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Abstract

We describe a type system for the linear-algebraic λ-calculus. The type system accounts
for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically
describe the linear combinations of terms that will be obtained when reducing the pro-
grams. This gives rise to an original type theory where types, in the same way as terms,
can be superposed into linear combinations. We prove that the resulting typed λ-calculus
is strongly normalising and features weak subject reduction. Finally, we show how to
naturally encode matrices and vectors in this typed calculus.

1. Introduction

1.1. (Linear-)algebraic λ-calculi

A number of recent works seek to endow the λ-calculus with a vector space structure.
This agenda has emerged simultaneously in two different contexts.

• The field of Linear Logic considers a logic of resources where the propositions them-
selves stand for those resources – and hence cannot be discarded nor copied. When
seeking to find models of this logic, one obtains a particular family of vector spaces
and differentiable functions over these. It is by trying to capture these mathemat-
ical structures back into a programming language that Ehrhard and Regnier have
defined the differential λ-calculus [28], which has an intriguing differential operator
as a built-in primitive and an algebraic module of the λ-calculus terms over natural
numbers. Vaux [43] has focused his attention on a ‘differential λ-calculus without
differential operator’, extending the algebraic module to positive real numbers. He
obtained a confluence result in this case, which stands even in the untyped setting.
More recent works on this algebraic λ-calculus tend to consider arbitrary scalars
[1, 27, 40].

• The field of Quantum Computation postulates that, as computers are physical
systems, they may behave according to quantum theory. It proves that, if this
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is the case, novel, more efficient algorithms are possible [30, 39] – which have no
classical counterpart. Whilst partly unexplained, it is nevertheless clear that the
algorithmic speed-up arises by tapping into the parallelism granted to us ‘for free’
by the superposition principle, which states that if t and u are possible states of
a system, then so is the formal linear combination of them α · t + β · u (with α
and β some arbitrary complex numbers, up to a normalizing factor). The idea
of a module of λ-terms over an arbitrary scalar field arises quite naturally in this
context. This was the motivation behind the linear-algebraic λ-calculus, or Lineal
for short, by Dowek and one of the authors [7], who obtained a confluence result
which holds for arbitrary scalars and again covers the untyped setting.

These two languages are rather similar: they both merge higher-order computation, be
they terminating or not, in its simplest and most general form (namely the untyped
λ-calculus) together with linear algebra also in its simplest and most general form (the
axioms of vector spaces). In fact they can simulate each other [8]. Our starting point is
the second one, Lineal, because its confluence proof allows arbitrary scalars and because
one has to make a choice. Whether the models developed for the first language, and the
type systems developed for the second language, carry through to one another via their
reciprocal simulations, is a topic of future investigation.

1.2. Other motivations to study (linear-)algebraic λ-calculi

The two languages are also reminiscent of other works in the literature:

• Algebraic and symbolic computation. The functional style of programming is based
on the λ-calculus together with a number of extensions, so as to make everyday
programming more accessible. Hence since the birth of functional programming
there have been several theoretical studies on extensions of the λ-calculus in order
to account for basic algebra (see for instance Dougherty’s algebraic extension [26] for
normalising terms of the λ-calculus) and other basic programming constructs such
as pattern-matching [3, 16], together with sometimes non-trivial associated type
theories [37]. Whilst this was not the original motivation behind (linear-)algebraic
λ-calculi, they could still be viewed as an extension of the λ-calculus in order to
handle operations over vector spaces and make programming more accessible with
them. The main difference in approach is that the λ-calculus is not seen here as a
control structure which sits on top of the vector space data structure, controlling
which operations to apply and when. Rather, the λ-calculus terms themselves can
be summed and weighted, hence they actually are vectors, upon which they can
also act.

• Parallel and probabilistic computation. The above intertwinings of concepts are
essential if seeking to represent parallel or probabilistic computation as it is the
computation itself which must be endowed with a vector space structure. The
ability to superpose λ-calculus terms in that sense takes us back to Boudol’s parallel
λ-calculus [12] or de Liguoro and Piperno’s work on non-deterministic extensions
of λ-calculus [18], as well as more recent works such as [14, 24, 36]. It may also
be viewed as being part of a series of works on probabilistic extensions of calculi,
e.g. [13, 31] and [19, 21, 35] for λ-calculus more specifically.
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Hence (linear-)algebraic λ-calculi can be seen as a platform for various applications,
ranging from algebraic computation, probabilistic computation, quantum computation
and resource-aware computation.

1.3. The language

The language we consider in this paper will be called the vectorial λ-calculus, denoted
by λvec. It is derived from Lineal [7]. This language admits the regular constructs of λ-
calculus: variables x, y, . . ., λ-abstractions λx.s and application (s) t. But it also admits
linear combinations of terms: 0, s + t and α · s are terms, where the scalar α ranges
over a ring. As in [7], it behaves in a call-by-value oriented manner, in the sense that
(λx.r) (s+ t) first reduces to (λx.r) s+(λx.r) t until basis terms (i.e. values) are reached,
at which point beta-reduction applies.

The set of the normal forms of the terms can then be interpreted as a module and the
term (λx.r) s can be seen as the application of the linear operator (λx.r) to the vector s.
The goal of this paper is to give a formal account of linear operators and vectors at the
level of the type system.

1.4. Our contributions: The types

Our goal is to characterize the vectoriality of the system of terms, as summarized by
the slogan:

If s : T and t : R then α · s+ β · t : α · T + β · R.

In the end we achieve a type system such that:

• The typed language features a slightly weakened subject reduction property (The-
orem 4.1).

• The typed language features strong normalization (cf. Theorem 5.7).

• In general, if t has type
∑

i αi·Ui, then it must reduce to a t′ of the form
∑

ij βij ·bij ,
where: the bij ’s are basis terms of unit type Ui, and

∑

ij βij = αi. (cf. Theo-
rem 6.1).

• In particular finite vectors and matrices and tensorial products can be encoded
within λvec. In this case, the type of the encoded expressions coincides with the
result of the expression (cf. Theorem 6.2).

Beyond these formal results, this work constitutes a first attempt to describe a natural
type system with type constructs α· and + and to study their behaviour.

1.5. Directly related works

This paper is part of a research path [2, 4, 7, 15, 25, 41, 42] to design a typed
language where terms can be linear combinations of terms (they can be interpreted as
probability distributions or quantum superpositions of data and programs) and where
the types capture some of this additional structure (they provide the propositions for a
probabilistic or quantum logic via Curry-Howard).

Along this path, a first step was accomplished in [4] with scalars in the type system.
If α is a scalar and Γ ⊢ t : T is a valid sequent, then Γ ⊢ α · t : α · T is a valid sequent.
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When the scalars are taken to be positive real numbers, the developed language actually
provides a static analysis tool for probabilistic computation. However, it fails to address
the following issue: without sums but with negative numbers, the term representing
“true − false”, namely λx.λy.x − λx.λy.y, is typed with 0 · (X → (X → X)), a type
which fails to exhibit the fact that we have a superposition of terms.

A second step was accomplished in [25] with sums in the type system. In this case,
if Γ ⊢ s : S and Γ ⊢ t : T are two valid sequents, then Γ ⊢ s + t : S + T is a valid
sequent. However, the language considered is only the additive fragment of Lineal, it
leaves scalars out of the picture. For instance, λx.λy.x − λx.λy.y, does not have a type,
due to its minus sign. Each of these two contributions required renewed, careful and
lengthy proofs about their type systems, introducing new techniques.

The type system we propose in this paper builds upon these two approaches: it
includes both scalars and sums of types, thereby reflecting the vectorial structure of the
terms at the level of types. Interestingly, combining the two separate features of [4, 25]
raises subtle novel issues, which we identify and discuss (cf. Section 3). Equipped with
those two vectorial type constructs, the type system is indeed able to capture some fine-
grained information about the vectorial structure of the terms. Intuitively, this means
keeping track of both the ‘direction’ and the ‘amplitude’ of the terms.

A preliminary version of this paper has appeared in [5].

1.6. Plan of the paper

In Section 2, we present the language. We discuss the differences with the original
language Lineal [7]. In Section 3, we explain the problems arising from the possibility of
having linear combinations of types, and elaborate a type system that addresses those
problems. Section 4 is devoted to subject reduction. We first say why the standard
formulation of subject reduction does not hold. Second we state a slightly weakened
notion of the subject reduction theorem, and we prove this result. In Section 5, we prove
strong normalisation. Finally we close the paper in Section 6 with theorems about the
information brought by the type judgements, both in the general and the finitary cases
(matrices and vectors).

2. The terms

We consider the untyped language λvec described in Figure 1. It is based on Lineal
[7]: terms come in two flavours, basis terms which are the only ones that will substitute
a variable in a β-reduction step, and general terms. We use Krivine’s notation [34] for
function application: The term (s) t passes the argument t to the function s.

In addition to β-reduction, there are fifteen rules stemming from the oriented axioms
of vector spaces [7], specifying the behaviour of sums and products. We divide the rules
in groups: Elementary (E), Factorisation (F), Application (A) and the Beta reduction
(B). Essentially, the rules E and F, presented in [6], consist in capturing the equations of
vector spaces in an oriented rewrite system. For example, 0 ·s reduces to 0, as 0 ·s = 0 is
valid in vector spaces. It should also be noted that this set of algebraic rule is confluent,
and does not introduce loops. In particular, the two rules stating α · (t+ r) → α · t+α · r
and α · t+ β · t → (α+ β) · t are not inverse one of the other when r = t. Indeed,

α · (t+ t) → α · t+ α · t → (α+ α) · t
4



Terms: r, s, t,u ::= b | (t) r | 0 | α · t | t+ r

Basis terms: b ::= x | λx.t
Group E:
0 · t → 0

1 · t → t

α · 0 → 0

α · (β · t) → (α × β) · t
α · (t+ r) → α · t+ α · r

Group F:
α · t+ β · t → (α+ β) · t
α · t+ t → (α + 1) · t
t+ t → (1 + 1) · t
t+ 0 → t

Group B:
(λx.t) b → t[b/x]

Group A:
(t+ r) u → (t) u+ (r) u
(t) (r+u) → (t) r+(t) u
(α · t) r → α · (t) r
(t) (α · r) → α · (t) r
(0) t → 0

(t) 0 → 0

t → r

α · t → α · r
t → r

u+ t → u+ r

t → r

(u) t → (u) r

t → r

(t) u → (r) u

t → r

λx.t → λx.r

Figure 1: Syntax, reduction rules and context rules of λvec.

but not the other what around.
The group of A rules formalize the fact that a general term t is thought of as a linear

combination of terms α · r + β · r′ and the face that the application is distributive on
the left and on the right. When we apply s to such a superposition, (s) t reduces to
α · (s) r+ β · (s) r′. The term 0 is the empty linear combination of terms, explaining the
last two rules of Group A.

Terms are considered modulo associativity and commutativity of the operator +,
making the reduction into an AC-rewrite system [32]. Scalars (notation α, β, γ, . . . ) form
a ring (S,+,×), where the scalar 0 is the unit of the addition and 1 the unit of the
multiplication. We use the shortcut notation s − t in place of s + (−1) · t. Note that
although the typical ring we consider in the examples is the ring of complex numbers,
the development works for any ring: the ring of integer Z, the finite ring Z/2Z. . .

The set of free variables of a term is defined as usual: the only operator binding
variables is the λ-abstraction. The operation of substitution on terms (notation t[b/x])
is defined in the usual way for the regular λ-term constructs, by taking care of variable
renaming to avoid capture. For a linear combination, the substitution is defined as
follows: (α · t+ β · r)[b/x] = α · t[b/x] + β · r[b/x].

Note that we need to choose a reduction strategy. For example, the term (λx.(x) x)
(y+ z) cannot reduce to both (λx.(x)x) y + (λx.(x)x) z and (y+ z) (y+ z). Indeed, the
former normalizes to (y) y+(z) z whereas the latter normalizes to (y) z+(y) y+(z) y+(z) z;
which would break confluence. As in [4, 7, 25], we consider a call-by-value reduction
strategy: The argument of the application is required to be a base term, cf. Group B.

2.1. Relation to Lineal

Although strongly inspired from Lineal, the language λvec is closer to [4, 8, 25]. Indeed,
Lineal considers some restrictions on the reduction rules, for example α·t+β·t → (α+β)·t
is only allowed when t is a closed normal term. These restrictions are enforced to ensure
confluence in the untyped setting. Consider the following example. Let Yb = (λx.(b +
(x) x)) λx.(b + (x) x). Then Yb reduces to b +Yb. So the term Yb −Yb reduces to
0, but also reduces to b + Yb − Yb and hence to b, breaking confluence. The above
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restriction forbids the first reduction, bringing back confluence. In our setting we do not
need it because Yb is not well-typed. If one considers a typed language enforcing strong
normalisation, one can waive many of the restrictions and consider a more canonical set
of rewrite rules [4, 8, 25]. Working with a type system enforcing strong normalisation
(as shown in Section 5), we follow this approach.

2.2. Booleans in the vectorial λ-calculus

We claimed in the introduction that the design of Lineal was motivated by quantum
computing; in this section we develop this analogy.

Both in λvec and in quantum computation one can interpret the notion of booleans.
In the former we can consider the usual booleans λx.λy.x and λx.λy.y whereas in the
latter we consider the regular quantum bits true = |0〉 and false = |1〉.

In λvec, a representation of if r then s else t needs to take into account the special
relation between sums and applications. We cannot directly encode this test as the usual
((r) s) t. Indeed, if r, s and t were respectively the terms true, s1+s2 and t1+t2, the term
((r) s) t would reduce to ((true) s1) t1 + ((true) s1) t2 + ((true) s2) t1 + ((true) s2) t2,
then to 2 · s1 + 2 · s2 instead of s1 + s2. We need to “freeze” the computations in each
branch of the test so that the sum does not distribute over the application. For that
purpose we use the well-known notion of thunks [7]: we encode the test as {((r) [s]) [t]},
where [−] is the term λf.− with f a fresh, unused term variable and where {−} is the
term (−)λx.x. The former “freezes” the linearity while the latter “releases” it. Then the
term if true then (s1+ s2) else (t1+ t2) reduces to the term s1+ s2 as one could expect.
Note that this test is linear, in the sense that the term if (α ·true+β ·false) then s else t

reduces to α · s+ β · t.
This is similar to the quantum test that can be found e.g. in [2, 42]. Quantum

computation deals with complex, linear combinations of terms, and a typical computation
is run by applying linear unitary operations on the terms, called gates. For example, the
Hadamard gate H acts on the space of booleans spanned by true and false. It sends
true to 1√

2
(true+ false) and false to 1√

2
(true− false). If x is a quantum bit, the value

(H)x can be represented as the quantum test

(H)x := if x then
1√
2
(true+ false) else

1√
2
(true− false).

As developed in [7], one can simulate this operation in λvec using the test construction
we just described:

{(H)x} :=

{(

(x)

[

1√
2
· true+ 1√

2
· false

]) [

1√
2
· true− 1√

2
· false

]}

.

Note that the thunks are necessary: without thunks the term

(

(x)

(

1√
2
· true+

1√
2
· false

)) (

1√
2
· true− 1√

2
· false

)

would reduce to the term

1

2
(((x) true) true+ ((x) true) false+ ((x) false) true+ ((x) false) false),
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which is fundamentally different from the term H we are trying to emulate.
With this procedure we can “encode” any matrix. If the space is of some general

dimension n, instead of the basis elements true and false we can choose for i = 1 to
n the terms λx1. · · · .λxn.xi’s to encode the basis of the space. We can also take tensor
products of qubits. We come back to these encodings in Section 6.

3. The type system

This section presents the core definition of the paper: the vectorial type system.

3.1. Intuitions

Before diving into the technicalities of the definition, we discuss the rationale behind
the construction of the type-system.

3.1.1. Superposition of types

We want to incorporate the notion of scalars in the type system. If A is a valid type,
the construction α ·A is also a valid type and if the terms s and t are of type A, the term
α · s+ β · t is of type (α+ β) ·A. This was achieved in [4] and it allows us to distinguish
between the functions λx.(1 · x) and λx.(2 · x): the former is of type A→ A whereas the
latter is of type A→ (2 · A).

The terms true and false can be typed in the usual way with B = X → (X → X), for
a fixed type X . So let us consider the term 1√

2
· (true− false). Using the above addition

to the type system, this term should be of type 0 · B, a type which fails to exhibit the
fact that we have a superposition of terms. For instance, applying the Hadamard gate
to this term produces the term false of type B: the norm would then jump from 0 to 1.
This time, the problem comes from the fact that the type system does not keep track of
the “direction” of a term.

To address this problem we must allow sums of types. For instance, provided that
T = X → (Y → X) and F = X → (Y → Y ), we can type the term 1√

2
· (true − false)

with
√
2
2 · (T − F), which has L2-norm 1, just like the type of false has norm one.

At this stage the type system is able to type the term H = λx.{((x) [ 1√
2
· true +

1√
2
· false]) [ 1√

2
· true − 1√

2
· false]}. Indeed, remember that the thunk construction

[−] is simply λf.(−) where f is a fresh variable and that {−} is (−)λx.x. So whenever
t has type A, [t] has type I → A with I an identity type of the form Z → Z, and
{t} has type A whenever t has type I → A. The term H can then be typed with
((I → 1√

2
.(T + F)) → (I → 1√

2
.(T − F)) → I → T ) → T , where T any fixed type.

Let us now try to type the term (H) true. This is possible by taking T to be 1√
2
·(T +

F). But then, if we want to type the term (H) false, T needs to be equal to 1√
2
·(T −F).

It follows that we cannot type the term (H) ( 1√
2
· true + 1√

2
· false) since there is no

possibility to conciliate the two constraints on T .
To address this problem, we need a forall construction in the type system, making

it à la System F. The term H can now be typed with ∀T.((I → 1√
2
· (T + F)) → (I →

1√
2
· (T − F)) → I → T ) → T and the types T and F are updated to be respectively

∀XY.X → (Y → X) and ∀XY.X → (Y → Y ). The terms (H) true and (H) false can
both be well-typed with respective types 1√

2
· (T + F) and 1√

2
· (T − F), as expected.
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3.1.2. Type variables, units and general types

Because of the call-by-value strategy, variables must range over types that are not
linear combination of other types, i.e. unit types. To illustrate this necessity, consider
the following example. Suppose we allow variables to have scaled types, such as α · U .
Then the term λx.x + y could have type (α · U) → α · U + V (with y of type V ). Let b
be of type U , then (λx.x + y) (α · b) has type α · U + V , but then

(λx.x + y) (α · b) → α · (λx.x + y) b → α · (b+ y) → α · b+ α · y ,

which is problematic since the type α · U + V does not reflect such a superposition.
Hence, the left side of an arrow will be required to be a unit type. This is achieved by
the grammar defined in Figure 2.

