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Abstract−− In the present study, a methodology to 

find natural frequencies with arbitrary precision of 
thin rectangular plates on linear intermediate sup-
ports and mixed boundary conditions is presented.  
This means that the edges are total or partially sup-
ported, clamped or free, or any combination of these. 
The layout, number and place of linear intermediate 
supports are arbitrary, which allows for the analysis 
of a wide range of cases that include intermediate 
supports of different kinds: simple and multiple, 
straight and curved, complete (the ends coincide 
with the plate edges) and partial (at least one of the 
ends is not coincident with the plate edges). In the 
case of curved linear supports, the curve can be open 
or closed. The generalized solution is obtained using 
the Whole Element Method. A continuous and a dis-
crete model of equidistant points are studied both for 
intermediate supports and clamped edges. In all 
cases, both a systematic approach to the solution and 
the theoretical basis, which ensures the arbitrary 
precision of the results, should be emphasized. In 
order to illustrate the accuracy and efficiency of the 
method described, numerical results are presented 
for several problems and comparison is made with 
previously published results in some cases and in 
some others with the Finite Element Method. These 
numerical results may be of interest to design engi-
neers and researchers who conduct vibration studies. 

Keywords−− plates, free vibrations, intermediate 
supports, exact frequencies. 

I. INTRODUCTION 
Rectangular plates on intermediate supports find use in 
many engineering structures and other areas of practical 
interest, such as slabs on columns, printed circuit boards 
or solar panels supported at a few points. With their 
potential applications, the vibration of plates with inter-
nal supports and with complex boundary conditions has 
received considerable attention from researchers. The 
free flexural vibration of rectangular plates has been the 

subject of numerous studies, many of which have been 
discussed by Leissa (1969, 1981,1987).  Plates involv-
ing various complexities have been considered, includ-
ing the case in which the plate is supported by internal 
lines. For such plates, most of the reported work has 
been concerned with plates with internal line supports, 
which are straight and parallel to the edges of the plates. 
Some examples of theses studies are the works by 
Veletsos and Newmark (1956), Wu and Cheung, (1974), 
Elishakoff and Stemberg (1979). The literature on the 
vibration of rectangular plates for which the internal line 
supports are not parallel to the edges is sparse. Two 
examples of such work are that by Gorman (1979) who 
studied the vibration of diagonally supported rectangu-
lar plates, and that by Takahashi and Chishaki (1979), 
who represented the internal line support by rows of 
equidistant point supports and gave frequency parame-
ters and mode shapes for a rectangular plate with an 
oblique line support passing through its center at various 
angles. Li and Gorman (1992) considered rectangular 
plates with free edges and intermediate linear supports 
along one or two diagonals with the superposition 
method. Other studies of rectangular plates with an 
oblique intermediate support were carried out by Kim 
(1995) and Sanzi and Laura (1989) who used the Ray-
leigh-Ritz method. Young and Dickinson (1993) used 
the Rayleigh-Ritz method to obtain the eigenvalues for 
the free vibration of rectangular plates with the supports 
lying along different types of curves, including a central 
circular support. Cheung and Kong (1995) used modi-
fied single-span vibrating beam functions with the finite 
layer method to study the vibration of shear-deformable 
plates with intermediate line supports. Another general 
study in this particular area is that by Fan and Cheung 
(1984), in which they used the spline strip element 
method to analyze plates with complex boundary 
conditions and point supports. 
Huang and Thambiratnam (2001) used the finite step 
element method combined with a spring system to treat 
the free vibration analysis of plates on elastic intermedi-
ate supports. Saadatpour et. al. (2000) developed a nu-
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merical technique for the dynamic analysis of arbitrary 
quadrilateral –shaped plates with internal supports.  
We must emphasize that in all these works the interme-
diate supports are complete, i.e., the ends coincide with 
the plate edges. 
More recently, Zhao and Wei (2002) used the discrete 
singular convolution (DSC) algorithm for the analysis 
of rectangular plates with non-uniform and combined 
boundary conditions. Finally Zhao et al. (2002), who 
made an extensive bibliography review about the prob-
lem of vibration of thin plates with internal supports, 
proposed a novel computational method to study the 
problem of plate vibration under complex and irregular 
internal support conditions. 

Except for this last paper, the authors are not aware 
of any other work published in the open literature deal-
ing with plates with partial internal line supports, which 
is the main objective in this work. 

Technically, it is more difficult to analyze plates 
with irregular or partial internal supports. The problem 
is far more complicated to admit an analytical solution. 
For example, this problem is difficult to tackle by the 
Ritz Method if the internal support topology cannot be 
analytically expressed, even using penalty approaches.  
It is evident that the partial internal support is still a 
challenge for the Ritz method and it has not been solved 
by it yet.  

