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OPTIMUM DESIGN OF FLEXTENSIONAL PIEZOELECTRIC
ACTUATORS INTO TWO SPATIAL DIMENSIONS∗
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Abstract. Piezoelectric actuators are in common use for control of distributed parameter sys-
tems. We consider the topology optimization of a multiphysic model in piezoelectricity into two
spatial dimensions. The topological derivative of a tracking-type shape functional is derived in its
closed form for the purpose of shape optimization of piezoelectric actuators. The optimum design
procedure is applied to a micromechanism which transforms the electrical energy supplemented via
its piezoceramic part into the elastic energy of an actuator. The domain decomposition technique and
the Steklov–Poincaré pseudodifferential boundary operator are employed in the asymptotic analysis
of the shape functional defined on a part of the boundary of the elastic body under consideration.
The new method of sensitivity analysis is general and can be used for shape-topological optimization
in a broad class of multiphysics models. Our numerical results confirm the efficiency of the proposed
approach to optimum design in multiphysics.
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1. Introduction. In this paper we are interested in the optimal design of piezo-
electric actuators, which consist of multiflexible structures actuated by piezoceramic
devices that generate an output displacement in a specified direction on the boundary
of the actuated part [6, 30]. The multiflexible structure transforms the piezoceramic
output displacement by amplifying and changing its direction. This kind of mechanism
can be manufactured at a very small scale. Therefore, the spectrum of applications
of such microtools has become broader in recent years, including microsurgery, nan-
otechnology processing, and cell manipulation, among others. Yet, the development
of microtools requires the design of actuated multiflexible structures which are able
to produce complex movements originating from simple expansion/contraction of the
piezoceramic actuator. The performance of microtools can be strongly enhanced by
optimizing the actuated multiflexible structures with respect to their shape and their
topology [7, 8, 9]. The shape sensitivity analysis of such coupled models has been fully
developed in [20] and [19] for quasi-electrostatic layered piezoelectric devices and for
nonstationary elastic, piezoelectric, and acoustic coupled systems, respectively. For
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the mathematical theory concerning coupled PDEs systems, the reader may refer to,
e.g., [18, 21, 22].

A general approach to dealing with shape and topology optimization design is
based on the topological derivative. In fact, this relatively new concept represents the
first term of the asymptotic expansion of a given shape functional with respect to the
small parameter which measures the size of singular domain perturbations, such as
holes, inclusions, source-terms, and cracks. The topological asymptotic analysis was
introduced in the fundamental paper [31] and has been successfully applied in the
treatment of problems such as topology optimization [5], inverse analysis [16], image
processing [15], multiscale constitutive modeling [4], fracture mechanics sensitivity
analysis [13], and damage evolution modeling [1]. For an account of new developments
in this branch of shape optimization, we refer the reader to [27].

In particular, here the topological derivative is applied in the context of topology
optimization of piezoelectric actuated multiflexible structures into two spatial dimen-
sions. The basic idea consists of maximizing the performance of the microtool by
introducing small inclusions into the multiflexible elastic part. Since this problem is
modeled by a coupled electromechanical system, the domain decomposition technique
combined with the Steklov–Poincaré pseudodifferential boundary operator is used to
derive the first-order term of the asymptotic expansion of the shape functional with
respect to the small parameter measuring the size of the inclusions. Thus, a new
method of topological sensitivity analysis is proposed for the coupled models. In our
framework the topological derivatives for the tracking-type functionals are obtained
in their closed forms, which can be used, e.g., as a steepest descent direction in the
design of microtools using the topology optimization method. However, in shape
optimization with PDE constraints there are three main issues to be solved:

• existence of optimal shapes,
• necessary optimality conditions,
• numerical methods.

The existence of optimal shapes can be assured by regularity conditions imposed
on the boundaries of admissible domains. Without such restrictive constraints on ad-
missible shapes, the existence issue cannot be solved in general. The special structure
of the shape optimization problem can be used for the direct proof of the existence,
e.g., by the application of Mosco convergence to the elliptic problems. Unfortunately,
even in such a situation, the results obtained are not in general constructive.