Type variables, however, do not always have to be unit type. Indeed, a forall of a
general type was needed in the previous section in order to type the term H. But we
need to distinguish a general type variable from a unit type variable, in order to make
sure that only unit types appear at the left of arrows. Therefore, we define two sorts of
type variables: the variables X to be replaced with unit types, and X to be replaced with
any type (we use just X when we mean either one). The type X is a unit type whereas
the type X is not.

In particular, the type T is now ∀XY .X → Y → X , the type F is ∀XY .X → Y → Y

and the type of H is

∀X.
((

I → 1√
2
· (T + F)

)

→
(

I → 1√
2
· (T − F)

)

→ I → X

)

→ X.

Notice how the left sides of all arrows remain unit types.

3.1.3. The term 0

The term 0 will naturally have the type 0 ·T , for any inhabited type T (enforcing the
intuition that the term 0 is essentialy a normal form of programs of the form t− t).

We could also consider to add the equivalence R + 0 · T ≡ R as in [4]. However,
consider the following example. Let λx.x be of type U → U and let t be of type T .
The term λx.x + t − t is of type (U → U) + 0 · T , that is, (U → U). Now choose b of
type U : we are allowed to say that (λx.x + t − t)b is of type U . This term reduces to
b+(t)b− (t)b. But if the type system is reasonable enough, we should at least be able
to type (t)b. However, since there is no constraints on the type T , this is difficult to
enforce.

The problem comes from the fact that along the typing of t− t, the type of t is lost
in the equivalence (U → U) + 0 · T ≡ U → U . The only solution is to not discard 0 · T ,
that is, to not equate R+ 0 · T and R.

3.2. Formalisation

We now give a formal account of the type system: we first describe the language of
types, then present the typing rules.

8



Types: T,R, S ::= U | α · T | T +R | X
Unit types: U, V,W ::= X | U → T | ∀X .U | ∀X.U

1 · T ≡ T α · T + β · T ≡ (α+ β) · T
α · (β · T ) ≡ (α× β) · T T +R ≡ R+ T

α · T + α · R ≡ α · (T +R) T + (R+ S) ≡ (T +R) + S

ax
Γ, x : U ⊢ x : U

Γ ⊢ t : T
0I

Γ ⊢ 0 : 0 · T
Γ, x : U ⊢ t : T

→I
Γ ⊢ λx.t : U → T

Γ ⊢ t :

n
∑

i=1

αi · ∀ ~X.(U → Ti) Γ ⊢ r :

m
∑

j=1

βj · U [ ~Aj/ ~X]

→E

Γ ⊢ (t) r :

n
∑

i=1

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X]

Γ ⊢ t :

n
∑

i=1

αi · Ui X /∈ FV (Γ)

∀I
Γ ⊢ t :

n
∑

i=1

αi · ∀X.Ui

Γ ⊢ t :

n
∑

i=1

αi · ∀X.Ui

∀E
Γ ⊢ t :

n
∑

i=1

αi · Ui[A/X ]

Γ ⊢ t : T
αI

Γ ⊢ α · t : α · T
Γ ⊢ t : T Γ ⊢ r : R

+I
Γ ⊢ t+ r : T +R

Γ ⊢ t : T T ≡ R
≡

Γ ⊢ t : R

Figure 2: Types and typing rules of λvec. We use X when we do not want to specify if it is X or X,
that is, unit variables or general variables respectively. In T [A/X], if X = X , then A is a unit type, and
if X = X, then A can be any type. We also may write ∀I and ∀I (resp. ∀E and ∀E) when we need to
specify which kind of variable is being used.
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3.2.1. Definition of types

Types are defined in Figure 2 (top). They come in two flavours: unit types and general
types, that is, linear combinations of types. Unit types include all types of System F [29,
Ch. 11] and intuitively they are used to type basis terms. The arrow type admits only
a unit type in its domain. This is due to the fact that the argument of a λ-abstraction
can only be substituted by a basis term, as discussed in Section 3.1.2. As discussed
before, the type system features two sorts of variables: unit variables X and general
variables X. The former can only be substituted by a unit type whereas the latter can be
substituted by any type. We use the notation X when the type variable is unrestricted.
The substitution of X by U (resp. X by S) in T is defined as usual and is written T [U/X ]
(resp. T [S/X]). We use the notation T [A/X ] to say: “if X is a unit variable, then A is
a unit type and otherwise A is a general type”. In particular, for a linear combination,
the substitution is defined as follows: (α · T + β · R)[A/X ] = α · T [A/X ] + β · R[A/X ].

We also use the vectorial notation T [ ~A/ ~X] for T [A1/X1] · · · [An/Xn] if ~X = X1, . . . , Xn

and ~A = A1, . . . , An, and also ∀ ~X for ∀X1 . . . Xn = ∀X1. . . . .∀Xn.
The equivalence relation ≡ on types is defined as a congruence. Notice that this

equivalence makes the types into a weak module over the scalars: they almost form a
module save from the fact that there is no neutral element for the addition. The type
0 · T is not the neutral element of the addition.

We may use the summation (
∑

) notation without ambiguity, due to the associativity
and commutativity equivalences of +.

3.2.2. Typing rules

The typing rules are given also in Figure 2 (bottom). Contexts are denoted by Γ,
∆, etc. and are defined as sets {x : U, . . . }, where x is a term variable appearing only
once in the set, and U is a unit type. The axiom (ax) and the arrow introduction
rule (→I) are the usual ones. The rule (0I) to type the term 0 takes into account
the discussion in Section 3.1.3. This rule also ensures that the type of 0 is inhabited,
discarding problematic types like 0 · ∀X.X . Any sum of typed terms can be typed
using Rule (+I). Similarly, any scaled typed term can be typed with (αI). Rule (≡)
ensures that equivalent types can be used to type the same terms. Finally, the particular
form of the arrow-elimination rule (→E) is due to the rewrite rules in group A that
distribute sums and scalars over application. The need and use of this complicated
arrow elimination can be illustrated by the following three examples.

Example 3.1. Rule (→E) is easier to read for trivial linear combinations. It states
that provided that Γ ⊢ s : ∀X.U → S and Γ ⊢ t : V , if there exists some type W such
that V = U [W/X ], then since the sequent Γ ⊢ s : V → S[W/X ] is valid, we also have
Γ ⊢ (s) t : S[W/X ]. Hence, the arrow elimination here performs an arrow and a forall
elimination at the same time.

Example 3.2. Consider the terms b1 and b2, of respective types U1 and U2. The term
b1 + b2 is of type U1 + U2. We would reasonably expect the term (λx.x) (b1 + b2) to
also be of type U1 + U2. This is the case thanks to Rule (→E). Indeed, type the term
λx.x with the type ∀X.X → X and we can now apply the rule. Notice that we could
not type such a term unless we eliminate the forall together with the arrow.
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Example 3.3. A slightly more involved example is the projection of a pair of ele-
ments. It is possible to encode in System F the notion of pairs and projections: 〈b, c〉 =
λx.((x) b) c, 〈b′, c′〉 = λx.((x) b′) c′, π1 = λx.(x) (λy.λz.y) and π2 = λx.(x) (λy.λz.z).
Provided that b, b′, c and c′ have respective types U , U ′, V and V ′, the type of 〈b, c〉
is ∀X.(U → V → X) → X and the type of 〈b′, c′〉 is ∀X.(U ′ → V ′ → X) → X . The
term π1 and π2 can be typed respectively with ∀XY Z.((X → Y → X) → Z) → Z and
∀XY Z.((X → Y → Y ) → Z) → Z. The term (π1 + π2) (〈b, c〉+ 〈b′, c′〉) is then typable
of type U + U ′ + V + V ′, thanks to Rule (→E). Note that this is consistent with the
rewrite system, since it reduces to b+ c+ b′ + c′.

3.3. Example: Typing Hadamard

In this Section, we formally show how to retrieve the type that was discussed in
Section 3.1.2, for the term H encoding the Hadamard gate.

Let true = λx.λy.x and false = λx.λy.y. It is easy to check that

⊢ true : ∀XY .X → Y → X ,

⊢ false : ∀XY .X → Y → Y .

We also define the following superpositions:

|+〉 = 1√
2
· (true+ false) and |−〉 = 1√

2
· (true− false).

In the same way, we define

⊞ =
1√
2
· ((∀XY .X → Y → X ) + (∀XY .X → Y → Y )),

⊟ =
1√
2
· ((∀XY .X → Y → X )− (∀XY .X → Y → Y )).

Finally, we recall [t] = λx.t, where x /∈ FV (t) and {t} = (t) I. So {[t]} → t. Then it is
easy to check that ⊢ [|+〉] : I → ⊞ and ⊢ [|−〉] : I → ⊟. In order to simplify the notation,
let F = (I → ⊞) → (I → ⊟) → (I → X). Then

ax
x : F ⊢ x : F x : F ⊢ [|+〉] : I → ⊞

→E
x : F ⊢ (x) [|+〉] : (I → ⊟) → (I → X) x : F ⊢ [|−〉] : I → ⊟

→E
x : F ⊢ (x) [|+〉][|−〉] : I → X

→E
x : F ⊢ {(x) [|+〉][|−〉]} : X

→I⊢ λx.{(x) [|+〉][|−〉]} : F → X
∀I⊢ λx.{(x) [|+〉][|−〉]} : ∀X.((I → ⊞) → (I → ⊟) → (I → X)) → X

Now we can apply Hadamard to a qubit and get the right type. Let H be the term
λx.{(x) [|+〉][|−〉]}

11



⊢ H : ∀X.((I → ⊞) → (I → ⊟) → (I → X)) → X
∀E⊢ H : ((I → ⊞) → (I → ⊟) → (I → ⊞)) → ⊞

⊢ true : ∀X .∀Y .X → Y → X
∀E⊢ true : ∀Y .(I → ⊞) → Y → (I → ⊞)
∀E⊢ true : (I → ⊞) → (I → ⊟) → (I → ⊞)
→E⊢ (H) true : ⊞

Yet a more interesting example is the following. Let

⊞I =
1√
2
· (((I → ⊞) → (I → ⊟) → (I → ⊞)) + ((I → ⊞) → (I → ⊟) → (I → ⊟)))

That is, ⊞ where the forall have been instantiated. It is easy to check that ⊢ |+〉 : ⊞I .
Hence,

⊢ H : ∀X.((I → ⊞) → (I → ⊟) → (I → X)) → X ⊢ |+〉 : ⊞I →E

⊢ (H) |+〉 : 1√
2
·⊞+

1√
2
·⊟

And since 1√
2
·⊞+ 1√

2
·⊟ ≡ ∀XY .X → Y → X , we conclude that

⊢ (H) |+〉 : ∀XY .X → Y → X .

Notice that (H) |+〉 →∗ true.

4. Subject reduction

As we will now explain, the usual formulation of subject reduction is not directly
satisfied. We discuss the alternatives and opt for a weakened version of subject reduction.

4.1. Principal types and subtyping alternatives

Since the terms of λvec are not explicitly typed, we are bound to have sequents such
as Γ ⊢ t : T1 and Γ ⊢ t : T2 with distinct types T1 and T2 for the same term t. Using
Rules (+I) and (αI) we get the valid typing judgement Γ ⊢ α · t+ β · t : α · T1 + β · T2.
Given that α · t+ β · t reduces to (α + β) · t, a regular subject reduction would ask for
the valid sequent Γ ⊢ (α + β) · t : α · T1 + β · T2. But since in general we do not have
α · T1 + β · T2 ≡ (α+ β) · T1 ≡ (α+ β) · T2, we need to find a way around this.

A first approach would be to use the notion of principal types. However, since our
type system includes System F, the usual examples for the absence of principal types
apply to our settings: we cannot rely upon this method.

A second approach would be to ask for the sequent Γ ⊢ (α + β) · t : α · T1 + β · T2
to be valid. If we force this typing rule into the system, it seems to solve the issue but
then the type of a term becomes pretty much arbitrary: with typing context Γ, the term
(α+β) · t would then be typed with any combination γ ·T1+ δ ·T2, where α+β = γ+ δ.

The approach we favour in this paper is via a notion of order on types. The order,
denoted with ⊒, will be chosen so that the factorisation rules make the types of terms
smaller. We will ask in particular that (α + β) · T1 ⊒ α · T1 + β · T2 and (α + β) · T2 ⊒
α · T1 + β · T2 whenever T1 and T2 are types for the same term. This approach can also
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be extended to solve a second pitfall coming from the rule t + 0 → t. Indeed, although
x : X ⊢ x+0 : X +0 ·T is well-typed for any inhabited T , the sequent x : X ⊢ x : X +0 ·T
is not valid in general. We therefore extend the ordering to also have X ⊒ X + 0 · T .

Notice that we are not introducing a subtyping relation with this ordering. For
example, although ⊢ (α + β) · λx.λy.x : (α + β) · ∀X .X → (X → X ) is valid and (α +
β) · ∀X .X → (X → X ) ⊒ α · ∀X .X → (X → X ) + β · ∀XY .X → (Y → Y ), the sequent
⊢ (α+ β) · λx.λy.x : α · ∀X .X → (X → X ) + β · ∀XY .X → (Y → Y ) is not valid.

4.2. Weak subject reduction

We define the (antisymmetric) ordering relation ⊒ on types discussed above as the
smallest reflexive transitive and congruent relation satisfying the rules:

1. (α+β)·T ⊒ α·T+β ·T ′ if there are Γ, t such that Γ ⊢ α·t : α·T and Γ ⊢ β ·t : β ·T ′.
2. T ⊒ T + 0.R for any type R.

3. If T ⊒ R and U ⊒ V , then T + S ⊒ R + S, α · T ⊒ α · R, U → T ⊒ U → R and
∀X.U ⊒ ∀X.V .

Note the fact that Γ ⊢ t : T and Γ ⊢ t : T ′ does not imply that β · T ⊒ β · T ′. For
instance, although β · T ⊒ 0 · T + β · T ′, we do not have 0 · T + β · T ′ ≡ β · T ′.

Let R be any reduction rule from Figure 1, and →R a one-step reduction by rule R.
A weak version of the subject reduction theorem can be stated as follows.

Theorem 4.1 (Weak subject reduction). For any terms t, t′, any context Γ and any
type T , if t →R t′ and Γ ⊢ t : T , then:

1. if R /∈ Group F, then Γ ⊢ t′ : T ;
2. if R ∈ Group F, then ∃S ⊒ T such that Γ ⊢ t′ : S and Γ ⊢ t : S.

4.3. Prerequisites to the proof

The proof of Theorem 4.1 requires some machinery that we develop in this section.
Omitted proofs can be found in Appendix A.1.

The following lemma gives a characterisation of types as linear combinations of unit
types and general variables.

Lemma 4.2 (Characterisation of types). For any type T in G, there exist n,m ∈ N,
α1, . . . , αn, β1, . . . , βm ∈ S, distinct unit types U1, . . . , Un and distinct general variables
X1, . . . ,Xm such that

T ≡
n
∑

i=1

αi · Ui +

m
∑

j=1

βj · Xj .

Our system admits weakening, as stated by the following lemma.

Lemma 4.3 (Weakening). Let t be such that x 6∈ FV (t). Then Γ ⊢ t : T is derivable if
and only if Γ, x : U ⊢ t : T is derivable.

Proof. By a straightforward induction on the type derivation.
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Lemma 4.4 (Equivalence between sums of distinct elements (up to ≡)). Let U1, . . . , Un

be a set of distinct (not equivalent) unit types, and let V1, . . . , Vm be also a set distinct
unit types. If

∑n
i=1 αi · Ui ≡

∑m
j=1 βj · Vj, then m = n and there exists a permutation p

of m such that ∀i, αi = βp(i) and Ui ≡ Vp(i).

Lemma 4.5 (Equivalences ∀I).
1.
∑n

i=1 αi · Ui ≡
∑m

j=1 βj · Vj ⇔
∑n

i=1 αi · ∀X.Ui ≡
∑m

j=1 βj · ∀X.Vj.
2.
∑n

i=1 αi · ∀X.Ui ≡
∑m

j=1 βj · Vj ⇒ ∀Vj , ∃Wj / Vj ≡ ∀X.Wj.
3. T ≡ R⇒ T [A/X ] ≡ R[A/X ].

For the proof of subject reduction, we use the standard strategy developed by Baren-
dregth [10]1. It consists in defining a relation betwen types of the form ∀X.T and T . For
our vectorial type system, we take into account linear combinations of types

Definition 4.6. For any types T,R, any context Γ and any term t such that

Γ ⊢ t : T

...

Γ ⊢ t : R

1. if X /∈ FV (Γ), write T ≻t

X,Γ R if either

• T ≡∑n
i=1 αi · Ui and R ≡∑n

i=1 αi · ∀X.Ui, or

• T ≡∑n
i=1 αi · ∀X.Ui and R ≡∑n

i=1 αi · Ui[A/X ].

2. if V is a set of type variables such that V ∩FV (Γ) = ∅, we define �t

V,Γ inductively
by

• If X ∈ V and T ≻t

X,Γ R, then T �t

{X},Γ R.

• If V1,V2 ⊆ V, T �t

V1,Γ
R and R �t

V2,Γ
S, then T �t

V1∪V2,Γ
S.

• If T ≡ R, then T �t

V,Γ R.

Example 4.7. Let the following be a valid derivation.

Γ ⊢ t : T T ≡
n
∑

i=1

αi · Ui

≡
Γ ⊢ t :

n
∑

i=1

αi · Ui X /∈ FV (Γ)

∀I

Γ ⊢ t :

n
∑

i=1

αi · ∀X .Ui

∀E

Γ ⊢ t :

n
∑

i=1

αi · Ui[V/X ] Y /∈ FV (Γ)

∀I

Γ ⊢ t :

n
∑

i=1

αi · ∀Y.Ui[V/X ]

n
∑

i=1

αi · ∀Y.Ui[V/X ] ≡ R

≡
Γ ⊢ t : R

1Note that Barendregth’s original proof contains a mistake [20]. We use the corrected proof proposed
in [4]
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Then T �t

{X ,Y},Γ R.

Note that this relation is stable under reduction in the following way:

Lemma 4.8 (�-stability). If T �t

V,Γ R, t → r and Γ ⊢ r : T , then T �r

V,Γ R.

The following lemma states that if two arrow types are ordered, then they are equivalent
up to some substitutions.

Lemma 4.9 (Arrows comparison). If V → R �t

V,Γ ∀ ~X.(U → T ), then U → T ≡ (V →
R)[ ~A/~Y ], with ~Y /∈ FV (Γ).