II. FORMULATION OF THE PROBLEM 
The vibrational problem is analyzed within the clas-

sical theory of thin plates (Germain-Lagrange) using the 
Whole Element Method (WEM). This is a direct varia-
tional method previously founded and developed for 
boundary value problems, as well as those with initial 
conditions and others governed by partial differential 
equations, uni, bi or tridimensional domains, conserva-
tive or not, linear or not: Rosales (1997), Filipich et. al.  
(1998, 1999), Rosales et al. (1999), Filipich and 
Rosales, (1997, 1999a, 1999b), Rosales and Filipich 
(2000), Rosales et al. (2000a,b). 

 It starts from an ad-hoc functional (in this problem, 
the energetic functional) and proposing an extremizing 
sequence of functions belonging to a complete set in L2.   
Unlike the Ritz Method in which each coordinate func-
tion must satisfy the boundary conditions, WEM re-
quires the complete sequence to satisfy these conditions. 
Eventual non-satisfied conditions are taken into account 
by Lagrange multipliers. The sequences used are ex-
tended trigonometric series, which are systematically 
generated. It should be noted that the previous study of 
the mode shapes is not necessary. 

In all cases, both a systematic approach to the solu-
tion and the theoretical basis that ensures the arbitrary 
precision (accuracy) of the results should be empha-
sized. 

The results obtained with WEM are contrasted with 
the values obtained from the classical solution when this 
is available and with other ones obtained by others au-
thors by approximate methods and the Finite Element 

Method (FEM) using the ALGOR® software (Algor, 
1999). 
It is assumed that the plate under consideration is a thin 
rectangular plate, lies in the x-y plane, is bounded by the 
edges X = 0, X = a, Y = 0 and Y = b, of uniform thick-
ness hp, isotropic material, uniform density ρ , Young 
Modulus E.  
In Fig. 1, a rectangular plate with a partial intermediate 
support with arbitrary design is shown. Let 

( )( ) ( ), ( )t x t y t=s  with 0t t t1≤ ≤  be the equation of the 
intermediate support 
 

Y

 
 

Figure 1: rectangular thin plate on intermediate 
 linear supports 

 
The energetic functional corresponding to the free vi-
brations of the thin rectangular plate, using the German-
Lagrange theory, is: 
 

 
( )2 2* 2

22

[ ] 2 (1 ) ,w w w w w w

w

λ λ υ ⎡ ⎤′′ ′ ′′ℑ = + + − −⎣ ⎦

−Ω
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where /a bλ ≡ , 2 /pa h Dω ρΩ ≡ , 3 212(1 )pD Eh υ= −   
 w denotes the transverse displacement and υ the Pois-
son’s ratio, being ( ) w x′⋅ ≡ ∂ ∂ , ( ) w y⋅ ≡ ∂ ∂ , etc. There 
are also introduced the non-dimensional quantities 
 
 / , /x X a y Y b≡ =  (2) 
 
 in order to work in the domain{ } . 0 1, 0x y≤ ≤ ≤ ≤1

WEM requires an extremizing sequence, which in 
the thin plates problem is a bidimensional sequence. 
Being the functional under study, quadratic and positive 
defined, this sequence will be minimizing. When the 
plate problems are tackled with direct methods, bound-
ary conditions that involve essential functions must be 
imposed, where the latter are the conditions that involve 
the solution and its derivative functions up to the order 
k-1, being 2k the order of the differential equation that 
govern the problem. Thus, both the displacement func-
tion and its first order derivatives must   verify uniform 
convergence. One of the possible sequences to use is: 
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where ( )sini is xα≡ , ( )sinj js yα≡ , i iα π≡ , j jα π≡  

and , ijA 0iA , 0 jA , , ia jb , 00A , , , are the un-
known coefficients, Escalante (2001). 

0a 0b 0k

Introducing the boundary conditions (B.C.) for the 
case of a rectangular simple supported plate in (3), that 
is: 

 
  ( ,0) (0, ) ( ,1) (1, ) 0w x w y w x w y= = = =
 
and  
 
 ( ,0) (0, ) ( ,1) (1, ) 0w x w y w x w y′ ′= = = =  
 
the sequence is reduced to:  
 

 
1 1

( , )
M N

MN
i j

w x y A s s
= =

= ∑∑ ij i j  (4) 

 
A. Intermediate Supports  

To illustrate the methodology we consider a simply 
supported rectangular plate with an internal support. We 
present two different models: continuous and discrete. 
 