Necessary optimality conditions are obtained by shape sensitivity analysis. Re-
cently, asymptotic analysis has been employed in the context of singular boundary
perturbations in order to obtain the topological derivatives of shape functionals for
elliptic boundary value problems. These kinds of results are also obtained for our
problem. The knowledge of the shape gradients and the topological derivatives for
a specific shape functional is required in order to formulate the necessary optimality
conditions as well as to devise numerical methods of shape optimization. There is
also the specific structure of shape derivatives obtained for shape differentiable func-
tionals in the form of distributions supported on the moving boundaries [34]. The
structure should be taken into account when using the discretization of a continuous
gradient combined with the standard methods of nonlinear optimization like gradient
or Newton methods in the numerical context.

In order to fix these ideas, let us consider a geometrical domain Ω and its singularly
perturbed counterpart Ωε = Ω \ Bε obtained by the nucleation of a small hole Bε =
{|x − x̂| < ε} with center at an arbitrary point x̂ of Ω. There are two different
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expansions of

(1.1) ε �→ j(ε) := J(Ωε).

The first one is obtained by the classical shape sensitivity analysis for ε > 0, namely

(1.2) j(ε+ δ) = j(ε) + δj′(ε) + o(ε; δ).

The second expansion is obtained by asymptotic analysis in singularly perturbed
domains for ε = 0+, that is,

(1.3) j(ε) = j(0) + f(ε)T (x̂) + o(f(ε)).

The topological derivative x̂ �→ T (x̂) can be used at the preliminary step of an op-
timization procedure to detect the location and the number of small holes inserted
into Ω in order to improve the value of the shape functional. Therefore, a robust
formula for the topological derivative is required for the precise performance of this
step of the procedure. This goal is achieved in this paper for the piezo model under
consideration, using the appropriate adjoint state equation.

It turns out that the nature of the Taylor expansion of the shape functional
ε �→ J(Ωε) with respect to ε ∈ [0, ε0), ε0 > 0, evaluated in the singularly perturbed
domain Ωε, depends on the boundary conditions of the state equation prescribed on
the boundaries ∂Bε = {|x − x̂| = ε}. The direct derivation of the one-term asymp-
totic expansion for (1.1) at ε = 0+ leads to the self-adjoint extensions of elliptic
operators [26]. The appropriate adjoint state combined with the polarization ten-
sors is introduced in order to obtain the appropriate representation of the topological
derivative for numerical methods of shape optimization. The latter step in this pro-
cedure is complicated for the coupled models. Therefore, in this paper, a general
method is proposed in order to overcome this difficulty, following the original ideas
presented in [32]. It consists of decomposing the topologically perturbed geometri-
cal domain into subdomains with different physical properties. The mutual influence
of the subdomains is affected by the transmission conditions on the interfaces. In
other words, the fields of mechanical and electric natures are coupled by the trans-
mission conditions, as well as by the mathematical models in the interior of each
subdomain. This means that in the elastic material of the body the fictitious ring
domain C(R, ε) := {ε < |x− x̂| < R} is introduced for the purpose of the asymptotic
analysis with respect to ε → 0, and the result of the analysis is expressed on the
boundary of the ball BR = {|x− x̂| < R}. From the asymptotic expansions of elastic
energy in the interior of BR or C(R, ε) the expansion of the Dirichlet-to-Neumann
map associated with the ball or with the ring is obtained. Once we have the asymp-
totic expansion in hand, the Dirichlet-to-Neumann operator in BR is employed as
the Steklov–Poincaré boundary pseudodifferential operator in the truncated domain
ΩR := Ω \ BR. In this way, the influence of singularities associated with the limit
passage ε→ 0 is modeled in the truncated domain via nonlocal boundary conditions,
and the subdomain BR is eliminated from the analysis. Otherwise, the asymptotic
analysis of the coupled model in the singularly perturbed geometrical domain should
be performed, which would not be the best idea because of the complexity of such an
approach. Finally, the domain decomposition method combined with the asymptotic
expansions in the ring associated with the small parameter ε→ 0 allows us to find the
topological derivative of the shape functional defined in the truncated domain Ω \BR

for all R > ε→ 0. This approach simplifies the topological asymptotic analysis of the
shape functional under consideration. See a sketch in Figure 1.
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Fig. 1. A truncated domain.