Before proving Theorem 4.1, we need to prove some basic properties of the system.

Lemma 4.10 (Scalars). For any context Γ, term t, type T and scalar α, if Γ ⊢ α · t : T ,
then there exists a type R such that T ≡ α ·R and Γ ⊢ t : R. Moreover, if the minimum
size of the derivation of Γ ⊢ α · t : T is s, then if T = α · R, the minimum size of the
derivation of Γ ⊢ t : R is at most s − 1, in other case, its minimum size is at most
s− 2.

The following lemma shows that the type for 0 is always 0 · T .

Lemma 4.11 (Type for zero). Let t = 0 or t = α·0, then Γ ⊢ t : T implies T ≡ 0·R.

Lemma 4.12 (Sums). If Γ ⊢ t + r : S, then S ≡ T + R with Γ ⊢ t : T and Γ ⊢ r : R.
Moreover, if the size of the derivation of Γ ⊢ t + r : S is s, then if S = T + R, the
minimum sizes of the derivations of Γ ⊢ t : T and Γ ⊢ r : R are at most s − 1, and if
S 6= T +R, the minimum sizes of these derivations are at most s− 2.

Lemma 4.13 (Applications). If Γ ⊢ (t) r : T , then Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U → Ti) and

Γ ⊢ r :
∑m

j=1 βj · U [ ~Aj/ ~X] where
∑n

i=1

∑m
j=1 αi × βj · Ti[ ~Aj/ ~X] �(t)r

V,Γ T for some V.

Lemma 4.14 (Abstractions). If Γ ⊢ λx.t : T , then Γ, x : U ⊢ t : R where U → R �λx.t
V,Γ T

for some V.

A basis term can always be given a unit type.

Lemma 4.15 (Basis terms). For any context Γ, type T and basis term b, if Γ ⊢ b : T
then there exists a unit type U such that T ≡ U .

The final stone for the proof of Theorem 4.1 is a lemma relating well-typed terms and
substitution.

Lemma 4.16 (Substitution lemma). For any term t, basis term b, term variable x,
context Γ, types T , U , type variable X and type A, where A is a unit type if X is a unit
variables, otherwise A is a general type, we have,

1. if Γ ⊢ t : T , then Γ[A/X ] ⊢ t : T [A/X ];

2. if Γ, x : U ⊢ t : T , Γ ⊢ b : U then Γ ⊢ t[b/x] : T .

The proof of subject reduction (Theorem 4.1), follows by induction using the previous
defined lemmas. It can be foun in full details in Appendix A.2.
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5. Strong normalisation

For proving strong normalisation of well-typed terms, we use reducibility candidates, a
well-known method described for example in [29, Ch. 14]. The technique is adapted to lin-
ear combinations of terms. Omitted proofs in this section can be found in Appendix B.

A neutral term is a term that is not a λ-abstraction and that does reduce to something.
The set of closed neutral terms is denoted with N . We write Λ0 for the set of closed
terms and SN 0 for the set of closed, strongly normalising terms. If t is any term, Red(t)
is the set of all terms t′ such that t → t′. It is naturally extended to sets of terms. We
say that a set S of closed terms is a reducibility candidate, denoted with S ∈ RC if the
following conditions are verified:

RC1 Strong normalisation: S ⊆ SN 0.

RC2 Stability under reduction: t ∈ S implies Red(t) ⊆ S.

RC3 Stability under neutral expansion: If t ∈ N and Red(t) ⊆ S then t ∈ S.

RC4 The common inhabitant: 0 ∈ S.

We define the notion of algebraic context over a list of terms ~t, with the following gram-
mar:

F (~t), G(~t) ::= ti | F (~t) +G(~t) | α · F (~t) | 0,
where ti is the i-th element of the list t. Given a set of terms S = {si}i, we write F(S)
for the set of terms of the form F (~s) when F spans over algebraic contexts.

We introduce two conditions on contexts, which will be handy to define some of the
operations on candidates:

CC1 If for some F , F (~s) ∈ S then ∀i, si ∈ S.

CC2 If for all i, si ∈ S and F is an algebraic context, then F (~s) ∈ S.

We then define the following operations on reducibility candidates.

1. Let A and B be in RC. A → B is the closure under RC3 and RC4 of the set of
t ∈ Λ0 such that (t)0 ∈ B and such that for all base terms b ∈ A, (t)b ∈ B.

2. If {Ai}i is a family of reducibility candidates,
∑

i Ai is the closure under CC1, CC2,
RC2 and RC3 of the set ∪iAi.

Remark 5.1. Notice that
∑1

i=1 A 6= A. Indeed,
∑1

i=1 A is in particular the closure over

CC2, meaning that all linear combinations of terms of A belongs to
∑1

i=1 A, whereas
they might not be in A.

Remark 5.2. In the definition of algebraic contexts, a term ti might appear at several
positions in the context. However, for any given algebraic context F (~t) there is always
a linear algebraic context Fl(~t

′) with a suitably modified list of terms ~t′ such that F (~t)
and Fl(~t

′) are the same terms. For example, choose the following (arguably very ver-
bose) construction: if F contains m placeholders, and if ~t is of size n, let ~t′ be the list
t1 . . . t1, t2 . . . t2, . . . , tn . . . tn with each time m repetitions of each ti. Then construct
Fl(~t′) exactly as F except that for each ith placeholder we pick the ith copy of the cor-
responding term in F . By construction, each element in the list ~t′ is used at most once,
and the term Fl(~t′) is the same as the term F (~t).
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Lemma 5.3. If A, B and all the Ai’s are in RC, then so are A → B,
∑

i Ai and ∩iAi.

A single type valuation is a partial function from type variables to reducibility candi-
dates, that we define as a sequence of comma-separated mappings, with ∅ denoting the
empty valuation: ρ := ∅ | ρ,X 7→ A. Type variables are interpreted using pairs of single
type valuations, that we simply call valuations, with common domain: ρ = (ρ+, ρ−) with
|ρ+| = |ρ−|. Given a valuation ρ = (ρ+, ρ−), the complementary valuation ρ̄ is the pair
(ρ−, ρ+). We write (X+, X−) 7→ (A+, A−) for the valuation (X+ 7→ A+, X− 7→ A−). A
valuation is called valid if for all X , ρ−(X) ⊆ ρ+(X).

From now on, we will consider the following grammar

U,V,W ::= U | X.

That is, we will use U,V,W for unit and X-kind of variables.
To define the interpretation of a type T , we use the following result.

Lemma 5.4. Any type T , has a unique (up to ≡) canonical decomposition T ≡∑n
i=1 αi ·

Ui such that for all l, k, Ul 6≡ Uk.

The interpretation JT Kρ of a type T in a valuation ρ = (ρ+, ρ−) defined for each free
type variable of T is given by:

JXKρ = ρ+(X),
JU → T Kρ = JUKρ̄ → JT Kρ,
J∀X.UKρ = ∩A∈RCJUKρ,(X+,X−) 7→(A,A),

If T ≡∑i αi · Ui is the canonical decomposition of T and T 6≡ U

JT Kρ =
∑

iJUiKρ

From Lemma 5.3, the interpretation of any type is a reducibility candidate.
Reducibility candidates deal with closed terms, whereas proving the adequacy lemma

by induction requires the use of open terms with some assumptions on their free variables,
that will be guaranteed by a context. Therefore we use substitutions σ to close terms:

σ := ∅ | (x 7→ b;σ) ,

then t∅ = t and tx 7→b;σ = t[b/x]σ. All the substitutions ends by ∅, hence we omit it
when not necessary.

Given a context Γ, we say that a substitution σ satisfies Γ for the valuation ρ (no-
tation: σ ∈ JΓKρ) when (x : U) ∈ Γ implies xσ ∈ JUKρ̄ (Note the change in polarity). A
typing judgement Γ ⊢ t : T , is said to be valid (notation Γ |= t : T ) if

• in case T ≡ U, then for every valuation ρ, and for every substitution σ ∈ JΓKρ, we
have tσ ∈ JUKρ.

• in other case, that is, T ≡∑n
i=1 αi · Ui with n > 1, such that for all i, j, Ui 6≡ Uj

(notice that by Lemma 5.4 such a decomposition always exists), then for every
valuation ρ, and set of valuations {ρi}n, where ρi acts on FV (Ui)\FV (Γ), and for
every substitution σ ∈ JΓKρ, we have tσ ∈∑n

i=1JUiKρ,ρi
.

Lemma 5.5. For any types T and A, variable X and valuation ρ, we have JT [A/X ]Kρ =
JT Kρ,(X+,X−) 7→(JAKρ̄,JAKρ) and JT [A/X ]Kρ̄ = JT Kρ̄,(X−,X+) 7→(JAKρ,JAKρ̄).

17



The proof of the Adequacy Lemma as well as the machinery of needed auxiliary
lemmas can be found in Appendix B.2.

Lemma 5.6 (Adequacy Lemma). Every derivable typing judgement is valid: For every
valid sequent Γ ⊢ t : T , we have Γ |= t : T .

Theorem 5.7 (Strong normalisation). If Γ ⊢ t : T is a valid sequent, then t is strongly
normalising.

Proof. If Γ is the list (xi : Ui)i, the sequent ⊢ λx1 . . . xn.t : U1 → (· · · → (Un → T ) · · · )
is derivable. Using Lemma 5.6, we deduce that for any valuation ρ and any substitution
σ ∈ J∅Kρ, we have λx1 . . . xn.tσ ∈ JT Kρ. By construction, σ does nothing on t: tσ = t.
Since JT Kρ is a reducibility candidate, λx1 . . . xn.t is strongly normalising and hence t is
strongly normalising.

6. Interpretation of typing judgements

6.1. The general case

In the general case the calculus can represent infinite-dimensional linear operators
such as λx.x, λx.λy.y, λx.λf.(f)x,. . . and their applications. Even for such general terms
t, the vectorial type system provides much information about the superposition of basis
terms

∑

i αi ·bi to which t reduces, as explained in Theorem 6.1. How much information
is brought by the type system in the finitary case is the topic of Section 6.2.

Theorem 6.1 (Characterisation of terms). Let T be a generic type with canonical decom-
position

∑n
i=1 αi.Ui, in the sense of Lemma 5.4. If ⊢ t : T , then t →∗ ∑n

i=1

∑mi

j=1 βij ·
bij , where for all i, ⊢ bij : Ui and

∑mi

j=1 βij = αi, and with the convention that
∑0

j=1 βij = 0 and
∑0

j=1 βij · bij = 0.

The detailed proof of the previous theorem can be found in Appendix C

6.2. The finitary case: Expressing matrices and vectors

In what we call the “finitary case”, we show how to encode finite-dimensional linear
operators, i.e. matrices, together with their applications to vectors, as well as matrix and
tensor products. Theorem 6.2 shows that we can encode matrices, vectors and operations
upon them, and the type system will provide the result of such operations.

6.2.1. In 2 dimensions

In this section we come back to the motivating example introducing the type system
and we show how λvec handles the Hadamard gate, and how to encode matrices and
vectors.

With an empty typing context, the booleans true = λx.λy.x and false = λx.λy.y
can be respectively typed with the types T = ∀XY .X → (Y → X ) and F = ∀XY .X →
(Y → Y ). The superposition has the following type ⊢ α · true+ β · false : α · T + β · F .
(Note that it can also be typed with (α+ β) · ∀X .X → X → X ).

The linear map U sending true to a · true+ b · false and false to c · true+ d · false,
that is

true 7→ a · true+ b · false,
18



false 7→ c · true+ d · false

is written as

U = λx.{((x)[a · true+ b · false])[c · true+ d · false]}.

The following sequent is valid:

⊢ U : ∀X.((I → (a · T + b · F)) → (I → (c · T + d · F)) → I → X) → X.

This is consistent with the discussion in the introduction: the Hadamard gate is the
case a = b = c = 1√

2
and d = − 1√

2
. One can check that with an empty typing context,

(U) true is well typed of type a·T +b·F , as expected since it reduces to a·true+b·false.
The term (H) 1√

2
·(true+false) is well-typed of type T +0·F . Since the term reduces

to true, this is consistent with the subject reduction: we indeed have T ⊒ T + 0 · F .
But we can do more than typing 2-dimensional vectors 2×2-matrices: using the same

technique we can encode vectors and matrices of any size.

6.2.2. Vectors in n dimensions

The 2-dimensional space is represented by the span of λx1x2.x1 and λx1x2.x2: the n-
dimensional space is simply represented by the span of all the λx1 · · ·xn.xi, for i = 1 · · ·n.
As for the two dimensional case where

⊢ α1 · λx1x2.x1 + α2 · λx1x2.x2 : α1 · ∀X1X2.X1 + α2 · ∀X1X2.X2,

an n-dimensional vector is typed with

⊢
n
∑

i=1

αi · λx1 · · ·xn.xi :
n
∑

i=1

αi · ∀X1 · · · Xn.Xi.

We use the notations

eni = λx1 · · ·xn.xi, En
i = ∀X1 · · · Xn.Xi

and we write
u
wv

α1

...
αn

}
�~

term

n

=













α1 · en1
+
· · ·
+

αn · enn













=
n
∑

i=1

αi · eni ,

u
wv

α1

...
αn

}
�~

type

n

=













α1 ·En
1

+
· · ·
+

αn ·En
n













=
n
∑

i=1

αi ·En
i .
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6.2.3. n×m matrices

Once the representation of vectors is chosen, it is easy to generalize the representation
of 2× 2 matrices to the n×m case. Suppose that the matrix U is of the form

U =







α11 · · · α1m

...
...

αn1 · · · αnm






,

then its representation is

JUKtermn×m = λx.



































· · ·













(x)













α11 · en1
+
· · ·
+

αn1 · enn

























· · ·













α1m · en1
+
· · ·
+

αnm · enn















































and its type is

JUKtypen×m = ∀X.

























α11 ·En
1

+
· · ·
+

αn1 ·En
n













→ · · · →













α1m ·En
1

+
· · ·
+

αnm ·En
n













→ [ X ]













→ X,

that is, an almost direct encoding of the matrix U .

We also use the shortcut notation

mat(t1, . . . , tn) = λx.(. . . ((x) [t1]) . . .) [tn]

6.2.4. Useful constructions

In this section, we describe a few terms representing constructions that will be used
later on.

Projections. The first useful family of terms are the projections, sending a vector to its
ith coordinate:

















α1

...
αi

...
αn

















7−→

















0
...
αi

...
0

















.

Using the matrix representation, the term projecting the ith coordinate of a vector of
size n is

ith position
  

pn
i = mat(0, · · · ,0, eni , 0, · · · ,0).
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We can easily verify that

⊢ pn
i :

u
wwwwwwv

0 · · · 0 · · · 0
...

. . .
...

0 1 0
...

. . .
...

0 · · · 0 · · · 0

}
������~

type

n×n

and that

(pn
i0 )

(

n
∑

i=1

αi · eni

)

−→∗ αi0 · eni0 .

Vectors and diagonal matrices. Using the projections defined in the previous section,
it is possible to encode the map sending a vector of size n to the corresponding n × n
matrix:







α1

...
αn






7−→







α1 0
. . .

0 αn







with the term
diagn = λb.mat((pn

1 ) {b}, . . . , (pn
n) {b})

of type

⊢ diagn :







u
wv

α1

...
αn

}
�~

type

n






→

u
wv
α1 0

. . .

0 αn

}
�~

type

n×n

.

It is easy to check that

(diagn)

[

n
∑

i=1

αi · eni

]

7−→∗ mat(α1 · en1 , . . . , αn · enn)

Extracting a column vector out of a matrix. Another construction that is worth exhibit-
ing is the operation







α11 · · · α1n

...
...

αm1 · · · αmn






7−→







α1i

...
αmi






.

It is simply defined by multiplying the input matrix with the ith base column vector:

colni = λx.(x) eni

and one can easily check that this term has type

⊢ colni :

u
wv

α11 · · · α1n

...
...

αm1 · · · αmn

}
�~

type

m×n

→

u
wv

α1i

...
αmi

}
�~

type

m

.

Note that the same term colni can be typed with several values of m.
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6.2.5. A language of matrices and vectors

In this section we formalize what was informally presented in the previous sections:
the fact that one can encode simple matrix and vector operations in λvec, and the fact
that the type system serves as a witness for the result of the encoded operation.

We define the language Mat of matrices and vectors with the grammar

M,N ::= ζ | M ⊗N | (M)N
u, v ::= ν | u⊗ v | (M)u,

where ζ ranges over the set matrices and ν over the set of (column) vectors. Terms
are implicitly typed: types of matrices are (m,n) where m and n ranges over positive
integers, while types of vectors are simply integers. Typing rules are the following.

ζ ∈ Cm×n

ζ : (m,n)

M : (m,n) N : (m′, n′)

M ⊗N : (mm′, nn′)

M : (m,n′) N : (n′, n)

(M)N : (m,n)

ν ∈ Cm

ν : m
u : m v : n
u⊗ v : mn

M : (m,n) u : m

(M)u : n

The operational semantics of this language is the natural interpretation of the terms as
matrices and vectors. If M computes the matrix ζ, we write M ↓ ζ. Similarly, if u
computes the vector ν, we write u ↓ ν.

Following what we already said, matrices and vectors can be interpreted as types and
terms in λvec. The map J−Kterm sends terms of Mat to terms of λvec and the map J−Ktype
sends matrices and vectors to types of λvec.

• Vectors and matrices are defined as in Sections 6.2.2 and 6.2.3.

• As we already discussed, the matrix-vector multiplication is simply the application
of terms in λvec:

J(M)uKterm = (JMKterm) JuKterm

• The matrix multiplication is performed by first extracting the column vectors, then
performing the matrix-vector multiplication: this gives a column of the final matrix.
We conclude by recomposing the final matrix column-wise.

That is done with the term

app = λxy.mat((x) ((colm1 ) y), . . . , (x) ((colmn ) y))

and its type is

u
wv

α11 · · · α1n

...
...

αm1 · · · αmn

}
�~

type

m×n

→

u
wv

β11 · · · β1k
...

...
βn1 · · · βnk

}
�~

type

n×k

→
s
(
∑n

i=1 αjiβil)j=1...m
l=1...k

{type

m×k

Hence,
J(M) NKterm = ((app) JMKterm) JNKterm
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• For defining the the tensor of vectors, we need to multiply the coefficients of the
vectors:







α1

...
αn






⊗







β1
...
βm






=



























α1 ·







β1
...
βm







...

αn ·







β1
...
βm

































=



























α1β1
...

α1βm
...

αnβ1
...

αnβm



























.