A.1. Continuous Model 

In this case, the expression of the extended func-
tional to be used is:  
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where the two first terms correspond to the energetic 
functional for thin plates with their edges simply sup-
ported. The last term puts in evidence the nullity of the 
transversal displacement on the internal support, by 
means of the integral that represents the virtual work of 
the reaction. In that integral, ( )f ε plays the role of a 
Lagrange multiplier. Next, we show the reasoning by 
which we obtain that integral. 

Let ( ( ), ( ))F X t Y t  be the distributed reaction on the 
intermediate support (unknown), the pa-
rametric equation of the support and  the 
transversal displacement, the virtual work of the reac-

tion on the support must be vanished, that is  

( ( ), ( ))S X t Y t
( , )W X Y

 
  (6) ( )( , ) , 0

S
F X Y W X Y dS =∫

 
where again, by changing to the new variables indicated 
in (2) we obtain 
 
  (7) ( )* , ( , )

s
f x y w x y ds =∫ 0

 
being 
 

  
* *( , ), ( , ) y ( , )w w x y f f x y s s x y= = =

 
the transversal displacement equations, the support reac-
tion and the Cartesian equation of the support in dimen-
sionless coordinates respectively. Equation (7) written 
as a function of the parameter t is: 
  

 ( )1

0

* 2( ), ( ) ( ( ), ( )) ( ) ( ) 0
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t
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isolating t: 
 
 0t ε= ∆ +  (10) 
 
and replacing it in (8) we obtain: 
 
  (11) 
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where  
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that is proportional to the reaction on the internal sup-
port and in general it is not object of study. 
Next, we should apply the condition to minimize equa-
tion (5), that is 
 
 ( )MNwδ 0ℑ =  (12) 

 
However, this would yield again to * ( ) 0MNw ε =  ε∀  
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in [0,1], which we already knew and thus is not useful. 
We must think, then, that the Lagrange condition (11) is 
actually an infinite sum, i.e.  
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To be consequent with WEM, we propose to expand 
the unknown reaction as an extended trigonometric se-
ries, that is 
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where ,0, ,pa a k pb  and pc  are unknown constants. As 
we know both (14)(a) and (14)(b) have uniform conver-
gence for all continuous ( )f ε  in  [0,1].  

Then, the extended functional in case we adopt the 
series given by (14)(c) for ( )f ε is:  
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being p pα π= , with  0,1,...,p P=

Now, applying the condition (12) and integrating it 
we yield to  
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where: 
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For equation (16) to be satisfied for any arbitrary 
variations of ijAδ  y pbδ  the following equations must 
be verified: 
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Isolating from (19)(a) and replacing it in (19)(b) 

we obtain 
ijA
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Defining  
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equation (20) can be written as follows: 
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The fundamental equation (22) represents a homo-

geneous linear system of order from which ( 1P + )
)( 1P +  frequencies ( 0,1, 2,..., )k k PΩ =  can be ob-

tained. 
 
 
A.2 Discrete Model 

The second alternative that we propose in order to 
tackle the intermediate support is a discrete model con-
sidering it as an equidistant set of points. 

Let ( )( ) ( ), ( )S t X t Y t=  with  be again the 
parametric equation of the intermediate linear support, P 
intermediate points are considered, whose dimen-
sionless coordinates are 

0t t t≤ ≤ 1
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with  and  0,1, 2,..., ( 1)k P= − 1 0t t∆ = −
As the support has been replaced by the set of equi-

distant points, the condition of null transversal dis-
placement is required for each of them. That is obtained 
by using Lagrange multipliers.  

Thus, the extended functional will be: 
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By vanishing the first variation we obtain: 
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being:  
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For equation (16) to be satisfied for any arbitrary 

variations of ijAδ  and kδλ  the following equations 
must be verified: 
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Isolating from (27)(a) and replacing it in (27)(b) 

we have 
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Defining:  
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equation  (20) is reduced to  

 

 

1
*

0

0

( 0,1,2,..., 1)

P

k kq
k

L

q P

λ
−

=

=

= −

∑  (30) 

 
Equation (30) represents a homogeneous linear sys-

tem with order P from which P frequencies 
kΩ ( 1, 2,..., )k P=  can be obtained. 