Remark 1.1. There is a double notation for the same boundary pseudodifferential
operator on ∂BR depending on whether ∂BR is considered as the exterior boundary of
the fictitious subdomain BR or the interior boundary of truncated domain ΩR. More
precisely, the nonlocal boundary operator stands for the Steklov–Poincaré operator
when acting on the interior boundary ∂BR of the truncated domain ΩR. Thus, the
elasticity boundary value problem in BR is called the interior problem of fictitious
domain decomposition, and the coupled model in ΩR is called the exterior problem of
fictitious domain decomposition in the notation employed in the paper. The boundary
∂BR is used as an interface of the fictitious domain decomposition introduced exclu-
sively for the purpose of asymptotic analysis in the singularly perturbed domain.

The paper is organized as follows. In section 2 the Steklov–Poincaré pseudo-
differential boundary operator is introduced. The electromechanical coupled system
modeling the piezoelectric actuators, as well as the adopted shape functional, are
presented in section 3. The associated topological asymptotic expansion is rigorously
derived in section 4. In particular, the topological derivatives in their closed forms
associated with inclusions and holes are obtained for two and three spatial dimensions
[27]. In section 6 some numerical experiments of topology optimization of piezoelectric
actuators are presented. Finally, some concluding remarks and perspectives are given
in section 7.

2. Steklov–Poincaré and Dirichlet-to-Neumann boundary operators.
In order to perform the shape-topological sensitivity analysis of a coupled model
defined in Ω, in the presence of singular domain perturbations resulting from the
insertion of cavities, holes, or inclusions into the elastic subdomain, the fictitious do-
main decomposition Ω := ΩR ∪ BR is introduced into the model. The small region
BR, which includes the singular domain perturbation Bε, is selected for the asymp-
totic analysis performed, e.g., by the method of compound asymptotic expansions for
the singularity depending on the small parameter ε→ 0. In this way the asymptotic
analysis is performed in a simple geometry with radial symmetry of the ball BR, and
it is separated from the shape-topological sensitivity analysis of the functional which
is performed in ΩR with the nonlocal boundary conditions defined by the Steklov–
Poincaré operator on ∂BR, and in the absence of the singularity Bε inside of the
domain.

The asymptotic expansion of Dirichlet-to-Neumann boundary operators with re-
spect to ε→ 0 is performed for the boundary value problem of linear elasticity defined
in the ring C(R, ε). The case of an inclusion Bε in BR can be considered as a regular
perturbation of the bilinear form associated with the boundary value problem in ΩR,
depending on the contrast parameter 0 < γ < ∞. The limit case obtained for γ → 0
with the inclusion which is replaced by a hole or a cavity of the radius ε → 0 is
considered in C(R, ε) as the singular perturbation of BR.
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Thus, following [33], we present the detailed asymptotic analysis of the repre-
sentative singular domain perturbation using the insertion of a hole in two spatial
dimensions. The case of an inclusion can be analyzed in the same manner by using
the Kolosov complex potentials in two spatial dimensions. The asymptotic analysis
in three spatial dimensions can be performed by an application of the method of
compound asymptotic expansions. In particular, we introduce the Steklov–Poincaré
pseudodifferential boundary operator obtained explicitly from the closed solutions of
the linear elasticity boundary value problems.

Remark 2.1. The asymptotic analysis of linear elasticity systems in a truncated
domain is performed in [12] using an application of the Green’s function. In particular,
the statement on a spherical hole can be found in section 3.3, page 1766. In contrast
to [12], the method developed in [32] has been designed for the purpose of asymptotic
analysis in singularly perturbed domains for a class of nonlinear elasticity systems. It
relies on the knowledge of the explicit solution of the elasticity problem in a subdo-
main of simple geometry. The explicit solution in the ring in two spatial dimensions
is obtained by the complex Kolosov potentials [23]. By a result from the functional
analysis on positive, self-adjoint operators, the expansion of the elastic energy in the
ring gives rise to the expansion of the Steklov–Poincaré operator on the boundary of
the topologically perturbed truncated domain, with the remainder uniformly bounded
in the operator norm. In addition, the explicit solution allows us to replace the ex-
pression of the topological derivative unbounded in the energy norm by its equivalent
bounded in the energy norm. In this way the truncated domain technique proposed
in [12] was extended to the nonlinear contact problems in elasticity fully developed
in [32]. See also [26] for the general case of elliptic systems and for the self-adjoint
extensions of elliptic operators in nontruncated domains. In this paper the method
derived in [32] is now applied in the context of a coupled electromechanical system.
We note, however, that the general framework for the topological asymptotic analysis
developed in [12] can be applied to coupled systems as well.