We perform this operation in several steps: First, we map the two vectors (αi)i
and (βj)j into matrices of size mn×mn:







α1

...
αn






7→





















α1
...
α1

...
αn

...
αn































×m











×m

and







β1
...
βm






7→





















β1
...
βm

...
β1

...
βm



























































× n.

These two operations can be represented as terms of λvec respectively as follows:

m
n,m
1 = λb.mat



























(pn
1 ){b},
...

(pn
1 ){b},
...

(pn
n){b},
...

(pn
n){b}





































×m











×m

and m
m,n
2 = λb.mat



























(pm
1 ){b},
...

(pm
m){b},
...

(pm
1 ){b},
...

(pm
m){b}

































































× n.

It is now enough to multiply these two matrices together to retrieve the diagonal:





















α1
...
α1

...
αn

...
αn









































β1
...
βm

...
β1

...
βm















































1
...
1
...
1
...
1



























=



























α1β1
...

α1βm
...

αnβ1
...

αnβm



























and this can be implemented through matrix-vector multiplication:

tensn,m = λbc.((mn,m
1 ) b)

(

((mm,n
2 ) c)

(

mn
∑

i=1

eni

))

.
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Hence, if u : n and v : m, we have

Ju⊗ vKterm = ((tensn,m) JuKterm) JvKterm

• The tensor of matrices is done column by column:







α11 . . . α1n

...
...

αn′1 . . . αn′n






⊗







β11 . . . β1m
...

...
βm′1 . . . βm′m






=













α11

...
αn′1






⊗







β11
...

βm′1






. . .







α1n

...
αn′n






⊗







β1m
...

βm′m













If M be a matrix of size m×m′ and N a matrix of size n× n′. Then M ⊗N has
size m× n, and it can be implemented as

Tensm,n =

λbc.mat(((tensm,n) (colm1 ) b) (coln1 ) c, · · · ((tensm,n) (colmn ) b) (colnm) c)

Hence, if M : (m,m′) and N : (n, n′), we have

JM ⊗NKterm = ((Tensm,n) JMKterm) JNKterm

Theorem 6.2. The denotation of Mat as terms and types of λvec are sound in the fol-
lowing sense.

M ↓ ζ implies ⊢ JMKterm : JζKtype,
u ↓ ν implies ⊢ JuKterm : JνKtype.

Proof. The proof is a straightfoward structural induction on M and u.

6.3. λvec and quantum computation

In quantum computation, data is encoded on normalised vectors in Hilbert spaces.
For our purpose, their interesting property is to be modules over the ring of complex
numbers. The smallest non-trivial such space is the space of qubits. The space of qubits is
the two-dimensional vector space C2, together with a chosen orthonormal basis {|0〉, |1〉}.
A quantum bit (or qubit) is a normalised vector α|0〉 + β|1〉, where |α|2 + |β|2 = 1. In
quantum computation, the operations on qubits that are usually considered are the
quantum gates, i.e. a chosen set of unitary operations. For our purpose, their interesting
property is to be linear.

The fact that one can encode quantum circuits in λvec is a corollary of Theorem 6.2.
Indeed, a quantum circuit can be regarded as a sequence of multiplications and tensors
of matrices. The language of term can faithfully represent those, where as the type
system can serve as an abstract interpretation of the actual unitary map computed by
the circuit.
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We believe that this tool is a first step towards lifting the “quantumness” of algebraic
λ-calculi to the level of a type based analysis. It could also be a step towards a “quantum
theoretical logic” coming readily with a Curry-Howard isomorphism. The logic we are
sketching merges intuitionistic logic and vectorial structure, which makes it intriguing.

The next step in the study of the quantumness of the linear algebraic λ-calculus is
the exploration of the notion of orthogonality between terms, and the validation of this
notion by means of a compilation into quantum circuits. The work of [41] shows that it
is worthwhile pursuing in this direction.

6.4. λvec and other calculi

No direct connection seems to exists between λvec and intersection and union types [9,
38]. However, there is an ongoing project of a new type system based on intersections,
which may take some of the ideas from the Vectorial lambda calculus. Indeed, the sum
resembles as a non-idempotent intersection, with some extra quantitative information.
In [17] a type system with non-idempotent intersection has been used to compute a
bound on the normalisation time, and in [11, 33] to provide new characterisations on
strongly normalising terms. In any case, the Scalar type system [4] seems more close
to these results: only scalars are considered and so t + t has type 2 · T if t has type
T , hence the difference with the non-idempotent intersection type is that the scalars are
not just natural numbers, but members of a given ring. The Vectorial lambda calculus
goes beyond, as it not only have the quantitative information, thought the scalars, but
also allows to intersect different types. On the other hand, the interpretation of linear
combinations we give in this paper is more in line with a union than an intersection,
which may be a interesting starting question to follow.

A different path to follow has been started at [22], where a non-idempotent intersec-
tion (simply) type has been considered, with no scalars, and where all the isomorphisms
on such a system are made explicit with an equivalence relation. One derivative of such
a work has been a characterisation of superpositions and projective measurement [23].
A natural objective to pursue is to add scalars to it, by somehow merging it with λvec.

Acknowledgements. We would like to thank Gilles Dowek and Barbara Petit for enlight-
ening discussions.
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Appendix A. Detailed proofs of lemmas and theorems in Section 4

Appendix A.1. Lemmas from Section 4.3

Lemma 4.2 (Characterisation of types). For any type T in G, there exist n,m ∈ N,
α1, . . . , αn, β1, . . . , βm ∈ S, distinct unit types U1, . . . , Un and distinct general variables
X1, . . . ,Xm such that

T ≡
n
∑

i=1

αi · Ui +

m
∑

j=1

βj · Xj .

Proof. Structural induction on T .

• Let T be a unit type, then take α = β = 1, n = 1 and m = 0, and so T ≡
∑1

i=1 1 · U = 1 · U .

• Let T = α ·T ′, then by the induction hypothesis T ′ ≡∑n
i=1 αi ·Ui+

∑m
j=1 βj ·Xj , so

T = α ·T ′ ≡ α ·(∑n
i=1 αi ·Ui+

∑m
j=1 βj ·Xj) ≡

∑n
i=1(α×αi) ·Ui+

∑m
j=1(α×βj) ·Xj.

• Let T = R+ S, then by the induction hypothesis R ≡∑n
i=1 αi · Ui +

∑m
j=1 βj ·Xj

and S ≡∑n′

i=1 α
′
i ·U ′

i +
∑m′

j=1 β
′
j ·X′

j , so T = R+S ≡∑n
i=1 αi ·Ui+

∑n′

i=1 α
′
i ·U ′

i +
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∑m
j=1 βj · Xj +

∑m′

j=1 β
′
j · X′

j . If the Ui and the U ′
i are all different each other, we

have finished, in other case, if Uk = U ′
h, notice that αk ·Uk+α

′
h ·U ′

h = (αk+α
′
h)·Uk.

• Let T = X, then take α = β = 1, m = 1 and n = 0, and so T ≡ ∑1
j=1 1 · X =

1 · X.
Definition Appendix A.1. Let F be an algebraic context with n holes. Let ~U =
U1, . . . , Un be a list of n unit types. If U is a unit type, we write Ū for the set of unit
types equivalent to U :

Ū := {V | V is unit and V ≡ U}.
The context vector vF (~U) associated with the context F and the unit types ~U is partial

map from the set S = {Ū} to scalars. It is inductively defined as follows: vα·F (~U) :=

αvF (~U), vF+G(~U) := vF (~U) + vG(~U), and finally v[−i](
~U) := {Ūi 7→ 1}. The sum is

defined on these partial map as follows:

(f + g)(~U) =



















f(~U) + g(~U) if both are defined

f(~U) if f(~U) is defined but not g(~U)

g(~U) if g(~U) is defined but not f(~U)

is not defined if neither f(~U) nor g(~U) is defined.

Scalar multiplication is defined as follows:

(αf)(~U ) =

{

α(f(~U)) if f(~U) is defined

is not defined if f(~U) is not defined.

Lemma Appendix A.2. Let F and G be two algebraic contexts with respectively n
and m holes. Let ~U be a list of n unit types, and ~V be a list of m unit types. Then
F (~U) ≡ G(~V ) implies vF (~U) = vG(~V ).

Proof. The derivation of F (~U) ≡ F (~V ) essentially consists in a sequence of the elemen-
tary rules (or congruence thereof) in Figure 2 composed with transitivity:

F (~U) =W1 ≡W2 ≡ · · · ≡Wk = G(~V ).

We prove the result by induction on k.

• Case k = 1. Then F (~U) is syntactically equal to G(~V ): we are done.

• Suppose that the result is true for sequences of size k, and let

F (~U) =W1 ≡W2 ≡ · · · ≡Wk ≡Wk+1 = G(~V ).

Let us concentrate on the first step F (~U) ≡ W2: it is an elementary step from

Figure 2. By structural induction on the proof of F (~U) ≡ W2 (which only uses
congruence and elementary steps, and not transitivity), we can show that W2 is

of the form F ′(~U ′) where vF (~U) = vF ′(~U ′). We are now in power of applying

the induction hypothesis, because the sequence of elementary rewrites from F ′(~U ′)
to G(~V ) is of size k. Therefore vF ′(~U ′) = vG(~V ). We can then conclude that

vF (~U) = vG(~V ).
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This conclude the proof of the lemma.

Lemma 4.4 (Equivalence between sums of distinct elements (up to ≡)). Let U1, . . . , Un

be a set of distinct (not equivalent) unit types, and let V1, . . . , Vm be also a set distinct
unit types. If

∑n
i=1 αi · Ui ≡

∑m
j=1 βj · Vj , then m = n and there exists a permutation p

of n such that ∀i, αi = βp(i) and Ui ≡ Vp(i).

Proof. Let S =
∑n

i=1 αi · Ui and T =
∑m

j=1 βj · Vj . Both S and T can be respectively

written as F (~U) and G(~V ). Using Lemma Appendix A.2, we conclude that vF (~U) =

vG(~V ). Since all Ui’s are pairwise non-equivalent, the Ūi’s are pairwise distinct.

vF (~U) = {Ūi 7→ αi | i = 1 . . . n}.

Similarly, the V̄j ’s are pairwise disjoint, and

vG(~G) = {V̄j 7→ βj | i = 1 . . .m}.

We obtain the desired result because these two partial maps are supposed to be equal.
Indeed, this immplies:

• m = n because the domains are equal (so they should have the same size)

• Again using the fact that the domains are equal, the sets {Ūi} and {V̄j} are equal:
this means there exists a permutation p of n such that ∀i, Ūi = V̄p(i), meaning
Ui ≡ Vp(i).

• Because the partial maps are equal, the images of a given element Ūi = V̄p(i) under
vF and vG are in fact the same: we therefore have αi = βp(i).

And this closes the proof of the lemma.

Lemma 4.5 (Equivalences ∀I). Let U1, . . . , Un be a set of distinct (not equivalent) unit
types and let V1, . . . , Vn be also a set of distinct unit types.

1.
∑n

i=1 αi · Ui ≡
∑m

j=1 βj · Vj ⇔
∑n

i=1 αi · ∀X.Ui ≡
∑m

j=1 βj · ∀X.Vj .
2.
∑n

i=1 αi · ∀X.Ui ≡
∑m

j=1 βj · Vj ⇒ ∀Vj , ∃Wj / Vj ≡ ∀X.Wj .

3. T ≡ R⇒ T [A/X ] ≡ R[A/X ].

Proof. Item (1) From Lemma 4.4, m = n, and without loss of generality, for all i, αi = βi
and Ui = Vi in the left-to-right direction, ∀X.Ui = ∀X.Vi in the right-to-left direction.
In both cases we easily conclude.

Item (2) is similar.

Item (3) is a straightforward induction on the equivalence T ≡ R.

Lemma 4.8 (�-stability). If T �t

V,Γ R, t → r and Γ ⊢ r : T , then T �r

V,Γ R.

Proof. It suffices to show this for ≻t

X,Γ, with X ∈ V . Observe that since T ≻t

X,Γ R, then
X /∈ FV (Γ). We only have to prove that Γ ⊢ r : R is derivable from Γ ⊢ r : T . We
proceed now by cases:
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• T ≡ ∑n
i=1 αi · Ui and R ≡ ∑n

i=1 αi · ∀X.Ui, then using rules ∀I and ≡, we can
deduce Γ ⊢ r : R.

• T ≡ ∑n
i=1 αi · ∀X.U and R ≡ ∑n

i=1 αi · Ui[A/X ], then using rules ∀E and ≡, we
can deduce Γ ⊢ r : R.

Lemma 4.9 (Arrows comparison). If V → R �t

V,Γ ∀ ~X.(U → T ), then U → T ≡ (V →
R)[ ~A/~Y ], with ~Y /∈ FV (Γ).

Proof. Let ( · )◦ be a map from types to types defined as follows,

X◦ = X (U → T )◦ = U → T (∀X.T )◦ = T ◦

(α · T )◦ = α · T ◦ (T +R)◦ = T ◦ +R◦

We need three intermediate results:

1. If T ≡ R, then T ◦ ≡ R◦.
2. For any types U,A, there exists B such that (U [A/X ])◦ = U◦[B/X ].

3. For any types V, U , there exists ~A such that if V �t

V,Γ ∀ ~X.U , then U◦ ≡ V ◦[ ~A/ ~X].

Proofs.

1. Induction on the equivalence rules. We only give the basic cases since the inductive
step, given by the context where the equivalence is applied, is trivial.

• (1 · T )◦ = 1 · T ◦ ≡ T ◦.

• (α · (β · T ))◦ = α · (β · T ◦) ≡ (α × β) · T ◦ = ((α× β) · T )◦.
• (α · T + α ·R)◦ = α · T ◦ + α ·R◦ ≡ α · (T ◦ +R◦) = (α · (T + R))◦.

• (α · T + β · T )◦ = α · T ◦ + β · T ◦ ≡ (α + β) · T ◦ = ((α + β) · T )◦.
• (T +R)◦ = T ◦ +R◦ ≡ R◦ + T ◦ = (R+ T )◦.

• (T + (R + S))◦ = T ◦ + (R◦ + S◦) ≡ (T ◦ +R◦) + S◦ = ((T +R) + S)◦.

2. Structural induction on U .

• U = X . Then (X [V/X ])◦ = V ◦ = X [V ◦/X ] = X ◦[V ◦/X ].

• U = Y . Then (Y [A/X ])◦ = Y = Y ◦[A/X ].

• U = V → T . Then ((V → T )[A/X ])◦ = (V [A/X ] → T [A/X ])◦ = V [A/X ] →
T [A/X ] = (V → T )[A/X ] = (V → T )◦[A/X ].

• U = ∀Y.V . Then ((∀Y.V )[A/X ])◦ = (∀Y.V [A/X ])◦ = (V [A/X ])◦, which by
the induction hypothesis is equivalent to V ◦[B/X ] = (∀Y.V )◦[B/X ].

3. It suffices to show this for V ≻t

X,Γ ∀ ~X.U . Cases:

• ∀ ~X.U ≡ ∀Y.V , then notice that (∀ ~X.U)◦ ≡(1) (∀Y.V )◦ = V ◦.

• V ≡ ∀Y.W and ∀ ~X.U ≡W [A/X ], then

(∀ ~X.U)◦ ≡(1) (W [A/X ])◦ ≡(2) W
◦[B/X ] = (∀Y.W )◦[B/X ] ≡(1) V

◦[B/X ].

Proof of the lemma. U → T ≡ (U → T )◦, by the intermediate result 3, this is equivalent

to (V → R)◦[ ~A/ ~X] = (V → R)[ ~A/ ~X].
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Lemma 4.10 (Scalars). For any context Γ, term t, type T and scalar α, if Γ ⊢ α · t : T ,
then there exists a type R such that T ≡ α ·R and Γ ⊢ t : R. Moreover, if the minimum
size of the derivation of Γ ⊢ α · t : T is s, then if T = α · R, the minimum size of the
derivation of Γ ⊢ t : R is at most s− 1, in other case, its minimum size is at most s− 2.

Proof. We proceed by induction on the typing derivation.

Γ ⊢ α · t :
n
∑

i=1

αi · Ui

∀I
Γ ⊢ α · t :

n
∑

i=1

αi · ∀X.Ui

By the induction hypothesis
∑n

i=1 αi · Ui ≡ α · R, and by

Lemma 4.2, R ≡ ∑m
j=1 βj · Vj +

∑h
k=1 γk · Xk. So it is

easy to see that h = 0 and so R ≡ ∑m
j=1 βj · Vj . Hence

∑n
i=1 αi · Ui ≡ ∑m

j=1 α × βj · Vj . Then by Lemma 4.5,
∑n

i=1 αi·∀X.Ui ≡
∑m

j=1 α×βj ·∀X.Vj ≡ α·∑m
j=1 βj ·∀X.Vj .

In addition, by the induction hypothesis, Γ ⊢ t : R with a
derivation of size s − 3 (or s − 2 if n = 1), so by rules ∀I
and ≡ (not needed if n = 1), Γ ⊢ t :

∑m
j=1 βj · ∀X.Vj in

size s− 2 (or s− 1 in the case n = 1).

Γ ⊢ α · t :
n
∑

i=1

αi · ∀X.Ui

∀E
Γ ⊢ α · t :

n
∑

i=1

αi · Ui[A/X ]

By the induction hypothesis
∑n

i=1 αi·∀X.Ui ≡ α·R, and
by Lemma 4.2, R ≡∑m

j=1 βj ·Vj+
∑h

k=1 γk ·Xk. So it is

easy to see that h = 0 and so R ≡∑m
j=1 βj · Vj . Hence

∑n
i=1 αi·∀X.Ui ≡

∑m
j=1 α×βj ·Vj . Then by Lemma 4.5,

for each Vj , there exists Wj such that Vj ≡ ∀X.Wj ,
so
∑n

i=1 αi · ∀X.Ui ≡
∑m

j=1 α × βj · ∀X.Wj . Then by

the same lemma,
∑n

i=1 αi · Ui[A/X ] ≡ ∑m
j=1 α × βj ·

Wj [A/X ] ≡ α ·∑m
j=1 βj ·Wj [A/X ]. In addition, by the

induction hypothesis, Γ ⊢ t : R with a derivation of size
s − 3 (or s − 2 if n = 1), so by rules ∀E and ≡ (not
needed if n = 1), Γ ⊢ t :

∑m
j=1 βj ·Wj [A/X ] in size s−2

(or s− 1 in the case n = 1).

Γ ⊢ t : T
αI

Γ ⊢ α · t : α · T
Trivial case.

Γ ⊢ α · t : T T ≡ R
≡

Γ ⊢ α · t : R

By the induction hypothesis T ≡ α ·S, and Γ ⊢ t : S. Notice
that R ≡ T ≡ α · S. If T = α · S, then it is derived with a
minimum size of at most s−2. If T = R, then the minimum
size remains because the last ≡ rule is redundant. In other
case, the sequent can be derived with minimum size at most
s− 1.