 
 

B.  Partially Clamped Edges 

The same ideas exposed before to deal with inter-
mediate supports can be applied to model total or partial 
clamped edges. In analogous way, we have both a con-
tinuous and discrete model as well.  
For brevity we show only the discrete model. The par-
tially clamped edges are dealt with the same way as the 
intermediate supports. The partially clamped edge is 
replaced by Q equidistantly spaced points, to which 
normal rotation must be restrained. That is, the first 
normal derivative is equal to zero:  

 
 ( , ) 0 0,1, 2,.., 1n q qw x y q Q= ∀ = −  (31) 
 
being 

 
 ( , ) ( , )n q q q qw x y w x y= ∇ ⋅n( , 

 
∇ is the operator gradient and ( , )x yn n=n(  is the unit 
normal vector (director cosines) on the clamped edge. 
Then, per each partial clamped edge we need to add the 
terms to put them in evidence in the functional. i.e. 
 

  (32) 
1

0

( , ) 0
Q

q n q q
q

w x yη
−

=

=∑
 
where qη is the Lagrange multiplier.  
 
C. Convergence Study 

To obtain the eigenvalues with the desired precision, 
the convergence study must be done adopting at first, a 
fixed value for P. This means adopting a rigid model of 
P points for the intermediate support. Then, the M and N 
values are increased until the desired precision is at-
tained.  Next, a larger value for P is adopted and the 
calculations are repeated increasing again the M and N 
values. The eigenvalue obtained in this step will have a 
higher or equal value than the obtained in the previous 
step because this model is more rigid.  

 
 

III.  NUMERICAL RESULTS 
In order to illustrate the accuracy and utility of the 

above-described approach, numerical results are pre-
sented for several examples and comparison is made 
with previously published results when possible.  
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In Table 1 natural frequencies of a rectangular sim-
ply supported plate are given for two different cases of 
intermediate linear support. Results are obtained for 
both, continuous and discrete model and they are con-
trasted with the results obtained by the Finite Element 
Method. 

 
Table 1: Frequencies Parameters.  A: Continuous 
model, M = N =300, P = 50, B: Discrete model, C: FEM 
(ALGOR), Mod. Model C: M = N = 300, P = 30; MEF 
(ALGOR) Mesh: 1024 elements. P0=(x0, y0), P1=(x1,y1). 

Ω  
MODEL INTERNAL 

SUPPORT 
 1 2 3 

A 30.91 55.59 76.67 

B 30.92 55.62 76.75  

P0 = 
(0.25,0.25) 

 
P1 = 

(0.25,0.50) C 30.93 55.62 76.74 

A 49.34 52.64 72.67 

B 49.34 52.77 72.69  

P0 = 
(0.25,025) 

 
P1 = 

(0.50,0.50) C 49.35 52.72 72.71 

 
Next, natural frequencies of the square plate with 

various boundary conditions and an intermediate sup-
port along its diagonal are given in Table 2. 

It should be noted that as long as the plate under 
study has partial or totally free edges, the energetic 
functional used by this methodology includes the terms 
corresponding to the Gaussian curvature. 

The results are contrasted with the values obtained 
by the Finite Element Method (FEM) by using the 
ALGOR® software and with those obtained by Kim 
(1995) by the Rayleigh-Ritz Method using a polynomial 
orthogonal set as trial functions. 

The case of a square plate with various boundary 
conditions and a partial intermediate support is shown in 
Table 3. The results are compared only with the values 
obtained by the FEM (ALGOR®), since according to the 
authors, no others previous results have been published 
in the open literature, which deal with partial intermedi-
ate supports using other methodologies. 

The numerical results corresponding to the case of a 
square plate simply supported and a partial intermediate 
curved support are also shown in Table 4.  In this exam-
ple, the internal support is a circumferential arc with 
radius r = 0.25 and center coincident with that of the 
plate. 

 

Table 2: Natural frequencies of a plate with vari-
ous boundary conditions and an intermediate sup-
port along its diagonal. WEM: M = N = 300,  P = 
30, Q = 90, υ = 0.3.  FEM (ALGOR): mesh of 
1600 elements. (*) Kim (1995) 

Eigenvalues 
Model Method 

Ω1 Ω2 Ω3

WEM 49.34 65.79 98.69 

KIM (*) 49.34 65.80 98.69 a)  

FEM  49.36 69.85 98.74 

WEM 60.53 78.95 114.55

KIM (*) 60.54 79.03 114.60

b) 
 

 
 

FEM  60.57 78.98 114.62

WEM 26.41 55.38 65.76 

KIM (*) 26.43 55.41 65.86 

c) 
 

FEM 26.40 55.39 65.71 

 
Finally, the numerical results for two examples of 

rectangular plates with multiple intermediate supports 
are given in Table 5. The frequency parameters are 
compared again with the values obtained by FEM using 
the software ALGOR since there are not any known 
values obtained with other methodologies. 

