould the
classification results to the specific needs of each
user are indicated in a straightforward way.

Flexibility: A modular conception of the software,
combined with the introduction of plug-in capabili-
ties, effectively contributes to the generation of a
flexible programming environment that is easily
adaptable and expandable.

Functional scalability: The general guidelines of
the object-oriented programming approach were
followed to make provisions for the future incorpora-
tion of user-defined models of special items of
equipment, additional solvers, symbolic derivation
modules, or DS tools.

Stand-alone capabilities: The user can run the
modules individually, in case he only wishes to
perform a given stage of the analysis.

 All the components of the package were con-
ceived so that they complied with these requirements

effectively. The role and main features of each
module are specified in the next subsections, the
modules being described in order of importance.

4.1 Observability-Analysis Module (OM)
This module classifies all the unmeasured variables
into observable and unobservable by means of struc-
tural analysis techniques. These methods rearrange
the occurrence matrix that indicates which variables
take part in each model equation to a block lower-
triangular pattern that evidences the classification and
indicates the sequence of subsystems to solve for the
estimation of all the observable variables as functions
of the given set of measurements.

The rows and columns of the occurrence matrix,
which is always sparse, represent equations and vari-
ables, respectively. The observability algorithms per-
mute those rows and columns until convergence to a
satisfactory pattern. At the end of the procedure, all
the square diagonal blocks that are generated contain
the observable variables. Those small dense blocks
are called assignment blocks because the diagonal
elements indicate which variable has been assigned
to each equation. The analysis indicates that the
subsystem of equations associated to each diagonal
block can be solved separately for its assigned
variables, following the precedence order indicated
by the general block-triangular pattern.

Two methodologies for OA are available. The
user can choose either the GS-FLCN Technique [1],
or the Direct Method [3]. The former yields the best
classification results for small-size problems because
in these cases it is possible to guarantee that the
partitioning of the occurrence matrix will contain
assignment blocks of minimum order. In contrast, the
Direct Method outperforms GS-FLCN for medium-
and large-size problems, providing high quality
results in significantly lower execution times.

The assignment blocks should be analytically
non-singular to guarantee the solvability of the
associated subsystems of non-linear algebraic equa-
tions. For that reason, the rearrangements proposed
by the OA must be validated. The methodology for
the detection of singular blocks follows a symbolic
approach that is closely related to the RA technique.
Therefore, the integration between the OM and the
RM naturally arose.

Final
Classification

Proposed
Classification

Rejected
Blocks

RM
Detection of

Singular
Blocks

RM Redundancy Analysis

OM

RM
Common

Core

Fig. 2 Interaction between OM and RM.

Both modules communicate as shown in Figure 2.

If a singular block is detected, it is tagged as “forbid-
den” and the observability algorithm is run again.
Otherwise, the RM proceeds with the actual RA.

4.2 Redundancy-Analysis Module (RM)
The function of the Redundancy-Analysis Module
(RM) is to classify measured variables as redundant
or non-redundant. The module is an implementation
of the SDIF algorithm (Symbolic Derivation of Im-
plicit Functions) [2]. In addition, the module serves
the secondary purpose of detecting singular blocks
from the observability analysis as explained above.

In principle, the RM can be requested to classify
either a few or all the measured variables in a given
system. The RM reads in the full list of equations and
measured variables generated by the GM, as well as
the output from the OM. After processing, it returns
the classification of each variable as “Redundant”,
“Non-redundant” or “Unknown”. When the RM is
operating in its secondary mode, i.e. detecting singu-
lar blocks, the input is the same and the output is a
list of the singular blocks found, formatted as valid
feedback for the OM, which will ban the appearance
of those blocks from then on.

The module performs many symbolic calculations
on algebraic expressions, mainly derivatives and
simplifications. It does so by interfacing with an
external CAS (Computer Algebra System). One
design objective is that the RM be able to use a
number of alternative CASes, such as Yacas [4],
Maple® (via the OpenMaple® API), or any other
package for the same purpose.

For each measurement to be classified, the RM

constructs and analyses algebraic expressions accord-
ing to the SDIF algorithm. This analysis consists in a
breadth-first search over a tree of expressions. If no
conclusion could be drawn after examining a certain
number of tree levels, the variable is labelled “Un-
known”. In many cases, the “Unknown” status can be
removed by deeper exploration or by choosing a
different CAS.

The choice of the CAS also influences the speed
of the classification, since a very large portion of
CPU time is spent on the symbolic manipulation.
Internally, the RM addresses speed issues by main-
taining expression caches, i.e., lists of expressions
that were already simplified or analysed, along with
the corresponding result.

