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Abstract: - In this work we present the framework of a new software package to carry out the classification of the 
state variables in a process plant in order to determine the most convenient instrumentation configuration on the 
basis of adequate mathematical models of plant behaviour at steady state. We have designed and developed robust 
and efficient techniques for each step of the categorization task, the key modules being those for observability and 
redundancy analysis. The individual performance of each module with both academic and industrial examples was 
successful, revealing comparable or even better results than other existing techniques. Key aspects, such as 
modularity, user-friendliness, reliability, flexibility, expansibility, functional scalability, and stand-alone 
capabilities, were taken into account for the design of the integrated software. 
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1 Introduction 
The instrumentation analysis of industrial plants 
basically consists in choosing the most convenient 
location, quantity and type of the measuring devices 
to be installed in a plant so as to provide enough 
reliable information to ensure complete knowledge of 
the process and its behaviour. In this respect, it is 
always desirable to make the design economically 
attractive by tending to select a minimum number of 
measurements. The central idea is to make use of a 
steady-state mathematical model that adequately 
represents the plant in order to calculate as many 
process variables as possible from a reduced set of 
strategically located measurements. 

Given a certain process, the state variables (such 
as flowrates, pressures, temperatures and composi-
tions) that have associated sensors that monitor their 
values are called measured variables, the rest being 
known as unmeasured variables. The instrumentation 
analysis techniques are based on the classification of 
these variables in order to determine which 
unmeasured variables can be estimated from model 
equations as functions of the measurements. The 

classification of the unmeasured variables is known 
as observability analysis (OA), whereas the 
categorization of the measurements is called 
redundancy analysis (RA). An unmeasured variable 
is called observable when its value can be calculated 
from the measurements by means of a model 
equation. Otherwise, the variable  is regarded as 
unobservable.  A measured variable is classified as 
redundant when it can also be estimated as a function 
of other measurements using model equations. 

Various techniques have been proposed to carry 
out the classification task. A critical review of 
existing methodologies can be found in [1] and [2]. 
Depending on the nature of the procedures, two basic 
approaches can be distinguished. One of them is 
structural, while the other one is numerical. The 
former is preferable because the non-numeric fea-
tures of the analyses makes them independent of the 
operating points, thus leading to more robust results 
and wider applicability ranges. Therefore, we de-
signed and implemented robust efficient algorithms 
based on the structural approach, the core ones being 
described in detail in [1], [2] and [3].   



Instrumentation analysis always requires some 
sort of direct user interaction so that the resulting 
sensor layout is tailor-made to fulfil an assortment of 
requirements, which comprise economic and produc-
tion objectives, as well as reliability considerations 
and safety precautions. Therefore, a decision support 
system (DSS) constitutes the ideal structure for an 
integrated software package for instrumentation 
design.  

Due to the lack of powerful algorithms and effec-
tive well-designed software, the selection of plant 
sensors has been traditionally carried out on the basis 
of highly simplified mathematical models that fail to 
represent process plants in a realistic way. This 
frequently leads to erroneous classifications, which in 
turn result in ineffective sensor layouts that tend to 
provide incomplete knowledge of plant behaviour, 
which is undoubtedly dangerous. If this risk is 
overcome by the addition of lots of redundant sensors 
at random, costs dramatically increase. The avail-
ability of the DSS tool described in this work will 
effectively assist process engineers to obtain trust-
worthy results efficiently without costly unnecessary 
overspecification, thus facilitating the complex clas-
sification task enormously and leading to significant 
savings. 

2 Design Objectives 
The global purpose of this research line is to develop 
effective tools for process plant instrumentation 
design that take full advantage of available hardware 
and software resources in order to achieve more 
reliable operating policies in modern industry, also 
taking into account plant economics and safety. In 
terms of engineering software, our specific goal is to 
produce a decision support system that provides the 
most suitable sensor layout through the correct 
classification of the variables that define the state of a 
process plant under operation. This paper aims at 
describing the software architecture of this DSS, 
including aspects associated with the implementation 
and testing strategy. The main software features to be 
required were chosen with the overall purpose of 
combining agile handling with rigorous analysis to 
yield a package that is reliable, user-friendly, flexible 
and expansible.  

3 General DSS Framework 
The DSS was conceived with the general structure 
shown in Figure 1, where GM, IM, OM and RM are 

the acronyms for the Generation, Initialisation, 
Observability- and Redundancy-Analysis Modules. 
 
    

 
 

Fig. 1 The DSS Framework. 