 
Table 3: Natural frequencies of a square plate with 
varied boundary conditions and a partial intermediate 
support. WEM: M = N = 300,  P = 30, Q = 15, υ = 
0.3. FEM (ALGOR): mesh of 1600 elements. 

Eigenvalues 
Model Method 

Ω1 Ω2 Ω3

WEM 30.926 55.620 76.751 
 
 
 FEM 30.931 55.627 76.745

WEM 32.72 60.33 78.52 
 
 
 

FEM 32.74 60.37 78.71 

WEM 14.29 42.46 44.62 
 
 

FEM 14.31 42.46 44.63 
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Table 4: Natural frequencies of a fully simple square 
plate with an intermediate circumferential arc sup-
port. Center (0.5,0.5), r = 0.25. WEM: M = N = 400, 
a) P = 20, b) P = 30, c) P = 35, P = 40. FEM 
(ALGOR) Mesh of 1600 elements. (*) Young and 
Dickinson (1993). 

Eigenvalues 
Model 

Cen-
tral 

angle 
 

 
WEM FEM (*) 

a) / 4π  
Ω1 

Ω2 

Ω3

37.05 

67.00 

84.64 

37.04 

67.00 

84.75 

 

b) / 2π  
 Ω1 

Ω2

Ω3

52.88 

87.62 

98.75 

53.00 

87.94 

99.18 

 

c) 3 / 2π  
 Ω1 

Ω2

  Ω3

95.39 

98.89 

126.49 

96.18 

99.50 

126.72 

 

d) 2π  
Ω1 

Ω2

  Ω3

98.89 

126.50 

132.48 

 

98.91 

126.61 

132.64 

 
The plate is simply supported on its edges and the 

three lowest eigenvalues are given. 
 

V. CONCLUSIONS 
In this work a methodology to determine natural fre-

quencies of thin rectangular plates, with arbitrary preci-
sion using the Whole Element Method (WEM) was 
shown. This is a direct variational method previously 
founded and developed for boundary value problems, as 
well as those with initial conditions and others governed 
by partial differential equations, uni, bi or three-
dimensional domains, conservative or not, linear or not. 
It starts from an ad-hoc functional (in this problem, the 
energetic functional) and proposing an extremizing se-
quence of functions belonging to a complete set in L2. It 
should be noted that the previous study of the mode 
shapes is not necessary. 

 The boundary conditions must be satisfied by the 
complete sequence and eventual non-satisfied condi-
tions are taken into account by Lagrange multipliers. 
The sequences used are extended trigonometric series, 
which are systematically generated and formally identi-
cal in all cases.  

Two models (discrete and continuous) were pro-
posed to consider the intermediate supports. In both 
cases, the efficiency is similar, however the discrete 
model is more practical and simpler to implement by 

computational algorithms. 
Although we limited our attention to the vibration of 

rectangular thin plates with linear intermediate supports, 
the methodology can be used to analyze plates with 
complex and irregular internal support conditions as 
well. 

 
Table 5: Natural frequencies parameters of rectangu-
lar plates with multiple partial intermediate supports. 
λ: aspect ratio. WEM: P = 20, M = N = 300, FEM: 
Mesh of 5120 elements. 

Model Intermediate 
Supports Ω WEM FEM 

Ω1 50.53 50.57 

Ω2 92.36 92.50 
 

λ = 1.25 
x = 0.2 

(0.25 ≤ y ≤ 
0.75) 

y = 0.25  
( 0.2 ≤  x ≤ 0.6) 

Ω3 121.94 121.60

Ω1 63.57 63.50 

Ω2 93.66 93.71 
 

λ = 1.25 
x = 0.2  

(0.25 ≤ y ≤ 0.5) 
y = 0.25 

(0.2 ≤  x ≤ 0.5) 
x = 0.5 

(0.25 ≤ y ≤ 0.5) 

Ω3 109.79 109.86

 
In the examples we have analyzed, a discrete model 

for the clamped edges was adopted. Then the effect of 
the clamped segment on the edges on the vibration is 
taken into account by replacing the clamped segment on 
the edges with rows of equidistantly spaced points. 
These, in turn, are restrained from either transverse de-
flection or normal rotation respectively.  

The generality of the model studied is one of the 
most important advantages, since a unique computa-
tional algorithm allows determining the natural frequen-
cies of thin plates with various and non-classical bound-
ary conditions and with multiple internal linear or ir-
regular supports. 

It has been shown that the methodology proposed 
may be used successfully. Good agreement is observed 
for all cases and the results can be used for comparative 
studies by future researchers. 
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