2.1. Unperturbed domain. Let us introduce the notation ΓR := ∂BR. We
use the standard notation for the Sobolev spaces and the linear elasticity boundary
value problems [11, 35]. Let us consider an open bounded domain Ω ⊂ Rd, d = 2, 3,
and let ΩR = Ω \BR represent an elastic body, where BR = {|x− x̂| < R} is a ball of
radius R > 0 and centered at the point x̂ ∈ Ω such that BR ⊂ Ω. The Sobolev spaces
associated with the weak variational formulation of the linear elasticity boundary
value problems are denoted by H1(BR) := H1(BR;R

d) and H1
0 (BR) := H1

0 (BR;R
d)

for simplicity. The stress tensor is written in the Voigt notation σ(u) = C∇su, with
C the Hooke’s tensor of elastic constants, and the bilinear form of linear elasticity is
defined on H1

0 (BR),

(2.1) a(u, v) =

∫
BR

σ(u) · ∇sv ∀u, v ∈ H1(BR) .

Now we are in position to define the Dirichlet-to-Neumann map in BR given by
the solution of an auxiliary, nonhomogeneous Dirichlet boundary value problem in the
ball BR. Such a map is considered as a pseudodifferential operator on ΓR := ∂BR,
and it is called the Steklov–Poincaré operator when it is applied to the boundary value
problem in the truncated domain for which ΓR constitutes a part of the boundary. The
truncated domain is used in the framework of the domain decomposition technique
for the elasticity problem under consideration. Therefore, we introduce the auxiliary,
nonhomogeneous Dirichlet boundary value problem of linear elasticity defined in BR,
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namely

(2.2) u = ϕ on ΓR, u ∈ H1(BR) : a(u, v) = 0 ∀v ∈ H1
0 (BR),

where ϕ ∈ H1/2(ΓR) := H1/2(ΓR;R
d) is given. With the solution u ∈ H1(BR) of

problem (2.2) is associated its Neumann trace T (u) ∈ H−1/2(ΓR) := H−1/2(ΓR;R
d)

such that the Green’s formula is valid,

(2.3) a(u, v) + (T (u), v)ΓR = 0, u, v ∈ H1(BR),

since there is no source in BR. By taking into account the nonhomogeneous Dirichlet
condition, the Green’s formula for the solution of (2.2) becomes

(2.4) a(u, v) = −(T (ϕ), v)ΓR ∀v ∈ H1(BR).

The Dirichlet-to-Neumann map A : H1/2(ΓR) �→ H−1/2(ΓR) is well defined,

(2.5) (A(ϕ), ϕ)ΓR := −(T (ϕ), ϕ)ΓR ≡ a(u, u).

Thus the Steklov–Poincaré operator is defined on ΓR by the relation

(2.6) (A(ϕ), ϕ)ΓR := a(u, u),

where ϕ �→ (A(ϕ), ϕ)ΓR is a symmetric and coercive bilinear form on the space of
traces H1/2(ΓR).

Now we are going to recall some results of [33] on the asymptotic expansion of
the Steklov–Poincaré operator for the singular perturbations of a ring, i.e., in the
limit case of γ → 0 and for the interior radius of the ring which tends to zero. This
means that in such a case of singular perturbations the inclusion ωε becomes a hole.
The case of an inclusion for 0 < γ < ∞ is considered as a regular perturbation in
coefficients of the elliptic operators, and it can be analyzed from the point of view of
asymptotic analysis in a similar way as presented in [27].

Remark 2.2. In the continuous formulation of the shape optimization problem we
use the singular perturbations technique and establish the topological derivative of
shape functional for nucleation of holes in the elastic subdomain. On the other hand,
the numerical algorithm used in the paper is reversible in the sense that we employ
very weak material to mimic the holes. We discretize the continuous topological
derivatives for the inclusions and have the fixed reference domain during the topology
optimization numerical procedure. In this way we avoid the complicated formulae for
the topological derivatives of ligaments; see, e.g., [24, 25].