Lemma 4.11 (Type for zero). Let t = 0 or t = α · 0, then Γ ⊢ t : T implies T ≡ 0 · R.

Proof. We proceed by induction on the typing derivation.

Γ ⊢ 0 : T
αI

Γ ⊢ α · 0 : 0 · T
and

Γ ⊢ t : T
0I

Γ ⊢ 0 : 0 · T
Trivial cases
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Γ ⊢ t :
n
∑

i=1

αi · Ui

∀
Γ ⊢ t :

n
∑

i=1

αi · Vi

∀-rules (∀I and ∀E) have both the same structure as shown on
the left. In both cases, by the induction hypothesis

∑n
i=1 αi ·

Ui ≡ 0 ·R, and by Lemma 4.2, R ≡∑m
j=1 βj ·Wj+

∑h
k=1 γk ·Xk.

It is easy to check that h = 0, so
∑n

i=1 αi · Ui ≡ 0 ·∑m
j=1 βj ·

Wj ≡
∑m

j=1 0 ·Wj . Hence, using the same ∀-rule, we can derive

Γ ⊢ t :
∑m

j=1 0 · W ′
j , and by Lemma 4.5 we can ensure that

∑n
i=1 αi · Vi ≡ 0 ·∑m

j=1W
′
j .

Γ ⊢ t : T T ≡ R
≡

Γ ⊢ t : R
By the induction hypothesis R ≡ T ≡ 0 · S.

Lemma 4.12 (Sums). If Γ ⊢ t + r : S, then S ≡ T + R with Γ ⊢ t : T and Γ ⊢ r : R.
Moreover, if the size of the derivation of Γ ⊢ t + r : S is s, then if S = T + R, the
minimum sizes of the derivations of Γ ⊢ t : T and Γ ⊢ r : R are at most s − 1, and if
S 6= T +R, the minimum sizes of these derivations are at most s− 2.

Proof. We proceed by induction on the typing derivation.

Γ ⊢ t+ r :
n
∑

i=1

αi · Ui

∀
Γ ⊢ t+ r :

n
∑

i=1

αi · Vi

Rules ∀I and ∀E have both the same structure as shown on
the left. In any case, by the induction hypothesis Γ ⊢ t : T
and Γ ⊢ r : R with T + R ≡ ∑n

i=1 αi · Ui, and derivations of
minimum size at most s− 2 if the equality is true, or s− 3 if
these types are not equal.

In the second case (when the types are not equal), there exists N,M ⊆ {1, . . . , n} with
N ∪M = {1, . . . , n} such that

T ≡
∑

i∈N\M
αi · Ui +

∑

i∈N∩M

α′
i · Ui and

R ≡
∑

i∈M\N
αi · Ui +

∑

i∈N∩M

α′′
i · Ui

where ∀i ∈ N ∩M , α′
i+α

′′
i = αi. Therefore, using ≡ (if needed) and the same ∀-rule, we

get Γ ⊢ t :
∑

i∈N\M αi ·Vi+
∑

i∈N∩M α′
i ·Vi and Γ ⊢ r :

∑

i∈M\N αi ·Vi+
∑

i∈N∩M α′′
i ·Vi,

with derivations of minimum size at most s− 1.

Γ ⊢ t+ r : S′ S′ ≡ S
≡

Γ ⊢ t+ r : S

By the induction hypothesis, S ≡ S′ ≡ T + R and we can
derive Γ ⊢ t : T and Γ ⊢ r : R with a minimum size of at
most s− 2.

Γ ⊢ t : T Γ ⊢ r : R
+I

Γ ⊢ t+ r : T +R
This is the trivial case.

Lemma 4.13 (Applications). If Γ ⊢ (t) r : T , then Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U → Ti) and

Γ ⊢ r :
∑m

j=1 βj · U [ ~Aj/ ~X] where
∑n

i=1

∑m
j=1 αi × βj · Ti[ ~Aj/ ~X] �(t)r

V,Γ T for some V .

Proof. We proceed by induction on the typing derivation.
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Γ ⊢ (t) r :

o
∑

k=1

γk · Vk
∀

Γ ⊢ (t) r :
o
∑

k=1

γk ·Wk

Rules ∀I and ∀E have both the same structure as shown on the
left. In any case, by the induction hypothesis Γ ⊢ t :

∑n
i=1 αi ·

∀ ~X.(U → Ti), Γ ⊢ r :
∑m

j=1 βj ·U [ ~Aj/ ~X] and
∑n

i=1

∑m
j=1 αi×

βj · Ti[ ~Aj/ ~X] �(t)r
V,Γ

∑o
k=1 γk · Vk �(t)r

V,Γ

∑o
k=1 γk ·Wk.

Γ ⊢ (t) r : S S ≡ R
≡

Γ ⊢ (t) r : R

By the induction hypothesis Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U →
Ti), Γ ⊢ r :

∑m
j=1 βj · U [ ~Aj/ ~X] and

∑n
i=1

∑m
j=1 αi × βj ·

Ti[ ~Aj/ ~X] �(t)r
V,Γ S ≡ R.

Γ ⊢ t :
n
∑

i=1

αi · ∀ ~X.(U → Ti) Γ ⊢ r :
m
∑

j=1

βj · U [ ~Aj/ ~X]

→E

Γ ⊢ (t) r :

n
∑

i=1

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X]

This is the trivial case.

Lemma 4.14 (Abstractions). If Γ ⊢ λx.t : T , then Γ, x : U ⊢ t : R where U → R �λx.t
V,Γ T

for some V .

Proof. We proceed by induction on the typing derivation.

Γ ⊢ λx.t :
n
∑

i=1

αi · Ui

∀
Γ ⊢ λx.t :

n
∑

i=1

αi · Vi

Rules ∀I and ∀E have both the same structure as shown on the
left. In any case, by the induction hypothesis Γ, x : U ⊢ t : R,
where U → R �λx.t

V,Γ

∑n
i=1 αi · Ui �λx.t

V,Γ

∑n
i=1 αi · Vi.

Γ ⊢ λx.t : R R ≡ T
≡

Γ ⊢ λx.t : T
By the induction hypothesis Γ, x : U ⊢ t : S where U →
S �λx.t

V,Γ R ≡ T .

Γ, x : U ⊢ t : T
→I

Γ ⊢ λx.t : U → T
This is the trivial case.

Lemma 4.15 (Basis terms). For any context Γ, type T and basis term b, if Γ ⊢ b : T
then there exists a unit type U such that T ≡ U .

Proof. By induction on the typing derivation.

Γ ⊢ b :

n
∑

i=1

αi · Ui

∀
Γ ⊢ b :

n
∑

i=1

αi · Vi

Rules ∀I and ∀E have both the same structure as shown on the left.
In any case, by the induction hypothesis U ≡ ∑n

i=1 αi · Ui �b

V,Γ
∑n

i=1 αi · Vi, then by a straightforward case analysis, we can check
that

∑n
i=1 αi · Vi ≡ U ′.

Γ ⊢ b : R R ≡ T
≡

Γ ⊢ b : T
By the induction hypothesis U ≡ R ≡ T .
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ax
Γ, x : U ⊢ x : U

or
Γ, x : U ⊢ t : T

→I
Γ ⊢ λx.t : U → T

These two are the trivial cases.

Lemma 4.16 (Substitution lemma). For any term t, basis term b, term variable x,
context Γ, types T , U , type variable X and type A, where A is a unit type if X is a unit
variables, otherwise A is a general type, we have,

1. if Γ ⊢ t : T , then Γ[A/X ] ⊢ t : T [A/X ];

2. if Γ, x : U ⊢ t : T , Γ ⊢ b : U then Γ ⊢ t[b/x] : T .

Proof.

1. Induction on the typing derivation.

ax
Γ, x : U ⊢ x : U

Notice that Γ[A/X ], x : U [A/X ] ⊢ x : U [A/X ] can also be
derived with the same rule.

Γ ⊢ t : T
0I

Γ ⊢ 0 : 0 · T
By the induction hypothesis Γ[A/X ] ⊢ t : T [A/X ], so by rule 0I ,
Γ[A/X ] ⊢ 0 : 0 · T [A/X ] = (0 · T )[A/X ].

Γ, x : U ⊢ t : T
→I

Γ ⊢ λx.t : U → T

By the induction hypothesis Γ[A/X ], x : U [A/X ] ⊢ t :
T [A/X ], so by rule →I , Γ[A/X ] ⊢ λx.t : U [A/X ] →
T [A/X ] = (U → T )[A/X ].

Γ ⊢ t :

n
∑

i=1

αi · ∀~Y .(U → Ti) Γ ⊢ r :

m
∑

j=1

βj · U [ ~Bj/~Y ]

→E

Γ ⊢ (t) r :

n
∑

i=1

m
∑

j=1

αi × βj · Ti[ ~Bj/~Y ]

By the induction hypothesis Γ[A/X ] ⊢ t : (
∑n

i=1 αi · ∀~Y .(U → Ti))[A/X ] and

this type is equal to
∑n

i=1 αi · ∀~Y .(U [A/X ] → Ti[A/X ]). Also Γ[A/X ] ⊢ r :

(
∑m

j=1 βj · U [ ~Bj/~Y ])[A/X ] =
∑m

j=1 βj · U [ ~Bj/~Y ][A/X ]. Since ~Y is bound, we can

consider it is not in A. Hence U [ ~Bj/~Y ][A/X ] = U [A/X ][ ~Bj[A/X ]/~Y ], and so, by
rule →E ,

Γ[A/X ] ⊢ (t) r :

n
∑

i=1

m
∑

j=1

αi × βj · Ti[A/X ][ ~Bj[A/X ]/~Y ]

= (

n
∑

i=1

m
∑

j=1

αi × βj · Ti[ ~Bj/~Y ])[A/X ] .

Γ ⊢ t :

n
∑

i=1

αi · Ui Y /∈ FV (Γ)

∀I
Γ ⊢ t :

n
∑

i=1

αi · ∀Y.Ui

By the induction hypothesis, Γ[A/X ] ⊢ t :
(
∑n

i=1 αi ·Ui)[A/X ] =
∑n

i=1 αi ·Ui[A/X ].
Then, by rule ∀I , Γ[A/X ] ⊢ t :

∑n
i=1 αi ·

∀Y.Ui[A/X ] = (
∑n

i=1 αi · ∀Y.Ui)[A/X ] (in
the case Y ∈ FV (A), we can rename the
free variable).
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Γ ⊢ t :

n
∑

i=1

αi · ∀Y.Ui

∀E
Γ ⊢ t :

n
∑

i=1

αi · Ui[B/Y ]

Since Y is bounded, we can consider Y /∈ FV (A).
By the induction hypothesis Γ[A/X ] ⊢ t : (

∑n
i=1 αi ·

∀Y.Ui)[A/X ] =
∑n

i=1 αi · ∀Y.Ui[A/X ]. Then by
rule ∀E , Γ[A/X ] ⊢ t :

∑n
i=1 αi · Ui[A/X ][B/Y ].

We can consider X /∈ FV (B) (in other case, just
take B[A/X ] in the ∀-elimination), hence

∑n
i=1 αi ·

Ui[A/X ][B/Y ] =
∑n

i=1 αi · Ui[B/Y ][A/X ].

Γ ⊢ t : T
αI

Γ ⊢ α · t : α ·T
By the induction hypothesis Γ[A/X ] ⊢ t : T [A/X ], so by rule
αI , Γ[A/X ] ⊢ α · t : α · T [A/X ] = (α · T )[A/X ].

Γ ⊢ t : T Γ ⊢ r : R
+I

Γ ⊢ t+ r : T +R

By the induction hypothesis Γ[A/X ] ⊢ t : T [A/X ]
and Γ[A/X ] ⊢ r : R[A/X ], so by rule +I , Γ[A/X ] ⊢
t+ r : T [A/X ] +R[A/X ] = (T +R)[A/X ].

Γ ⊢ t : T T ≡ R
≡

Γ ⊢ t : R

By the induction hypothesis Γ[A/X ] ⊢ t : T [A/X ], and
since T ≡ R, then T [A/X ] ≡ R[A/X ], so by rule ≡,
Γ[A/X ] ⊢ t : R[A/X ].

2. We proceed by induction on the typing derivation of Γ, x : U ⊢ t : T .

(a) Let Γ, x : U ⊢ t : T as a consequence of rule ax. Cases:

• t = x, then T = U , and so Γ ⊢ t[b/x] : T and Γ ⊢ b : U are the same
sequent.

• t = y. Notice that y[b/x] = y. By Lemma 4.3 Γ, x : U ⊢ y : T implies
Γ ⊢ y : T .

(b) Let Γ, x : U ⊢ t : T as a consequence of rule 0I , then t = 0 and T = 0 · R,
with Γ, x : U ⊢ r : R for some r. By the induction hypothesis, Γ ⊢ r[b/x] : R.
Hence, by rule 0I , Γ ⊢ 0 : 0 ·R.

(c) Let Γ, x : U ⊢ t : T as a consequence of rule →I , then t = λy.r and T =
V → R, with Γ, x : U, y : V ⊢ r : R. Since our system admits weakening
(Lemma 4.3), the sequent Γ, y : V ⊢ b : U is derivable. Then by the induction
hypothesis, Γ, y : V ⊢ r[b/x] : R, from where, by rule →I , we obtain Γ ⊢
λy.r[b/x] : V → R. We are done since λy.r[b/x] = (λy.r)[b/x].

(d) Let Γ, x : U ⊢ t : T as a consequence of rule →E , then t = (r) u and

T =
∑n

i=1

∑m
j=1 αi × βj · Ri[ ~B/~Y ], with Γ, x : U ⊢ r :

∑n
i=1 αi · ∀~Y .(V → Ti)

and Γ, x : U ⊢ u :
∑m

j=1 βj ·V [ ~B/~Y ]. By the induction hypothesis, Γ ⊢ r[b/x] :
∑n

i=1 αi · ∀~Y .(V → Ri) and Γ ⊢ u[b/x] :
∑m

j=1 βj · V [ ~B/~Y ]. Then, by rule

→E , Γ ⊢ r[b/x]) u[b/x] :
∑n

i=1

∑m
j=1 αi × βj · Ri[ ~B/~Y ].

(e) Let Γ, x : U ⊢ t : T as a consequence of rule ∀I . Then T =
∑n

i=1 αi · ∀Y.Vi,
with Γ, x : U ⊢ t :

∑n
i=1 αi · Vi and Y /∈ FV (Γ) ∪ FV (U). By the induction

hypothesis, Γ ⊢ t[b/x] :
∑n

i=1 αi · Vi. Then by rule ∀I , Γ ⊢ t[b/x] :
∑n

i=1 αi ·
∀Y.Vi.

(f) Let Γ, x : U ⊢ t : T as a consequence of rule ∀E , then T =
∑n

i=1 αi · Vi[B/Y ],
with Γ, x : U ⊢ t :

∑n
i=1 αi · ∀Y.Vi. By the induction hypothesis, Γ ⊢ t[b/x] :

∑n
i=1 αi · ∀Y.Vi. By rule ∀E , Γ ⊢ t[b/x] :

∑n
i=1 αi · Vi[B/Y ].
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(g) Let Γ, x : U ⊢ t : T as a consequence of rule αI . Then T = α ·R and t = α · r,
with Γ, x : U ⊢ r : R. By the induction hypothesis Γ ⊢ r[b/x] : R. Hence by
rule αI , Γ ⊢ α · r[b/x] : α · R. Notice that α · r[b/x] = (α · r)[b/x].

(h) Let Γ, x : U ⊢ t : T as a consequence of rule +I . Then t = r+u and T = R+S,
with Γ, x : U ⊢ r : R and Γ, x : U ⊢ u : S. By the induction hypothesis, Γ ⊢
r[b/x] : R and Γ ⊢ u[b/x] : S. Then by rule +I , Γ ⊢ r[b/x] + u[b/x] : R+ S.
Notice that r[b/x] + u[b/x] = (r+ u)[b/x].

(i) Let Γ, x : U ⊢ t : T as a consequence of rule ≡. Then T ≡ R and Γ, x :
U ⊢ t : R. By the induction hypothesis, Γ ⊢ t[b/x] : R. Hence, by rule ≡,
Γ ⊢ t[b/x] : T .

Appendix A.2. Proof of Theorem 4.1

Theorem 4.1 (Weak subject reduction). For any terms t, t′, any context Γ and any
type T , if t →R t′ and Γ ⊢ t : T , then:

1. if R /∈ Group F, then Γ ⊢ t′ : T ;
2. if R ∈ Group F, then ∃S ⊒ T such that Γ ⊢ t′ : S and Γ ⊢ t : S.

Proof. Let t →R t′ and Γ ⊢ t : T . We proceed by induction on the rewrite relation.

Group E.

0 · t → 0 Consider Γ ⊢ 0 · t : T . By Lemma 4.10, we have that T ≡ 0 · R and Γ ⊢ t : R.
Then, by rule 0I , Γ ⊢ 0 : 0 · R. We conclude using rule ≡.

1 · t → t Consider Γ ⊢ 1 · t : T , then by Lemma 4.10, T ≡ 1 · R and Γ ⊢ t : R. Notice
that R ≡ T , so we conclude using rule ≡.

α · 0 → 0 Consider Γ ⊢ α · 0 : T , then by Lemma 4.11, T ≡ 0 ·R. Hence by rules ≡ and
0I , Γ ⊢ 0 : 0 · 0 · R and so we conclude using rule ≡.

α · (β · t) → (α× β) · t Consider Γ ⊢ α · (β · t) : T . By Lemma 4.10, T ≡ α · R and
Γ ⊢ β · t : R. By Lemma 4.10 again, R ≡ β · S with Γ ⊢ t : S. Notice that
(α×β) ·S ≡ α · (β ·S) ≡ T , hence by rules αI and ≡, we obtain Γ ⊢ (α×β) · t : T .

α · (t+ r) → α · t+ α · r Consider Γ ⊢ α · (t + r) : T . By Lemma 4.10, T ≡ α · R and
Γ ⊢ t+ r : R. By Lemma 4.12 Γ ⊢ t : R1 and Γ ⊢ r : R2, with R1 +R2 ≡ R. Then
by rules αI and +I , Γ ⊢ α · t+ α · r : α ·R1 + α ·R2. Notice that α ·R1 + α ·R2 ≡
α · (R1 +R2) ≡ α · R ≡ T . We conclude by rule ≡.

Group F.