Thanks to the adoption of an object-oriented
design philosophy, it is not difficult to write a plug-in
for a new CAS. Basically, one has to supply methods
for computing derivatives, simplifying, handling
matrices, calculating determinants, and solving linear
systems. The plug-in interfaces directly with the CAS
library, which does the actual job.

4.3 Decision-Support (DS) Tools
This module is transversal to the architecture of the
whole system. Its objective is to provide intelligent
advice that guides the user, helping him to take the
most convenient action at the decision-making key
points of the classification procedure. The package
includes different DS tools for OA and RA.

The main DS tool for OA is based on the concept
of decoupling factors [1]. The OA algorithm includes
a major loop that yields an intermediate BTF pattern
at the end of each iteration. Those results correspond
to the best classification that can be achieved with the
given set of plant instruments. If those sensors fail to
provide enough information, and there are indeter-
minable variables of interest, the user has to decide
where to add sensors in order to make those variables
observable without unnecessary over-specification of
measurements. The DS tool predicts the effect of the
addition of each sensor on the BTF pattern, thus
guiding the user to choose only a few additional
measurements that will produce maximum increase
in plant knowledge in the next iteration.

As regards the RA-related DS approach, the
engineer is often interested in having more confi-
dence on the values of certain state variables, which
are called key variables. To that end, he could try to
ensure more accurate knowledge of those variables
by making every key measurement redundant and
every key observable variable a function of redun-

dant measurements only. In any case, this can be
achieved by incorporating extra measurements. In
this respect, the RM assists the user in the judicious
choice of those additional sensors.

Finally, the possibility of devising other predictive
tools to foresee the impact of the addition and
removal of measurements on the basis of the evol-
utionary approach adopted for the automatic
initialisation procedure will also be considered. The
central idea is to derive a tool that uses the multi-
objective optimisation algorithm that constitutes the
core of the initialisation module (IM), thus generating
tighter interconnections between the IM and the rest
of the DSS.

4.4 Model-Generation Module (GM)
This module builds a system of non-linear algebraic
equations that represents the process plant under
study at steady state. The mathematical model is
generated automatically from the information on
plant topology and the initial configuration of sen-
sors. The former is always provided by the user
through the Graphical User Interface, while the latter
may optionally be generated by the automatic
Initialisation Module.

4.5 Initialisation Module (IM)
This module generates a suitable initial configuration
of sensors by means of a new algorithm that we
generated on the basis of an evolutionary computing
approach [5].

The problem of finding an adequate instrumenta-
tion layout could in principle be posed as the task of
locating a minimum amount of sensors so that maxi-
mum knowledge of the state of the process plant is
attained during operation. In fact, this is a multi-
objective optimisation problem because the solution
should provide a satisfactory trade-off among con-
flicting objectives related to various desirable fea-
tures of the configuration, such as cost and reliability
issues. Since our method was especially devised to
serve as the initialisation of the OA and RA tech-
niques employed in this DSS, algorithmic objectives
to facilitate the quick convergence to a satisfactory
efficient classification in the OM and RM were also
incorporated to the formulation of the objective
function.

The module contains a multi-objective genetic
algorithm whose individuals are binary chains that
represent feasible sensor configurations. The proce-
dure judiciously employs classic operators for selec-

tion, crossover and mutation in order to favour the
survival of the fittest individuals in accordance with a
multi-objective criterion. The fitness function follows
an aggregated approach for the conciliation of all the
individual objectives.

We are now refining the formulation of the fitness
function and working on the selection of the most
convenient convergence criteria that will constitute
the final implementation.

4.6 The Graphical User Interface (GUI)
This module enables the interaction between the user
and the DSS. It is basically a window-based interface
that provides facilities for the specification of the
process units and streams that constitute the plant
topology. The user can also locate instruments on any
process variable, choose the solvers and specify
thermodynamic functionalities. The GUI thus allows
the parametrisation of aspects associated to the
various modules that conform the DSS, and it is also
responsible for the display of all the results and
diagnosis information. A complete description of its
features can be found in [6].

5 Implementation and Testing Strategy
The detailed design implementation and testing of the
DSS was organized in five phases, each of them
regarded as the development of a thorough stand-
alone software system that would be later extended
and evolve towards a bigger software package that in
the end would turn into the complete DSS for
instrumentation design. As is clear from the descrip-
tion that follows, the division into stages does not
necessarily mean that all of them have to be carried
out sequentially.

The first phase was the design of the program
called ModGen [6], which basically comprises the
GUI and the GM described above. At this stage, the
software engineering methodology to be employed in
the whole project was defined and described in [6]
under the name of modified Rapid Application
Development (RAD) paradigm.