The DSS executive is the organizer that provides 
the logical sequence that triggers the execution of all 
the modules. The role of the executive goes beyond 
the mere interconnection between routines. It also 
provides reports of intermediate results at key points 
of the flow. Those outputs include feasible classi-
fication results as well as guidelines generated by the 
decision support tools for the action to take if the user 
decides it is necessary to make further improvements 
in the proposed classification. A typical modification 
consists in introducing sensors at convenient loca-
tions. In this respect, the program predicts the effect 
of the incorporation of each measurement on the 
classification results through its decision support 
tools, thus helping the user determine which sensors 
to choose in order to yield the desired results in the 
next iteration of the whole procedure.   



4 Software Characteristics 
The architecture was planned so that the resulting 
software exhibited the following useful capabilities: 

Reliability: Trustworthy classification results are 
achieved thanks to the use of a structural non-
numeric categorization approach and symbolic 
analysis tools. The analysis methods can deal with 
strongly non-linear mathematical models, and the 
possibility of using rigorous representations, even for 
complex process plants, ensures correct realistic 
classification results. The core algorithms can lead to 
the best structural pattern, which takes full advantage 
of the mathematical model chosen to represent the 
process plant under study. 

Robustness: A wide range of problems can be 
solved, including the instrumentation design of 
complex industrial plants of huge size. 

Efficiency: Fast execution is achieved by means of 
adequate implementation strategies. Algorithmic 
effectiveness, which aims at achieving high quality 
results with a minimum amount of iterations, also 
contributes to run-time reductions. In this respect, the 
decision-support (DS) tools play a significant role by 
providing judicious guidelines for the quick conver-
gence to a completely satisfactory final classification. 

User-friendliness: The graphical user interface 
was designed taking into account the standard input-
output presentation engineers are familiar with. 
Results are displayed clearly and the actions to take 
at the decision-making stages in order to mould the 
classification results to the specific needs of each 
user are indicated in a straightforward way.  

Flexibility: A modular conception of the software, 
combined with the introduction of plug-in capabili-
ties, effectively contributes to the generation of a 
flexible programming environment that is easily 
adaptable and expandable. 

Functional scalability: The general guidelines of 
the object-oriented programming approach were 
followed to make provisions for the future incorpora-
tion of user-defined models of special items of 
equipment, additional solvers, symbolic derivation 
modules, or DS tools.  

Stand-alone capabilities: The user can run the 
modules individually, in case he only wishes to 
perform a given stage of the analysis. 

 All the components of the package were con-
ceived so that they complied with these requirements 

effectively. The role and main features of each 
module are specified in the next subsections, the 
modules being described in order of importance. 

4.1 Observability-Analysis Module (OM) 
This module classifies all the unmeasured variables 
into observable and unobservable by means of struc-
tural analysis techniques. These methods rearrange 
the occurrence matrix that indicates which variables 
take part in each model equation to a block lower-
triangular pattern that evidences the classification and 
indicates the sequence of subsystems to solve for the 
estimation of all the observable variables as functions 
of the given set of  measurements.  

The rows and columns of the occurrence matrix, 
which is always sparse, represent equations and vari-
ables, respectively. The observability algorithms per-
mute those rows and columns until convergence to a 
satisfactory pattern. At the end of the procedure, all 
the square diagonal blocks that are generated contain 
the observable variables. Those small dense blocks 
are called assignment blocks because the diagonal 
elements indicate which variable has been assigned 
to each equation. The analysis indicates that the 
subsystem of equations associated to each diagonal 
block can be solved separately for its assigned 
variables, following the precedence order indicated 
by the general block-triangular pattern.   

Two methodologies for OA are available. The 
user can choose either the GS-FLCN Technique [1], 
or the Direct Method [3]. The former yields the best 
classification results for small-size problems because 
in these cases it is possible to guarantee that the 
partitioning of the occurrence matrix will contain 
assignment blocks of minimum order. In contrast, the 
Direct Method outperforms GS-FLCN for medium- 
and large-size problems, providing high quality 
results in  significantly lower execution times. 

The assignment blocks should be analytically 
non-singular to guarantee the solvability of the 
associated subsystems of non-linear algebraic equa-
tions. For that reason, the rearrangements proposed 
by the OA must be validated. The methodology for 
the detection of singular blocks follows a symbolic 
approach that is closely related to the RA technique. 
Therefore, the integration between the OM and the 
RM naturally arose. 
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Fig. 2 Interaction between OM and RM. 
 
Both modules communicate as shown in Figure 2. 

If a singular block is detected, it is tagged as “forbid-
den” and the observability algorithm is run again. 
Otherwise, the RM proceeds with the actual RA. 