α · t+ β · t → (α+ β) · t Consider Γ ⊢ α ·t+β ·t : T , then by Lemma 4.12, Γ ⊢ α ·t : T1
and Γ ⊢ β · t : T2 with T1 + T2 ≡ T . Then by Lemma 4.10, T1 ≡ α · R and
Γ ⊢ t : R and T2 ≡ β · S. By rule αI , Γ ⊢ (α + β) · t : (α + β) · R. Notice that
(α+ β) · R ⊒ α ·R+ β · S ≡ T1 + T2 ≡ T .

α · t+ t → (α+ 1) · t and R = t+ t → (1 + 1) · t The proofs of these two cases are sim-
plified versions of the previous case.

t+ 0 → t Consider Γ ⊢ t + 0 : T . By Lemma 4.12, Γ ⊢ t : R and Γ ⊢ 0 : S with
R + S ≡ T . In addition, by Lemma 4.11, S ≡ 0 · S′. Notice that R+ 0 · R ≡ R ⊒
R+ 0 · S′ ≡ R+ S ≡ T .
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Group B.

(λx.t) b → t[b/x] Consider Γ ⊢ (λx.t) b : T , then by Lemma 4.13, we have Γ ⊢ λx.t :
∑n

i=1 αi · ∀ ~X.(U → Ri) and Γ ⊢ b :
∑m

j=1 βj ·U [ ~Aj/ ~X] where
∑n

i=1

∑m
j=1 αi × βj ·

Ri[ ~Aj/ ~X] �(λx.t)b
V,Γ T . However, we can simplify these types using Lemma 4.15, and

so we have Γ ⊢ λx.t : ∀ ~X.(U → R) and Γ ⊢ b : U [ ~A/ ~X] with R[ ~A/ ~X] �(λx.t)b
V,Γ T .

Note that ~X 6∈ FV (Γ) (from the arrow introduction rule). Hence, by Lemma 4.14,

Γ, x : V ⊢ t : S, with V → S �λx.t
V,Γ ∀ ~X.(U → R). Hence, by Lemma 4.9,

U ≡ V [ ~B/~Y ] and R ≡ S[ ~B/~Y ] with ~Y /∈ FV (Γ), so by Lemma 4.16(1), Γ, x : U ⊢
t : R. Applying Lemma 4.16(1) once more, we have Γ[ ~A/ ~X, x : U [ ~A/ ~X] ⊢ t[b/x] :

R[ ~A/ ~X]. Since ~X 6∈ FV (Γ), Γ[ ~A/ ~X] = Γ and we can apply Lemma 4.16(2) to

get Γ ⊢ t[b/x] : R[ ~A/ ~X] �(λx.t)b
V,Γ T . So, by Lemma 4.8, R[ ~A/ ~X] �t[b/x]

V,Γ T , which
implies Γ ⊢ t[b/x] : T .

Group A.

(t+ r) u → (t) u+ (r) u Consider Γ ⊢ (t+ r) u : T . Then by Lemma 4.13, Γ ⊢ t+ r :
∑n

i=1 αi · ∀ ~X.(U → Ti) and Γ ⊢ u :
∑m

j=1 βj .U [ ~Aj/ ~X] where
∑n

i=1

∑m
j=1 αi × βj ·

Ti[ ~Aj/ ~X] �(t+r)u
V,Γ T . Then by Lemma 4.12, Γ ⊢ t : R1 and Γ ⊢ r : R2, with

R1 + R2 ≡ ∑n
i=1 αi · ∀ ~X.(U → Ti). Hence, there exists N1, N2 ⊆ {1, . . . , n} with

N1 ∪N2 = {1, . . . , n} such that

R1 ≡
∑

i∈N1\N2

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′
i · ∀ ~X.(U → Ti) and

R2 ≡
∑

i∈N2\N1

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′′
i · ∀ ~X.(U → Ti)

where ∀i ∈ N1 ∩N2, α
′
i + α′′

i = αi. Therefore, using ≡ we get

Γ ⊢ t :
∑

i∈N1\N2

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′
i · ∀ ~X.(U → Ti) and

Γ ⊢ r :
∑

i∈N2\N1

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′′
i · ∀ ~X.(U → Ti)

So, using rule →E , we get

Γ ⊢ (t) u :
∑

i∈N1\N2

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X] +
∑

i∈N1∩N2

m
∑

j=1

α′
i × βj · Ti[ ~Aj/ ~X] and

Γ ⊢ (r) u :
∑

i∈N2\N1

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X] +
∑

i∈N1∩N2

m
∑

j=1

α′′
i × βj · Ti[ ~Aj/ ~X]

Finally, by rule +I we can conclude Γ ⊢ (t) u + (r) u :
∑n

i=1

∑m
j=1 αi × βj ·

Ti[ ~Aj/ ~X] �(t+r)u
V,Γ T . Then by Lemma 4.8, :

∑n
i=1

∑m
j=1 αi×βj·Ti[ ~Aj/ ~X] �(t)u+(r)u

V,Γ

T , so Γ ⊢ (t) u+ (r) u : T .
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(t) (r+ u) → (t) r+ (t) u Consider Γ ⊢ (t) (r + u) : T . By Lemma 4.13, Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U → Ti) and Γ ⊢ r + u :
∑m

j=1 βj .U [ ~Aj/ ~X] where
∑n

i=1

∑m
j=1 αi ×

βj · Ti[ ~Aj/ ~X] �(t)(r+u)
V,Γ T . Then by Lemma 4.12, Γ ⊢ r : R1 and Γ ⊢ u : R2,

with R1 +R2 ≡∑m
j=1 βj .U [ ~Aj/ ~X]. Hence, there exists M1,M2 ⊆ {1, . . . ,m} with

M1 ∪M2 = {1, . . . ,m} such that

R1 ≡
∑

j∈M1\M2

βj .U [ ~Aj/ ~X] +
∑

j∈M1∩M2

β′
j .U [ ~Aj/ ~X] and

R2 ≡
∑

j∈M2\M1

βj .U [ ~Aj/ ~X] +
∑

j∈M1∩M2

β′′
j .U [ ~Aj/ ~X]

where ∀j ∈M1 ∩M2, β
′
j + β′′

j = βj . Therefore, using ≡ we get

Γ ⊢ r :
∑

j∈M1\M2

βj .U [ ~Aj/ ~X] +
∑

j∈M1∩M2

β′
j .U [ ~Aj/ ~X] and

Γ ⊢ u :
∑

j∈M2\M1

βj .U [ ~Aj/ ~X] +
∑

j∈M1∩M2

β′′
j .U [ ~Aj/ ~X]

So, using rule →E , we get

Γ ⊢ (t) r :
n
∑

i=1

∑

j∈M1\M2

αi × βj · Ti[ ~Aj/ ~X] +
n
∑

i=1

∑

j∈M1∩M2

αi × β′
j · Ti[ ~Aj/ ~X] and

Γ ⊢ (t) u :

n
∑

i=1

∑

j∈M2\M1

αi × βj · Ti[ ~Aj/ ~X] +

n
∑

i=1

∑

j∈M1∩M2

αi × β′′
j · Ti[ ~Aj/ ~X]

Finally, by rule +I we can conclude Γ ⊢ (t) r+(t) u :
∑n

i=1

∑m
j=1 αi×βj ·Ti[ ~Aj/ ~X].

We finish the case with Lemma 4.8.

(α · t) r → α · (t) r Consider Γ ⊢ (α · t) r : T . Then by Lemma 4.13, Γ ⊢ α · t :
∑n

i=1 αi · ∀ ~X.(U → Ti) and Γ ⊢ r :
∑m

j=1 βj ·U [ ~Aj/ ~X], where
∑n

i=1

∑m
j=1 αi × βj ·

Ti[ ~Aj/ ~X] �(α·t)r
V,Γ T . Then by Lemma 4.10,

∑n
i=1 αi · ∀ ~X.(U → Ti) ≡ α · R and

Γ ⊢ t : R. By Lemma 4.2, R ≡∑n′

i=1 γi ·Vi+
∑h

k=1 ηk ·Xk, however it is easy to see
that h = 0 because R is equivalent to a sum of terms, where none of them is X. So

R ≡∑n′

i=1 γi ·Vi. Without lost of generality (cf. previous case), take Ti 6= Tk for all

i 6= k and h = 0, and notice that
∑n

i=1 αi · ∀ ~X.(U → Ti) ≡
∑n′

i=1 α× γi · Vi. Then
by Lemma 4.4, there exists a permutation p such that αi = α×γp(i) and ∀ ~X.(U →
Ti) ≡ Vp(i). Without lost of generality let p be the trivial permutation, and so

Γ ⊢ t :
∑n

i=1 γi · ∀ ~X.(U → Ti). Hence, using rule →E , Γ ⊢ (t) r :
∑n

i=1

∑m
j=1 γi ×

βj ·Ti[ ~Aj/ ~X]. Therefore, by rule αI , Γ ⊢ α · (t) r : α ·∑n
i=1

∑m
j=1 γi×βj ·Ti[ ~Aj/ ~X].

Notice that α ·∑n
i=1

∑m
j=1 γi × βj · Ti[ ~Aj/ ~X] ≡∑n

i=1

∑m
j=1 αi × βj · Ti[ ~Aj/ ~X]. We

finish the case with Lemma 4.8.

(t) (α · r) → α · (t) r Consider Γ ⊢ (t) (α · r) : T . Then by Lemma 4.13, Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U → Ti) and Γ ⊢ α · r :
∑m

j=1 βj · U [ ~Aj/ ~X], where
∑n

i=1

∑m
j=1 αi ×
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βj · Ti[ ~Aj/ ~X] �(t)(α·r)
V,Γ T . Then by Lemma 4.10,

∑m
j=1 βj · U [ ~Aj/ ~X] ≡ α · R and

Γ ⊢ r : R. By Lemma 4.2, R ≡ ∑m′

j=1 γj · Vj +
∑h

k=1 ηk · Xk, however it is easy
to see that h = 0 because R is equivalent to a sum of terms, where none of them

is X. So R ≡ ∑m′

j=1 γj · Vj . Without lost of generality (cf. previous case), take

Aj 6= Ak for all j 6= k, and notice that
∑m

j=1 βj · U [ ~Aj/ ~X] ≡ ∑m′

j=1 α × γj · Vj .
Then by Lemma 4.4, there exists a permutation p such that βj = α × γp(j) and

U [ ~Aj/ ~X] ≡ Vp(j). Without lost of generality let p be the trivial permutation, and

so Γ ⊢ r :
∑m

j=1 γi · U [ ~Aj/ ~X]. Hence, using rule →E , Γ ⊢ (t) r :
∑n

i=1

∑m
j=1 αi ×

γj ·Ti[ ~Aj/ ~X]. Therefore, by rule αI , Γ ⊢ α · (t) r : α ·∑n
i=1

∑m
j=1 αi×γj ·Ti[ ~Aj/ ~X].

Notice that α ·∑n
i=1

∑m
j=1 αi × γj ·Ti[ ~Aj/ ~X] ≡∑n

i=1

∑m
j=1 αi × βj ·Ti[ ~Aj/ ~X]. We

finish the case with Lemma 4.8.

(0) t → 0 Consider Γ ⊢ (0) t : T . By Lemma 4.13, Γ ⊢ 0 :
∑n

i=1 αi · ∀ ~X.(U → Ti)

and Γ ⊢ t :
∑m

j=1 βj · U [ ~Aj/ ~X], where
∑n

i=1

∑m
j=1 αi × βj · Ti[ ~Aj/ ~X] �(0)t

V,Γ T .

Then by Lemma 4.11,
∑n

i=1 αi · ∀ ~X.(U → Ti) ≡ 0 · R. By Lemma 4.2, R ≡
∑n′

i=1 γi · Vi +
∑h

k=1 ηk · Xk, however, it is easy to see that h = 0 and so R ≡
∑n′

i=1 γi · Vi. Without lost of generality, take Ti 6= Tk for all i 6= k, and notice that
∑n

i=1 αi · ∀ ~X.(U → Ti) ≡ ∑n′

i=1 0 · Vi. By Lemma 4.4, αi = 0. Notice that by

rule →E , Γ ⊢ (0) t :
∑n

i=1

∑m
j=1 0 · Ti[ ~Aj/ ~X], hence by rules 0I and ≡, Γ ⊢ 0 :

∑n
i=1

∑m
j=1 0 · Ti[ ~Aj/ ~X] �(0)t

V,Γ T . By Lemma 4.8,
∑n

i=1

∑m
j=1 0 · Ti[ ~Aj/ ~X] �0

V,Γ T ,
so Γ ⊢ 0 : T .

(t) 0 → 0 Consider Γ ⊢ (t) 0 : T . By Lemma 4.13, Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U → Ti)

and Γ ⊢ 0 :
∑m

j=1 βj · U [ ~Aj/ ~X], where
∑n

i=1

∑m
j=1 αi × βj · Ti[ ~Aj/ ~X] �(t)0

V,Γ T .

Then by Lemma 4.11,
∑m

j=1 βj · U [ ~Aj/ ~X] ≡ 0 · R. By Lemma 4.2, R ≡∑m′

j=1 γj ·
Vj +

∑h
k=1 ηk · Xk, however, it is easy to see that h = 0 and so R ≡ ∑m′

j=1 γj ·
Vj . Without lost of generality, take Aj 6= Ak for all j 6= k, and notice that
∑m

j=1 βj · U [ ~Aj/ ~X] ≡ ∑m′

j=1 0 · Vj . By Lemma 4.4, βj = 0. Notice that by rule

→E , Γ ⊢ (t) 0 :
∑n

i=1

∑m
j=1 0 · Ti[ ~Aj/ ~X], hence by rules 0I and ≡, Γ ⊢ 0 :

∑n
i=1

∑m
j=1 0 · Ti[ ~Aj/ ~X] �(t)0

V,Γ T . By Lemma 4.8,
∑n

i=1

∑m
j=1 0 · Ti[ ~Aj/ ~X] �0 T .

Hence, Γ ⊢ 0 : T .

Contextual rules. Follows from the generation lemmas, the induction hypothesis and the
fact that ⊒ is congruent.

Appendix B. Detailed proofs of lemmas and theorems in Section 5

Appendix B.1. First lemmas

Lemma 5.3 If A, B and all the Ai’s are in RC, then so are A → B,
∑

i Ai and ∩iAi.

Proof. Before proving that these operators define reducibility candidates, we need the
following result which simplifies its proof: a linear combination of strongly normalising
terms, is strongly normalising. That is
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Auxiliary Lemma (AL). If {ti}i are strongly normalising, then so is F (~t) for any
algebraic context F .
Proof. Let ~t = t1, . . . , tn. We define two notions.

• A measure s on ~t defined as the the sum over i of the sum of the lengths of all the
possible rewrite sequences starting with ti.

• An algebraic measure a over algebraic contexts F (.) defined inductively by a(ti) =

1, a(F (~t)+G(~t′)) = 2+ a(F (~t)) + a(G(~t′)), a(α ·F (~t)) = 1+2 · a(F (~t)), a(0) = 0.

We claim that for all linear algebraic contexts F (·) (in the sense of Remark 5.2) and all
strongly normalising terms ti that are not linear combinations (that is, of the form x,
λx.r or (s) r), the term F (~t) is also strongly normalising.

The claim is proven by induction on s(~t) (the size is finite because t is SN, and
because the rewrite system is finitely branching).

• If s(~t) = 0. Then none of the ti reduces. We show by induction on a(F (~t)) that
F (~t) is SN.

– If a(F (~t)) = 0, then F (~t) = 0 which is SN.

– Suppose it is true for all F (~t) of algebraic measure less or equal to m, and
consider F (~t) such that a(F (~t)) = m + 1. Since the ti are not linear combi-
nations and they are in normal form, because s(~t) = 0, then F (~t) can only
reduce with a rule from Group E or a rule from group F. We show that those
reductions are strictly decreasing on the algebraic measure, by a rule by rule
analysis, and so, we can conclude by induction hypothesis.

∗ 0 · F (~t) → 0. Note that a(0 · F (~t)) = 1 > 0 = a(0).

∗ 1 · F (~t) → F (~t). Note that a(1 · F (~t)) = 1 + 2 · a(F (~t)) > a(F (~t)).

∗ α · 0 → 0. Note that a(α · 0) = 1 > 0 = a(0).

∗ α · (β ·F (~t)) → (α× β) ·F (~t). Note that a(α · (β ·F (~t))) = 1+ 2 · (1 + 2 ·
a(F (~t))) > 1 + 2 · a(F (~t)) = a((α× β) · F (~t)).

∗ α·(F (~t)+G(~t′)) → α·F (~t)+α·G(~t′). Note that a(α·(F (~t)+G(~t′))) = 5+
2·a(F (~t))+2·a(G(~t′)) > 4+2·a(F (~t))+2·a(G(~t′)) = a(α·F (~t)+α·G(~t′)).

∗ α · F (~t) + β · F (~t) → (α + β) · F (~t). Note that a(α · F (~t) + β · F (~t)) =
4 + 4 · a(F (~t)) > 1 + 2 · a(F (~t)) = a((α + β) · F (~t)).

∗ α · F (~t) + F (~t) → (α + 1) · F (~t). Note that a(α · F (~t) + F (~t)) = 3 + 3 ·
a(F (~t)) > 1 + 2 · a(F (~t)) = a · ((α+ 1) · F (~t)).

∗ F (~t)+F (~t) → (1+1) ·F (~t). Note that a ·(F (~t)+F (~t)) = 2+2 ·a(F (~t)) >
1 + 2 · a(F (~t)) = a · ((1 + 1) · F (~t)).

∗ F (~t) + 0 → F (~t). Note that a · (F (~t) + 0) = 2 + a(F (~t)) > a(F (~t)).

∗ Contextual rules are trivial.

• Suppose it is true for n, then consider ~t such that s(~t) = n + 1. Again, we show
that F (~t) is SN by induction on a(F (~t)).

– If a(F (~t)) = 0, then F (~t) = 0 which is SN.
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– Suppose it is true for all F (~t) of algebraic measure less or equal to m, and con-
sider F (~t) such that a(F (~t)) = m+1. Since the ti are not linear combinations,
F (~t) can reduce in two ways:

∗ F (t1, . . . ti, . . . tk) → F (t1, . . . t
′
i, . . . tk) with ti → t′i. Then t′i can be

written as H(r1, . . . rl) for some algebraic context H , where the rj ’s are
not linear combinations. Note that

l
∑

j=1

s(rj) ≤ s(t′i) < s(ti).

Define the context

G(t1, . . . , ti−1,u1, . . .ul, ti+1, . . . tk) =

F (t1, . . . , ti−1, H(u1, . . .ul), ti+1, . . . tk).