2.2. Singular domain perturbations. The Steklov–Poincaré operator on ΓR ⊂
∂ΩR is explicitly constructed by a complex variable method which furnishes the solu-
tion of a nonhomogeneous Dirichlet problem in the ring C(R, ε). For the topological
sensitivity analysis we need to establish precise properties of solutions parameterized
by small parameter ε→ 0.

Let ε→ 0 be small parameter which governs the singular perturbation of the disk
BR by insertion of the hole Bε. The resulting domain

(2.7) ε �→ C(R, ε) := BR \Bε = {0 ≤ ε < |x− x̂| < R}

is the ring with the fixed boundary ΓR and the moving boundary ε �→ ∂Bε. The
Dirichlet data ϕ is given on ΓR, and the homogeneous Neumann boundary condition
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is assumed on ∂Bε for ε > 0. Thus, the variational formulation of the elasticity
boundary value problem in the ring

(2.8) uε ∈ V + {ϕ} : a(C(R, ε) ; uε, v) = 0 ∀v ∈ V

admits the unique weak solution, with V used to denote the space of admissible
variations defined in C(R, ε). Note that here the elliptic regularity applies for C∞

domains C(R, ε). The Green’s formula for a smooth solutions reads

(2.9) a(C(R, ε) ; uε, v) :=

∫
C(R,ε)

σ(uε) · ∇sv =

∫
ΓR

σ(uε)n · v.

If the test function is replaced by the smooth solution, we get the energy equality

(2.10) a(C(R, ε) ; uε, uε) =

∫
ΓR

σ(uε)n · ϕ.

For weak solutions uε ∈ H1(C(R, ε)) with Dirichlet data ϕ ∈ H1/2(ΓR) the energy
equality becomes

(2.11) a(C(R, ε) ; uε, uε) = 〈σ(uε)n, ϕ〉ΓR ,

with the duality pairingH−1/2(ΓR)×H1/2(ΓR) on the right-hand side. The associated
boundary pseudodifferential operator Aε : ϕ �→ σ(uε)n is symmetric, positive, and
self-adjoint, and it is uniquely determined from the energy equality in the ring,

(2.12) 〈Aε(ϕ), ϕ〉ΓR := a(C(R, ε) ; uε, uε).

In addition, the asymptotic properties of Dirichlet-to-Neumann map

(2.13) Aε : H1/2(ΓR) � ϕ �→ σ(uε)n ∈ H−1/2(ΓR)

can be determined by using the complex Kolosov potentials in two dimensional elas-
ticity. The same mapping is used as a nonlocal boundary Steklov–Poincaré operator
on ΓR ⊂ ∂ΩR in the truncated domain ΩR.

Let us observe that, in view of (2.23), the asymptotic expansion of ε �→ Aε in
the operator norm L

(
H1/2(ΓR);H

−1/2(ΓR)
)
of the symmetric and positive Steklov–

Poincaré operator (2.13) can be directly obtained from the known asymptotics of
the elastic energy in the ring. These asymptotics follow from the explicit solution
to the Dirichlet problem in the ring, which can obtained by complex variable tech-
nique [14]. This important construction for asymptotic analysis is now presented in
detail. Namely, the obtained estimates are now translated into the following theorem
concerning the solution of the elasticity system in the ring.

Theorem 2.3. The elastic energy admits the expansion

(2.14) a(C(R, ε) ; uε, uε) = a(C(R) ; u, u) + πε2Pσ(u(x̂)) · ∇su(x̂) +R(ε),

where P is the Pólya–Szegö polarization tensor [2] and the remainder is uniformly
bounded by

(2.15) |R(ε)| ≤ ε4C‖ϕ‖H1/2(ΓR).

Proof. The proof is left to Appendix A.
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Remark 2.4. If the nonhomogeneous Dirichlet boundary condition ϕ satisfies

(2.16) ‖ϕ‖H1/2(ΓR) ≤ Λ0,

where Λ0 is a positive constant, then, in terms of the Fourier coefficients Ui of ϕ, we
have

(2.17)

k=+∞∑
k=−∞

√
1 + k2 |Uk|2 ≤ Λ0.