4.2 Redundancy-Analysis Module (RM) 
The function of the Redundancy-Analysis Module 
(RM) is to classify measured variables as redundant 
or non-redundant. The module is an implementation 
of the SDIF algorithm (Symbolic Derivation of Im-
plicit Functions) [2]. In addition, the module serves 
the secondary purpose of detecting singular blocks 
from the observability analysis as explained above. 

In principle, the RM can be requested to classify 
either a few or all the measured variables in a given 
system. The RM reads in the full list of equations and 
measured variables generated by the GM, as well as 
the output from the OM. After processing, it returns 
the classification of each variable as “Redundant”, 
“Non-redundant” or “Unknown”. When the RM is 
operating in its secondary mode, i.e. detecting singu-
lar blocks, the input is the same and the output is a 
list of the singular blocks found, formatted as valid 
feedback for the OM, which will ban the appearance 
of those blocks from then on. 

The module performs many symbolic calculations 
on algebraic expressions, mainly derivatives and 
simplifications. It does so by interfacing with an 
external CAS (Computer Algebra System). One 
design objective is that the RM be able to use a 
number of alternative CASes, such as Yacas [4], 
Maple® (via the OpenMaple® API), or any other 
package for the same purpose.  

For each measurement to be classified, the RM 

constructs and analyses algebraic expressions accord-
ing to the SDIF algorithm. This analysis consists in a 
breadth-first search over a tree of expressions. If no 
conclusion could be drawn after examining a certain 
number of tree levels, the variable is labelled “Un-
known”. In many cases, the “Unknown” status can be 
removed by deeper exploration or by choosing a 
different CAS. 

The choice of the CAS also influences the speed 
of the classification, since a very large portion of 
CPU time is spent on the symbolic manipulation. 
Internally, the RM addresses speed issues by main-
taining expression caches, i.e., lists of expressions 
that were already simplified or analysed, along with 
the corresponding result. 

Thanks to the adoption of an object-oriented 
design philosophy, it is not difficult to write a plug-in 
for a new CAS. Basically, one has to supply methods 
for computing derivatives, simplifying, handling 
matrices, calculating determinants, and solving linear 
systems. The plug-in interfaces directly with the CAS 
library, which does the actual job. 

4.3 Decision-Support (DS) Tools 
This module is transversal to the architecture of the 
whole system. Its objective is to provide intelligent 
advice that guides the user, helping him to take the 
most convenient action at the decision-making key 
points of the classification procedure. The package 
includes different DS tools for OA and RA. 

The main DS tool for OA is based on the concept 
of decoupling factors [1]. The OA algorithm includes 
a major loop that yields an intermediate BTF pattern 
at the end of each iteration. Those results correspond 
to the best classification that can be achieved with the 
given set of plant instruments. If those sensors fail to 
provide enough information, and there are indeter-
minable variables of interest, the user has to decide 
where to add sensors in order to make those variables 
observable without unnecessary over-specification of 
measurements. The DS tool predicts the effect of the 
addition of each sensor on the BTF pattern, thus 
guiding the user to choose only a few additional 
measurements that will produce maximum increase 
in plant knowledge in the next iteration. 

As regards the RA-related DS approach, the 
engineer is often interested in having more confi-
dence on the values of certain state variables, which 
are called key variables. To that end, he could try to 
ensure more accurate knowledge of those variables 
by making every key measurement redundant and 
every key observable variable a function of redun-



dant measurements only. In any case, this can be 
achieved by incorporating extra measurements. In 
this respect, the RM assists the user in the judicious 
choice of those additional sensors. 

Finally, the possibility of devising other predictive 
tools to foresee the impact of the addition and 
removal of measurements on the basis of the evol-
utionary approach adopted for the automatic 
initialisation procedure will also be considered. The 
central idea is to derive a tool that uses the multi-
objective optimisation algorithm that constitutes the 
core of the initialisation module (IM), thus generating 
tighter interconnections between the IM and the rest 
of the DSS. 

4.4 Model-Generation Module (GM) 
This module builds a system of non-linear algebraic 
equations that represents the process plant under 
study at steady state. The mathematical model is 
generated automatically from the information on 
plant topology and the initial configuration of sen-
sors. The former is always provided by the user 
through the Graphical User Interface, while the latter 
may optionally be generated by the automatic 
Initialisation Module.  

4.5 Initialisation Module (IM) 
This module generates a suitable initial configuration 
of sensors by means of a new algorithm that we 
generated on the basis of an evolutionary computing 
approach [5].  