The term F (~t) then reduces to the term

G(t1, . . . , ti−1, r1, . . . rl, ti+1 . . . tk),

where
s(t1, . . . , ti−1, r1, . . . rl, ti+1 . . . tk) < s(~t).

Using the top induction hypothesis, we conclude that F (t1, . . . t
′
i, . . . tk)

is SN.

∗ F (~t) → G(~t), with a(G(~t)) < a(F (~t)). Using the second induction hy-
pothesis, we conclude that G(~t) is SN

All the possible reducts of F (~t) are SN: so is F (~t).

This closes the proof of the claim. Now, consider any SN terms {ti}i and any algebraic
context G(~t). Each ti can be written as an algebraic sum of x’s, λx.s’s and (r) s’s. The

context G(~t) can then be written as F (~t′) where none of the t′i is a linear combination.
From Remark 5.2, there exists a linear algebraic context F ′(~t′; ) where ~t′′ is ~t′ with
possibly some repetitions, and where F ′(~t′′) = F (~t′), when considered as terms. The
hypotheses of the claim are satisfied: F ′(~t′′) is therefore SN. Since it is ultimely equal to
G(~t), G(~t) is also SN: the Auxiliary Lemma (AL) is valid.

Now, we can prove Lemma 5.3 First, we consider the case A → B.

RC1 We must show that all t ∈ A → B are in SN 0. We proceed by induction on the
definition of A → B.

• Assume that t is such that for r = 0 and r = b, with b ∈ A, then (t) r ∈ B.
Hence by RC1 in B, t ∈ SN 0.

• Assume that t is closed neutral and that Red(t) ⊆ A → B. By induction
hypothesis, all the elements of Red(t) are strongly normalising: so is t.

• The last case is immediate: if t is the term 0, it is strongly normalising.

RC2 We must show that if t → t′ and t ∈ A → B, then t′ ∈ A → B. We again proceed
by induction on the definition of A → B.
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• Let t such that (t)0 ∈ B and such that for all b ∈ A, (t) b ∈ B. Then by
RC2 in B, (t′) 0 ∈ B and (t′) b ∈ B, and so t′ ∈ A → B.

• If t is closed neutral and Red(t) ⊆ A → B, then t′ ∈ A → B since t′ ∈ Red(t).

• If t = 0, it does not reduce.

RC3 and RC4 Trivially true by definition.

Then we analyze the case
∑

i Ai.

RC1 We show that “if t ∈∑i Ai then t is stongly normalizing” by structural induction
on the justification of t ∈∑i Ai.

• Base case. t belongs to one of the Ai: it is then SN by RC1.

• CC1. t is part of a list ~t′ where F (~t′) ∈∑i Ai for some alg. context F . The

induction hypothesis says that F (~t′) is SN. This implies that t is also SN.

• CC2. t = F (~t′) where F is an alg. context and t′i ∈ Ai. The result is obtained
using the auxiliary lemma (AL) and RC1 on the Ai’s.

• RC2. t is such that s → t where s is SN. This implies that t is also SN.

• RC3. t is closed neutral and Red(t) ⊆∑i Ai, then t is strongly normalising
since all elements of Red(t) are strongly normalising.

RC2 and RC3 Trivially true by definition.

RC4 Since 0 is an algebraic context, it is also in the set by CC2.

Finally, we prove the case ∩iAi.

RC1 Trivial since for all i, Ai ⊆ SN 0.

RC2 Let t ∈ ∩iAi, then ∀i, t ∈ Ai and so by RC2 in Ai, Red(t) ⊆ Ai. Thus Red(t) ⊆
∩iAi.

RC3 Let t ∈ N and Red(t) ⊆ ∩iA. Then ∀i, Red(t) ⊆ Ai, and thus, by RC3 in Ai,
t ∈ Ai, which implies t ∈ ∩iAi.

RC4 By RC4, for all i, 0 ∈ Ai. Therefore, 0 ∈ ∩iAi.

This concludes the proof of Lemma 5.3.

Lemma 5.4 Any type T , has a unique (up to ≡) canonical decomposition T ≡∑n
i=1 αi ·

Ui such that for all l, k, Ul 6≡ Uk.

Proof. By Lemma 4.2, T ≡∑n
i=1 αi ·Ui+

∑m
j=1 βj ·Xj . Suppose that there exist l, k such

that Ul ≡ Uk. Then notice that T ≡ (αl + αk) · Ul +
∑

i6=l,k αi · Ui. Repeat the process
until there is no more l, k such that Ul 6≡ Uk. Proceed in the analogously to obtain a
linear combination of different Xj .

Lemma 5.5 For any types T and A, variable X and valuation ρ, we have JT [A/X ]Kρ =
JT Kρ,(X+,X−) 7→(JAKρ̄,JAKρ) and JT [A/X ]Kρ̄ = JT Kρ̄,(X−,X+) 7→(JAKρ,JAKρ̄).
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Proof. We proceed by structural induction on T . On each case we only show the case of
ρ since the ρ̄ case follows analogously.

• T = X . Then JX [A/X ]Kρ = JAKρ = JXKρ,(X+,X−) 7→(JAKρ̄,JAKρ).

• T = Y . Then JY [A/X ]Kρ = JY Kρ = ρ+(Y ) = JY Kρ,(X+,X−) 7→(JAKρ̄,JAKρ).

• Y = U → R. Then J(U → R)[A/X ]Kρ = JU [A/X ]Kρ̄ → JR[A/X ]Kρ. By the induc-
tion hypothesis, we have JU [A/X ]Kρ̄ → JR[A/X ]Kρ = JUKρ̄,(X−,X+) 7→(JAKρ,JAKρ̄) →
JRKρ,(X+,X−) 7→(JAKρ̄,JAKρ) = JU → RKρ,(X+,X−) 7→(JAKρ̄,JAKρ).

• U = ∀Y.V . Then J(∀Y.V )[A/X ]Kρ = J∀Y.V [A/X ]Kρ which by definition is equal to
∩B∈RCJV [A/X ]Kρ,(Y+,Y−) 7→(B,B) and this, by the induction hypothesis, is equal to
∩B∈RCJV Kρ,(Y+,Y−) 7→(B,B),(X+,X−) 7→(JAKρ̄,JAKρ) = J∀Y.V Kρ,(X+,X−) 7→(JAKρ̄,JAKρ).

• T of canonical decomposition
∑

i αi ·Ui. Then JT [A/X ]Kρ =
∑

iJUi[A/X ]Kρ, which
by induction hypothesis is

∑

iJUiKρ,(X+,X−) 7→(JAKρ̄,JAKρ) = JT Kρ,(X+,X−) 7→(JAKρ̄,JAKρ).

Appendix B.2. Proof of the Adequacy Lemma (5.6)

We need the following results first.

Lemma Appendix B.1. For any type T , if ρ = (ρ+, ρ−) and ρ′ = (ρ′+, ρ
′
−) are two

valid valuations over FV (T ) such that ∀X, ρ′−(X) ⊆ ρ−(X) and ρ+(X) ⊆ ρ′+(X), then
we have JT Kρ ⊆ JT Kρ′ and JT Kρ̄′ ⊆ JT Kρ̄.

Proof. Structural induction on T .

• T = X . Then JXKρ = ρ+(X) ⊆ ρ′+(X) = JXKρ′ and JXKρ̄′ = ρ′−(X) ⊆ ρ−(X) =
JXKρ̄.

• T = U → R. Then JU → RKρ = JUKρ̄ → JRKρ and JU → RKρ̄′ = JUKρ′ → JRKρ̄′ .
By the induction hypothesis JUKρ̄′ ⊆ JUKρ̄ , JUKρ ⊆ JUKρ′ , JRKρ ⊆ JRKρ′ and
JRKρ̄′ ⊆ JRKρ̄. We proceed by induction on the definition of → to show that
∀t ∈ JUKρ̄ → JRKρ, then t ∈ JUKρ̄′ → JRKρ′ = JU → RKρ′

– Let t ∈ {t |(t) 0 ∈ JRKρ and ∀b ∈ JUKρ̄, (r) b ∈ JRKρ}. Notice that (t) 0 ∈
JRKρ ⊆ JRKρ′ . Also, ∀b ∈ JUKρ̄′ , b ∈ JUKρ̄ and then (t) b ∈ JRKρ ⊆ JRKρ′ .

– Let Red(t) ∈ JU → RKρ and t ∈ N . By the induction hypothesis Red(t) ∈
JU → RKρ′ and so, by RC3, t ∈ JU → RKρ′ .

– Let t = 0. By RC4, 0 is in any reducibility candidate, in particular it is in
JU → RKρ′ .

Analogously, ∀t ∈ JUKρ′ → JRKρ̄′ , t ∈ JUKρ → JRKρ̄ = JU → RKρ.

• T = ∀X.U . Then J∀X.UKρ = ∩A∈RCJUKρ,(X+,X−) 7→(A,A). By the induction hy-
pothesis we have JUKρ,(X+,X−) 7→(A,A) ⊆ JUKρ′,(X+,X−) 7→(A,A), Hence we have that
∩A∈RCJUKρ,(X+,X−) 7→(A,A) ⊆ ∩A∈RCJUKρ′,(X+,X−) 7→(A,A) = J∀X.UKρ′ . The proof for
the case J∀X.UKρ̄′ ⊆ J∀X.UKρ̄ is analogous.
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• T ≡ ∑

i αi · Ui and T 6≡ U. Then JT Kρ =
∑

iJUiKρ. By the induction hypothesis
JUiKρ ⊆ JUiKρ′ . We proceed by induction on the justification of t ∈ ∑iJUiKρ to
show that if t ∈∑iJUiKρ then t ∈∑iJUiKρ′ .

– Base case. t belongs to one of the JUiKρ. We conclude using the fact that
JUiKρ ⊆ JUiKρ′ : t then belongs to JUiKρ′ ⊆∑iJUiKρ′ .

– CC1. t belongs to
∑

iJUiKρ because it is in a list ~t′ where F (~t′) ∈ ∑iJUiKρ
for some alg. context F . Induction hypothesis says that F (~t′) ∈ ∑iJUiKρ′ .
We then get t ∈∑iJUiKρ′ using CC1.

– CC2. Let t = F (~r) where F is an algebraic context and ri ∈ JUiKρ̄. Note that
by induction hypothesis ∀ri ∈ JUiKρ, ri ∈ JUiKρ′ and so F (~r) ∈∑iJUiKρ′ .

– RC2. t
′ → t and t′ ∈∑n

i=1JUiKρ′ . Invoking RC2, t ∈
∑n

i=1JUiKρ′ .

– RC3. Red(t) ⊆ JT Kρ and t ∈ N . By the induction hypothesis Red(t) ⊆ JT Kρ′

and so, by RC3, t ∈ JT Kρ′ .

The case JT Kρ̄′ ⊆ JT Kρ̄ is analogous.

Lemma Appendix B.2. For any type T , if ρ = (ρ+, ρ−) is a valid valuation over
FV (T ), then we have JT Kρ̄ ⊆ JT Kρ.

Proof. Structural induction on T .

• T = X . Then JT Kρ̄ = ρ−(X) ⊆ ρ+(X) = JT Kρ.

• T = U → R. Then JU → RKρ̄ = JUKρ → JRKρ̄. By the induction hypothesis
JUKρ̄ ⊆ JUKρ and JRKρ̄ ⊆ JRKρ. We must show that ∀t ∈ JU → RKρ̄, t ∈ JU → RKρ.
Let t ∈ JU → RKρ̄ = JUKρ → JRKρ̄. We proceed by induction on the definition
of →.

– Let t ∈ {t |(t)0 ∈ JRKρ̄ and ∀b ∈ JUKρ, (t) b ∈ JRKρ̄}. Notice that (t)0 ∈
JRKρ̄ ⊆ JRKρ and forall b ∈ JUKρ̄, b ∈ JUKρ, and so (t) b ∈ JRKρ̄ ⊆ JRKρ.
Thus t ∈ JUKρ̄ → JRKρ = JU → RKρ.

– Let Red(t) ∈ JU → RKρ̄ and t ∈ N . By the induction hypothesis Red(t) ∈
JU → RKρ and so, by RC3, t ∈ JU → RKρ.

– Let t = 0. By RC4, 0 is in any reducibility candidate, in particular it is in
JU → RKρ.

• T = ∀X.U . Then J∀X.UKρ̄ = ∩A∈RCJUKρ̄,(X+,X−) 7→(A,A). By the induction hypoth-
esis

JUKρ̄,(X+,X−) 7→(A,A) ⊆ JUKρ,(X+,X−) 7→(A,A).

So ∩A∈RCJUKρ̄,(X+,X−) 7→(A,A) ⊆ ∩A∈RCJUKρ,(X+,X−) 7→(A,A) which is J∀X.UKρ by def-
inition.

• T ≡ ∑

i αi · Ui and T 6≡ U. Then JT Kρ̄ =
∑

iJUiKρ̄. By the induction hypothesis
JUiKρ̄ ⊆ JUiKρ. We proceed by induction on the justification of t ∈ ∑iJUiKρ̄ to
show that t ∈∑iJUiKρ̄ imples t ∈∑iJUiKρ.
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– Base case. t ∈ JUiKρ̄ for some i: by induction hypothesis t ∈ JUiKρ, which is
included in

∑

iJUiKρ.
– CC1. t ∈ ∑iJUiKρ̄ because it is in a list ~t′ where F (~t′) ∈ ∑iJUiKρ̄ for some

alg. context F . Induction hypothesis says that F (~t′) ∈ ∑iJUiKρ. We then
get t ∈∑iJUiKρ using CC1.

– CC2. Let t = F (~r) where F is an algebraic context and ri ∈ JUiKρ̄. By
induction hypothesis ∀r ∈ JUiKρ̄, r ∈ JUiKρ and so the result holds by CC2.

– RC2. Let t ∈
∑

iJUiKρ̄ and t → t′. By the induction hypothesis t ∈∑iJUiKρ,
hence by RC2, t

′ ∈∑iJUiKρ.
– RC3. Let Red(t) ∈ ∑

iJUiKρ̄ and t ∈ N . By the induction hypothesis
Red(t) ∈∑iJUiKρ and so, by RC3, t ∈

∑

iJUiKρ.

Lemma Appendix B.3. Let {Ai}i=1···n be a family of reducibility candidates. If s and
t both belongs to

∑n
i=1 Ai, then so does s+ t. Similarly, if t ∈∑n

i=1 Ai, then for any α,
α · t ∈∑n

i=1 Ai.

Proof. Direct corollary of the closure under CC2.

Lemma Appendix B.4. Suppose that λx.s ∈ A → B and b ∈ A, then (λx.s)b ∈ B.

Proof. Induction on the definition of A → B.

• If λx.s is in {t | (t) 0 ∈ B and ∀b ∈ A, (t)b ∈ B}, then it is trivial

• λx.s cannot be in A → B by the closure under RC3, because it is not neutral,
neither by the closure under RC4, because it is not the term 0.

Remark Appendix B.5. For the proof of adequacy, we show in the following lemma
that J∀ ~X.UKρ can be equivalently defined as a more general intersection, provided that
ρ is valid.

Lemma Appendix B.6. Suppose that ρ = (ρ+, ρ−) is a valid valuation. Then

∩B⊆A∈RCJUKρ,(X+,X−) 7→(A,B) = ∩A∈RCJUKρ,(X+,X−) 7→(A,A).

Proof. Suppose that t ∈ ∩B⊆A∈RCJUKρ,(X+,X−) 7→(A,B), and pick any A ∈ RC. Let B := A:
we have B ⊆ A, so t ∈ JUKρ,(X+,X−) 7→(A,B), and then t ∈ JUKρ,(X+,X−) 7→(A,A). Since this
is the case for all A ∈ RC, we conclude that

∩B⊆A∈RCJUKρ,(X+,X−) 7→(A,B) ⊆ ∩A∈RCJUKρ,(X+,X−) 7→(A,A).

Now, suppose that t ∈ ∩A∈RCJUKρ,(X+,X−) 7→(A,A). Pick any pair B ⊆ A ∈ RC. Then
t ∈ JUKρ,(X+,X−) 7→(A,A). From Lemma Appendix B.1 and because B ⊆ A,

JUKρ,(X+,X−) 7→(A,A) ⊆ JUKρ,(X+,X−) 7→(A,B).

Since this is true for any pair B ⊆ A ∈ RC, we deduce that

∩A∈RCJUKρ,(X+,X−) 7→(A,A) ⊆ ∩B⊆A∈RCJUKρ,(X+,X−) 7→(A,B).

We therefore have the required equality.
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Remark Appendix B.7. Now, we can prove the Adequacy Lemma. In the proof, we
replace the definition of J∀ ~X.UKρ with the more precise intersection proposed in Lemma
Appendix B.6.

Lemma 5.6 (Adequacy Lemma). Every derivable typing judgement is valid: For every
valid sequent Γ ⊢ t : T , we have Γ |= t : T .

Proof. The proof of the adequacy lemma is made by induction on the size of the typing
derivation of Γ ⊢ t : T . We look at the last typing rule that is used, and show in each
case that Γ |= t : T , i.e. if T ≡ U, then tσ ∈ JUKρ or if T ≡ ∑n

i=1 αi.Ui in the sense of
Lemma 5.4, then tσ ∈ ∑n

i=1JUiKρ,ρi
, for every valid valuation ρ, set of valid valuations

{ρi}n, and substitution σ ∈ JΓKρ (i.e. substitution σ such that (x : V ) ∈ Γ implies
xσ ∈ JV Kρ̄).

ax
Γ, x : U ⊢ x : U

Then for any ρ, ∀σ ∈ JΓ, x : UKρ by definition we have xσ ∈
JUKρ̄.From Lemma Appendix B.2, we deduce that xσ ∈ JUKρ.

Γ ⊢ t : T
0I

Γ ⊢ 0 : 0 · T
Note that ∀σ, 0σ = 0, and 0 is in any reducibility candidate byRC4.

Γ, x : U ⊢ t : T
→I

Γ ⊢ λx.t : U → T

Let T ≡ V or T ≡ ∑n
i=1 αi · Ui with n > 1. Then

by the induction hypothesis, for any ρ, set {ρi}n not act-
ing on FV (Γ) ∪ FV (U), and ∀σ ∈ JΓ, x : UKρ, we have
tσ ∈∑n

i=1JUiKρ,ρi
, or simply tσ ∈ JVKρ if T ≡ V.