The second phase consisted in the design and
implementation of new observability techniques
based on depth-first searches along undirected graphs
[1], including the formulation of heuristic rules [7] to
guide the search more effectively. Then, the software
resulting from Phase 1 was extended to produce a
DSS for OA [8]. Later we developed and imple-
mented an alternative method [2] that is ready for
integration to the complete DSS.

The third phase refers to the design and develop-
ment of a new RA method. The RM module de-
scribed in [2] was conceived, implemented and tested
separately and we are at present working on its inte-
gration to the software resulting from Phase 2 in
order to end up with a package that performs a
complete classification of all process variables.

The fourth phase consists in the incorporation of
the IM. We have already designed an initialisation
strategy [5] and implemented the corresponding pro-
totype. The model-refining task that involves testing
algorithmic performance as we make further adjust-
ments on the definition of the fitness function is now
well under way.

The last phase of the project is the addition of the
DS tools and their integration to the overall system.
The algorithm based on the decoupling factors has
already been implemented and tested thoroughly, and
we are now working on the design and implementa-
tion of the DS tool for RA.

In general, all the modules were first developed
separately. A prototype for each of the procedural
modules was built in Matlab®. Then, the final imple-
mentations were written in C or C++. As to the
visualization routines, the GUI and the GM were
developed in Visual Basic®. Each module, in both
prototype and final form, was tested using a suite of
study cases of varying size and complexity. In the
first place, small academic examples were chosen or
designed to provide representative trials. Some of the
models were purely mathematical, while others could
be associated to standard process items of industrial
equipment. Then, the performance on industrial ex-
amples corresponding to real plant sectors of increas-
ing size and complexity was attempted. The main
three sample cases correspond to a group of mixers
and heat exchangers [9], an ammonia plant [10] and
an ethane plant [1].

6 Conclusions
 We present the general framework for the design
and implementation of a complete Decision Support
System for the rigorous instrumentation design of
industrial plants currently under development. All the
main components of the software were designed by
our research team and all of them have distinctive
features that represent improvements in existing
methodologies for the same purpose. The software
characteristics make the final product attractive for
its industrial application.

References:
[1] Ponzoni, I.; Sánchez, M. C.; Brignole, N. B. A
New Structural Algorithm for Observability
Classification. Ind. Eng. Chem. Res., 38, 8, 1999,
3027–3035.
[2] Ferraro, S. J.; Ponzoni, I.; Sánchez, M. C.;
Brignole, N. B. A Symbolic Derivation Approach for
Redundancy Analysis, Ind. Eng. Chem. Res., 41, 23,
2002, 5692–5701.
[3] Ponzoni, I.; Sánchez, M. C.; Brignole, N. B. A
Direct Method For Structural Observability Analysis,
Ind. Eng. Chem. Res., 2003, in press.
[4] Pinkus, A. Z.; Winitzki, S. YACAS: A Do-It-
Yourself Computer Algebra System, Lecture Notes in
Artificial Intelligence 2385, Springer-Verlag, 2002
332–336. http://yacas.sourceforge.net/
[5] Carballido, J. A.; Ponzoni, I.; Brignole, N. B.
Initial Sensor Network Design With A Multi-
Objective Genetic Algorithm, ASAI 2003,
(Argentinian Symposium on Artificial Intelligence,
XXIII JAIIO), Buenos Aires, Argentina, 1–5 Sept.,
2003.
[6] Vazquez, G. E.; Ponzoni, I.; Sánchez, M. C.;
Brignole, N. B. ModGen: A Model Generator for
Instrumentation Analysis, Advances in Engineering
Software, 32, 1, 2001, 37–48.
[7] Ponzoni, I.; Sánchez, M. C.; Brignole, N. B.
CDHG: a New Partitioning Algorithm based on the
Detection of Cycles in Hypergraphs, Lat. Am.
Applied Res., 28, Nº1/2, 1998, 31–36.
[8] Ponzoni, I.; Vazquez, G. E.; Sánchez, M. C.;
Brignole N. B. A Computer-Aided DSS for
Observability Analysis, Signal Processing,
Communications and Computer Science, Electrical
and Computer Engineering Series, 2000, 222–227.
[9] Joris, P.; Kalitventzeff, B. Process Measurement
Analysis and Validation. XVIII Congr. The Use of
Comp. in Chem. Engng., CEF’87, Italy, April 1987,
41–46.
[10] Bike, S. Design of an Ammonia Synthesis Plant.
CACHE Case Study Report, Dept. Chem. Engng.
Carnegie Mellon University, 1985.