The problem of finding an adequate instrumenta-
tion layout could in principle be posed as the task of 
locating a minimum amount of sensors so that maxi-
mum knowledge of the state of the process plant is 
attained during operation. In fact, this is a multi-
objective optimisation problem because the solution 
should  provide a satisfactory trade-off among con-
flicting objectives related to various desirable fea-
tures of the configuration, such as cost and reliability 
issues. Since our method was especially devised to 
serve as the initialisation of the OA and RA tech-
niques employed in this DSS, algorithmic objectives 
to facilitate the quick convergence to a satisfactory 
efficient classification in the OM and RM were also 
incorporated to the formulation of the objective 
function. 

The module contains a multi-objective genetic 
algorithm whose individuals are binary chains that 
represent feasible sensor configurations. The proce-
dure judiciously employs classic operators for selec-

tion, crossover and mutation in order to favour the 
survival of the fittest individuals in accordance with a 
multi-objective criterion. The fitness function follows 
an aggregated approach for the conciliation of all the 
individual objectives. 

We are now refining the formulation of the fitness 
function and working on the selection of the most 
convenient convergence criteria that will constitute 
the final implementation.  

4.6 The Graphical User Interface (GUI) 
This module enables the interaction between the user 
and the DSS. It is basically a window-based interface 
that provides facilities for the specification of the 
process units and streams that constitute the plant 
topology. The user can also locate instruments on any 
process variable, choose the solvers and specify 
thermodynamic functionalities. The GUI thus allows 
the parametrisation of aspects associated to the 
various modules that conform the DSS, and it is also 
responsible for the display of all the results and 
diagnosis information. A complete description of its 
features can be found in [6]. 

5 Implementation and Testing Strategy 
The detailed design implementation and testing of the 
DSS was organized in five phases, each of them 
regarded as the development of a thorough stand-
alone software system that would be later extended 
and evolve towards a bigger software package that in 
the end would turn into the complete DSS for 
instrumentation design. As is clear from the descrip-
tion that follows, the division into stages does not 
necessarily mean that all of them have to be carried 
out sequentially. 

The first phase was the design of the program 
called ModGen [6], which basically comprises the 
GUI and the GM described above. At this stage, the 
software engineering methodology to be employed in 
the whole project was defined and described in [6] 
under the name of modified Rapid Application 
Development (RAD) paradigm. 

The second phase consisted in the design and 
implementation of new observability techniques 
based on depth-first searches along undirected graphs 
[1], including the formulation of heuristic rules [7] to 
guide the search more effectively. Then, the software 
resulting from Phase 1 was extended to produce a 
DSS for OA [8]. Later we developed and imple-
mented an alternative method [2] that is ready for 
integration to the complete DSS.  



The third phase refers to the design and develop-
ment of a new RA method. The RM module de-
scribed in [2] was conceived, implemented and tested 
separately and we are at present working on its inte-
gration to the software resulting from Phase 2 in 
order to end up with a package that performs a 
complete classification of all process variables. 

The fourth phase  consists in the incorporation of 
the IM. We have already designed an initialisation 
strategy [5] and implemented the corresponding pro-
totype. The model-refining task that involves testing 
algorithmic performance as we make further adjust-
ments on the definition of the fitness function is now 
well under way. 

The last phase of the project is the addition of the 
DS tools and their integration to the overall system. 
The algorithm based on the decoupling factors has 
already been implemented and tested thoroughly, and 
we are now working on the design and implementa-
tion of the DS tool for RA. 

In general, all the modules were first developed 
separately. A prototype for each of the procedural 
modules was built in Matlab®. Then, the final imple-
mentations were written in C or C++. As to the 
visualization routines, the GUI and the GM were 
developed in Visual Basic®. Each module, in both 
prototype and final form, was tested using a suite of 
study cases of varying size and complexity. In the 
first place, small academic examples were chosen or 
designed to provide representative trials. Some of the 
models were purely mathematical, while others could 
be associated to standard process items of industrial 
equipment. Then, the performance on industrial ex-
amples corresponding to real plant sectors of increas-
ing size and complexity was attempted. The main 
three sample cases correspond to a group of mixers 
and heat exchangers [9], an ammonia plant [10] and 
an ethane plant [1]. 

6 Conclusions 
   We present the general framework for the design 
and implementation of a complete Decision Support 
System for the rigorous instrumentation design of 
industrial plants currently under development. All the 
main components of the software were designed by 
our research team and all of them have distinctive 
features that represent improvements in existing 
methodologies for the same purpose. The software 
characteristics make the final product attractive for 
its industrial application.   
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