In any case, we must prove that ∀σ ∈ JΓKρ, (λx.t)σ ∈ JU → T Kρ,ρ′ , or what is the
same λx.tσ ∈ JUKρ̄,ρ̄′ → JT Kρ,ρ′ , where ρ′ does not act on FV (Γ). If we can show
that b ∈ JUKρ̄,ρ̄′ implies (λx.tσ) b ∈ JT Kρ,ρ′ , then we are done. Notice that JT Kρ,ρ′ =
∑n

i=1JUiKρ,ρ′ , or JT Kρ,ρ′ = JVKρ,ρ′ Since (λx.tσ) b is a neutral term, we just need to
prove that every one-step reduction of it is in JT Kρ, which by RC3 closes the case. By
RC1, tσ and b are strongly normalising, and so is λx.tσ. Then we proceed by induction
on the sum of the lengths of all the reduction paths starting from (λx.tσ) plus the same
sum starting from b:

(λx.tσ) b → (λx.tσ) b′ with b → b′. Then b′ ∈ JUKρ̄,ρ̄′ and we close by induction
hypothesis.

(λx.tσ) b → (λx.t′) b with tσ → t′. If T ≡ V, then tσ ∈ JVKρ,ρ′ , and byRC2 so is t
′. In

other case tσ ∈∑n
i=1JUiKρ,ρi

for any {ρi}n not acting on FV (Γ), take ∀i, ρi = ρ′,
so tσ ∈ JT Kρ,ρ′ and so are its reducts, such as t′. We close by induction hypothesis.

(λx.tσ) b → tσ[b/x] Let σ′ = σ;x 7→ b. Then σ′ ∈ JΓ, x : UKρ,ρ′ , so tσ′ ∈ JT Kρ,ρi
.

Notice that tσ[b/x] = tσ′ .

Γ ⊢ t :
n
∑

i=1

αi · ∀ ~X.(U → Ti) Γ ⊢ r :
m
∑

j=1

βj · U [ ~Aj/ ~X]

→E

Γ ⊢ (t) r :

n
∑

i=1

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X]

Without loss of generality, assume that the Ti’s are different from each other (sim-

ilarly for ~Aj). By the induction hypothesis, for any ρ, {ρi,j}n,m not acting on FV (Γ),
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and ∀σ ∈ JΓKρ we have tσ ∈ ∑n
i=1 ∩~A⊆~B∈RC

J(U → Ti)Kρ,ρi,( ~X+, ~X−) 7→(~A,~B) and rσ ∈
∑m

j=1JU [ ~Aj/ ~X]Kρ,ρj
, or if n = α1 = 1, tσ ∈ ∩~A⊆~B∈RC

J(U → T1)Kρ,( ~X+, ~X−) 7→(~A,~B) and

if m = 1 and β1 = 1, rσ ∈ JU [ ~Aj/ ~X]Kρ. Notice that for any ~Aj , if U is a unit type,

U [ ~Aj/ ~X] is still unit.

For every i, j, let Ti[ ~Aj/ ~X] ≡ ∑rij

k=1 δ
ij
k · Wij

k . We must show that for any ρ,
sets {ρ′i,j,k}ri,j not acting on FV (Γ) and ∀σ ∈ JΓKρ, the term ((t) r)σ is in the set
∑

i=1···n,j=1···m,k=1···rij JW
ij
k Kρ,ρijk

, or in case of n = m = α1 = β1 = r11 = 1, ((t) r)σ ∈
JW11

1 Kρ.
Since both tσ and rσ are strongly normalising, we proceed by induction on the sum

of the lengths of their rewrite sequence. The set Red(((t) r)σ) contains:

• (tσ) r′ or (t′) rσ when tσ → t′ or rσ → r′. By RC2, the term t′ is in the
set

∑n
i=1 ∩~A⊆~B∈RC

J(U → Ti)Kρ,ρi,( ~X+, ~X−) 7→(~A,~B) (or if n = α1 = 1, the term t′

is in ∩~A⊆~B∈RC
J(U → T1)Kρ,( ~X+, ~X−) 7→(~A,~B)), and r′ ∈ ∑m

j=1JU [ ~Aj/ ~X]Kρ,ρj
(or in

JU [ ~A1/ ~X]Kρ if m = β1 = 1). In any case, we conclude by the induction hypothesis.

• (t1σ) rσ + (t2σ) rσ with tσ = t1σ + t2σ, where, t = t1 + t2. Let s be the size

of the derivation of Γ ⊢ t :
∑n

i=1 αi · ∀ ~X.(U → Ti). By Lemma 4.12, there exists

R1 +R2 ≡∑n
i=1 αi · ∀ ~X.(U → Ti) such that Γ ⊢ t1σ : R1 and Γ ⊢ t2σ : R2 can be

derived with a derivation tree of size s − 1 if R1 + R2 =
∑n

i=1 αi · ∀ ~X.(U → Ti),
or of size s − 2 in other case. In such case, there exists N1, N2 ⊆ {1, . . . , n} with
N1 ∪N2 = {1, . . . , n} such that

R1 ≡
∑

i∈N1\N2

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′
i · ∀ ~X.(U → Ti) and

R2 ≡
∑

i∈N2\N1

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′′
i · ∀ ~X.(U → Ti)

where ∀i ∈ N1 ∩N2, α
′
i + α′′

i = αi. Therefore, using ≡ we get

Γ ⊢ t1 :
∑

i∈N1\N2

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′
i · ∀ ~X.(U → Ti) and

Γ ⊢ t2 :
∑

i∈N2\N1

αi · ∀ ~X.(U → Ti) +
∑

i∈N1∩N2

α′′
i · ∀ ~X.(U → Ti)

with a derivation three of size s− 1. So, using rule →E , we get

Γ ⊢ (t1) r :
∑

i∈N1\N2

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X] +
∑

i∈N1∩N2

m
∑

j=1

α′
i × βj · Ti[ ~Aj/ ~X] and

Γ ⊢ (t2) r :
∑

i∈N2\N1

m
∑

j=1

αi × βj · Ti[ ~Aj/ ~X] +
∑

i∈N1∩N2

m
∑

j=1

α′′
i × βj · Ti[ ~Aj/ ~X]

with a derivation three of size s. Hence, by the induction hypothesis the term
(t1σ) rσ is in the set

∑

i=N1,j=1···m,k=1···rij JW
ij
k Kρ,ρijk

, and the term (t2σ) rσ is
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in
∑

i=N2,j=1···m,k=1···rij JW
ij
k Kρ,ρijk

. Hence, by Lemma Appendix B.3 the term

(t1σ) rσ + (t2σ) rσ is in the set
∑

i=1,...,n,j=1···m,k=1···rij JW
ij
k Kρ,ρijk

. The case

where m = α1 = β1 = r11 = 1, and card(N1) or card(N2) is equal to 1 follows
analogously.

• (tσ) r1σ + (tσ) r2σ with rσ = r1σ + r2σ. Analogous to previous case.

• γ · (t′σ) rσ with tσ = γ · t′σ, where t = γ · t′. Let s be the size of the derivation

of Γ ⊢ γ · t′ : ∑n
i=1 αi · ∀ ~X.(U → Ti). Then by Lemma 4.10,

∑n
i=1 αi · ∀ ~X.(U →

Ti) ≡ α · R and Γ ⊢ t′ : R. If
∑n

i=1 αi · ∀ ~X.(U → Ti) = α · R, such a derivation is
obtained with size s−1, in other case it is obtained in size s−2 and by Lemma 4.2,

R ≡∑n′

i=1 γi · Vi +
∑h

k=1 ηk · Xk, however it is easy to see that h = 0 because R is

equivalent to a sum of terms, where none of them is X. So R ≡∑n′

i=1 γi ·Vi. Notice
that

∑n
i=1 αi · ∀ ~X.(U → Ti) ≡

∑n′

i=1 α× γi · Vi. Then by Lemma 4.4, there exists

a permutation p such that αi = α× γp(i) and ∀ ~X.(U → Ti) ≡ Vp(i). Then by rule

≡, in size s− 1 we can derive Γ ⊢ t′ :
∑n

i=1 γi · ∀ ~X.(U → Ti). Using rule →E , we

get Γ ⊢ (t′) r :
∑n

i=1

∑m
j=1 γi × βj ·Ti[ ~Aj/ ~X] in size s. Therefore, by the induction

hypothesis, (t′σ) rσ is in the set
∑

i=1,...,n,j=1···m,k=1···rij JW
ij
k Kρ,ρijk

. We conclude
with Lemma Appendix B.3.

• γ · (tσ) r′σ with rσ = γ · r′σ. Analogous to previous case.

• 0 with tσ = 0, or rσ = 0. By RC4, 0 is in every candidate.

• The term t′σ[rσ/x], when tσ = λx.t′ and r is a base term. Note that this term
is of the form t′σ′ where σ′ = σ;x 7→ r. We are in the situation where the types

of t and r are respectively ∀ ~X.(U → T ) and U [ ~A/ ~X], and so
∑

i,j,kJW
ij
k Kρ,ρijk

=
∑r

k=1JWkKρ,ρk
, where we omit the index “11” (or directly JWKρ if r = 1). Note

that

λx.t′σ ∈ J∀ ~X.(U → T )Kρ,ρ′ = ∩~A⊆~B∈RC
JU → T Kρ,ρ′,( ~X+, ~X−) 7→( ~A, ~B)

for all possible ρ′ such that |ρ′| does not intersect FV (Γ). Choose ~A and ~B equal to

J ~AKρ,ρ′ and choose ρ′− to send every X in its domain to ∩kρk−(X) and ρ′+ to send
all the X in its domain to

∑

k ρk+(X). Then by definition of → and Lemma 5.5,

λx.t′σ ∈ JU → T Kρ,ρ′,( ~X+, ~X−) 7→(J ~AKρ̄,ρ̄′ ,J
~AKρ,ρ′)

= JU [ ~A/ ~X]Kρ̄,ρ̄′ → JT Kρ,ρ′,( ~X+, ~X−) 7→(J ~AKρ̄,ρ̄′ ,J
~AKρ,ρ′ )

.

Since r ∈ JU [ ~A/ ~X]Kρ̄,ρ̄′ , using Lemmas Appendix B.4 and 5.5,

(λx.tσ) r ∈ JT Kρ,ρ′,( ~X+, ~X−) 7→(J ~AKρ̄,ρ̄′ ,J
~AKρ,ρ′)

= JT [ ~A/ ~X]Kρ,ρ′

=

n
∑

k=1

JWkKρ,ρ′ or just JW1Kρ,ρ′ if n = 1.
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Now, from Lemma Appendix B.1, for all k we have JWkKρ,ρ′ ⊆ JWkKρ,ρk
. Therefore

(λx.tσ) r ∈
n
∑

k=1

JWkKρ,ρk
.

Since the set Red(((t) r)σ) ⊆
∑n

i=1

∑m
j=1

∑rij

k=1JW
ij
k Kρ,ρijk

, we can conclude by RC3.

Γ ⊢ t :

n
∑

i=1

αi · Ui X /∈ FV (Γ)

∀I
Γ ⊢ t :

n
∑

i=1

αi · ∀X.Ui

By the induction hypothesis, for any ρ, set {ρi}n
not acting on FV (Γ), we have ∀σ ∈ JΓKρ, tσ ∈
∑n

i=1JUiKρ,ρi
(or tσ ∈ JU1Kρ,ρ1

if n = α1 =
1). Since X /∈ FV (Γ), we can take ρi =
ρ′i, (X+, X−) 7→ (A,B), then for any B ⊆ A, we
have tσ ∈ ∑n

i=1JUiKρ,ρ′

i
,(X+,X−) 7→(A,B) (or tσ ∈

JU1Kρ,ρ′

1
,(X+,X−) 7→(A,B) if n = α1 = 1).

Since it is valid for any B ⊆ A, we can take all the intersections, thus we have
tσ ∈ ∑n

i=1 ∩B⊆A∈RCJUiKρ,ρ′

i
,(X+,X−) 7→(A,B) =

∑n
i=1J∀X.UiKρ,ρ′

i
(or if n = α1 = 1 simply

tσ ∈ ∩B⊆A∈RCJU1Kρ,ρ′

1
,(X+,X−) 7→(A,B) = J∀X.U1Kρ,ρ′

1
).

Γ ⊢ t :

n
∑

i=1

αi · ∀X.Ui

∀E
Γ ⊢ t :

n
∑

i=1

αi · Ui[A/X ]

By the induction hypothesis, for any ρ and for all families
{ρi}n, we have for all σ in JΓKρ that the term tσ is in
∑n

i=1J∀X.UiKρ,ρi
=
∑n

i=1 ∩B⊆A∈RCJUiKρ,ρ′

i
,(X+,X−) 7→(A,B)

(or if n = α1 = 1, tσ is in the set J∀X.U1Kρ,ρ1
=

∩B⊆A∈RCJU1Kρ,ρ′

1
,(X+,X−) 7→(A,B)). Since it is in the inter-

sections, we can chose A = JAKρ̄,ρ̄i
and B = JAKρ,ρi

, and
then tσ ∈ ∑n

i=1JUiKρ,ρ′

i
,X 7→A =

∑n
i=1JUi[A/X ]Kρ,ρ′

i
(or

tσ ∈ JU1Kρ,ρ′

1
,X 7→A = JUi[A/X ]Kρ,ρ′

1
, if n = α1 = 1).

Γ ⊢ t : T
αI

Γ ⊢ α · t : α · T

Let T ≡∑n
i=1 βi ·Ui, so α ·T ≡∑n

i=1 α× βi ·Ui. By the induction
hypothesis, for any ρ, we have ∀σ ∈ JΓKρ, tσ ∈ ∑n

i=1JUiKρ,ρi
. By

Lemma Appendix B.3, (α ·t)σ = α ·tσ ∈∑n
i=1JUiKρ,ρi

. Analogous
if n = β1 = 1.

Γ ⊢ t : T Γ ⊢ r : R
+I

Γ ⊢ t+ r : T +R

Let T ≡ ∑n
i=1 αi · Ui1 and R ≡ ∑m

j=1 βj · Uj2. By the
induction hypothesis, for any ρ, {ρi}n, {ρ′j}m, we have

∀σ ∈ JΓKρ, tσ ∈ ∑n
i=1JUi1Kρ,ρi

and rσ ∈ ∑m
j=1JUj2Kρ,ρ′

j
.

Then by Lemma Appendix B.3, (t + r)σ = tσ + rσ ∈
∑

i,kJUikKρ,ρi
. Analogous if n = β1 = 1 and/or m = β1 =

1.

Γ ⊢ t : T T ≡ R
≡

Γ ⊢ t : R

Let T ≡ ∑n
i=1 αi · Ui in the sense of Lemma 5.4, then since

T ≡ R, R is also equivalent to
∑n

i=1 αi · Ui, so Γ � t : T ⇒
Γ � t : R.

Appendix C. Detailed proofs of lemmas and theorems in Section 6

Theorem 6.1 (Characterisation of terms). Let T be a generic type with canoni-
cal decomposition

∑n
i=1 αi.Ui, in the sense of Lemma 5.4. If ⊢ t : T , then t →∗

∑n
i=1

∑mi

j=1 βij · bij , where for all i, ⊢ bij : Ui and
∑mi

j=1 βij = αi, and with the conven-

tion that
∑0

j=1 βij = 0 and
∑0

j=1 βij · bij = 0.
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Proof. We proceed by induction on the maximal length of reduction from t.

• Let t = b or t = 0. Trivial using Lemma 4.15 or 4.11, and Lemma 5.4.

• Let t = (t1) t2. Then by Lemma 4.13, ⊢ t1 :
∑o

k=1 γk · ∀ ~X.(U → Tk) and

⊢ t2 :
∑p

l=1 δl · U [ ~Al/ ~X], where
∑o

k=1

∑p
l=1 γk × δl · Tk[ ~Al/ ~X] �(t1)t2

V,∅ T , for some
V . Without loss of generality, consider these two types to be already canonical
decompositions, that is, for all k1, k2, Tk1

6≡ Tk2
and for all l1, l2, U [ ~Al1/ ~X] 6≡

U [ ~Al2/ ~X] (in other case, it suffices to sum up the equal types). Hence, by the
induction hypothesis, t1 →∗ ∑o

k=1

∑qk
s=1 ψks · bks and t2 →∗ ∑p

l=1

∑tl
r=1 φlr · b′

lr,

where for all k, ⊢ bks : ∀ ~X.(U → Tk) and
∑qk

s=1 ψks = γk, and for all l, ⊢ b′
lr :

U [ ~Al/ ~X] and
∑tl

r=1 φlr = δl. By rule →E , for each k, s, l, r we have ⊢ (bks) b′
lr :

Tk[ ~Al/ ~X], where the induction hypothesis also apply, and notice that (t1) t2 →∗

(
∑o

k=1

∑qk
s=1 ψks · bks)

∑p
l=1

∑tl
r=1 φlr · b′

lr →∗ ∑o
k=1

∑qk
s=1

∑p
l=1

∑tl
r=1 ψks × φlr ·

(bks) b
′
lr. Therefore, we conclude with the induction hypothesis.

• Let t = α · r. Then by Lemma 4.10, ⊢ r : R, with α · R ≡ T . Hence, using
Lemmas 5.4 and 4.4, R has a type decomposition

∑n
i=1 γi · Ui, where α× γi = αi.

Hence, by the induction hypothesis, r →∗ ∑n
i=1

∑mi

j=1 βij · bij , where for all i,

⊢ bij : Ui and
∑mi

j=1 βij = γi. Notice that t = α · r →∗ α ·∑n
i=1

∑mi

j=1 βij · bij →∗
∑n

i=1

∑mi

j=1 α× βij · bij , and α ·∑mi

j=1 βij =
∑mi

j=1 α× βij = α× γi = αi.

• Let t = t1 + t2. Then by Lemma 4.12, ⊢ t1 : T1 and ⊢ t2 : T2, with T1 +
T2 ≡ T . By Lemma 5.4, T1 has canonical decomposition

∑m
j=1 βj · Vj and T2

has canonical decomposition
∑o

k=1 γk · Wk. Hence by the induction hypothesis
t1 →∗ ∑m

j=1

∑pj

l=1 δjl ·bjl and t2 →∗ ∑o
k=1

∑qk
s=1 ǫks ·b′

ks, where for all j, ⊢ bjl : Vj

and
∑pj

l=1 δjl = βj , and for all k, ⊢ b′
ks : Wk and

∑qk
s=1 ǫks = γk. In for all j, k

we have Vj 6= Wk, then we are done since the canonical decomposition of T is
∑m

j=1 βj · Vj +
∑o

k=1 γk · Wk. In other case, suppose there exists j′, k′ such that

Vj′ = Wk′ , then the canonical decomposition of T would be
∑m

j=1,j 6=j′ βj · Vj +
∑o

k=1,k 6=k′ γk ·Wk+(βj′+γk′)·Vj′ . Notice that
∑pj′

l=1 δj′l+
∑qk′

s=1 ǫk′s = βj′+γk′ .
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