The result on asymptotics of the elastic energy is well known; we need to show the
estimate for the remainder. The result for the elastic energy implies the asymptotic
expansion of the Dirichlet-to-Neumann operators.

Corollary 2.5. The elastic energy concentrated in the ring C(R, ε) = BR \ Bε

splits into the energy of the unperturbed disk, the first correction term of order ε2, and
the remainder, which is uniformly of the order Λ0ε

4. This means that the associated
Steklov–Poincaré operator admits the asymptotic expansion

(2.18) Aε = A+ f(ε)B +Rε

in the operator norm L(H1/2(ΓR);H
−1/2(ΓR)), where f(ε) = ε2, B is a bounded

linear operator, and ‖Rε‖L(H1/2(ΓR);H−1/2(ΓR)) = o(f(ε)).

2.3. Regular domain perturbations. Now, the domain BR is perturbed by an
elastic inclusion ωε. It means that the elastic constants are different in two subdomains
ωε and BR \ ωε of BR. There are three possibilities for ωε in the framework of
linear elasticity; i.e., ωε can be considered as an elastic inclusion, but there is also a
cavity or a rigid inclusion, which can be considered as the limit cases for the elastic
moduli with respect to the so-called contrast parameter; see the monograph [27]
for details. We are interested in the asymptotics of the solution of the elasticity
problem in the perturbed domain, denoted by BR, with respect to the small parameter
ε→ 0. Namely, we want to determine the asymptotics of the energy functional for the
auxiliary nonhomogeneous Dirichlet boundary value problem in the domain with a
small inclusion. The expansions of the energy furnish the asymptotics of the Steklov–
Poincaré pseudodifferential operator.

Let ε → 0 be a small parameter, and assume that ωε, with the characteristic
function x �→ χε(x) ∈ {0, 1}, is a small inclusion of radius ε and centered at x̂ ∈ Ω.
For the sake of simplicity, we assume that ωε := Bε. Let us consider the perturbed
domain, denoted by the same symbol BR, with the variable Hooke’s tensor of elastic
constants

(2.19) x �→ Cε(x) = (1− χε(x))C + γχε(x)C

and with the contrast parameter γ. In such a setting, the constitutive relation of
linear elasticity σε(u) = Cε∇su is now dependent on the small parameter ε. The
auxiliary, nonhomogeneous Dirichlet boundary value problem of linear elasticity in
BR becomes

(2.20) uε = ϕ on ΓR, uε ∈ H1(BR) : aε(uε, v) = 0 ∀v ∈ H1
0 (BR),

where

(2.21) aε(uε, v) =

∫
BR

σε(uε) · ∇sv ∀v ∈ H1(BR).
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Fig. 2. Piezoelastic coupled problem.

With the solution uε of the nonhomogeneous Dirichlet boundary value problem is
associated its Neumann trace Tε(uε) such that the Green’s formula is valid,

(2.22) aε(uε, v) + (Tε(uε), v)ΓR = 0 ∀v ∈ H1
0 (BR).

Thus, the Dirichlet-to-Neumann map depending on the small parameter ε can be
determined in a unique way, in view of the unique solvability of (2.20), from the
symmetric, positive bilinear form

(2.23) H1/2(ΓR) � ϕ �→ (Aε(ϕ), ϕ)ΓR ≡ aε(uε, uε) ∈ R,

since there are no sources in BR. The Dirichlet-to-Neumann map defines the Steklov–
Poincaré operator for the truncated domain, exterior to BR.

Remark 2.6. Following the same procedure as in the previous section, it is possible
to show that the asymptotic expansion (2.18) also holds true for the case of the regular
perturbations of the disk by an elastic inclusion ωε of the size ε → 0, and with the
contrast parameter 0 < γ <∞.

3. Problem formulation. Now, we assume that Ω = ΩM ∪ Γ ∪ΩP , where the
mutually disjoint open domains ΩP and ΩM have the common interface Γ, as shown
in Figure 2. In our notation, ΩM and ΩP represent the regions where mechanical and
piezoelectric devices, respectively, are located. We consider the coupled model defined
in the subdomains ΩM and ΩP with different material properties. The models are
coupled by the transmission conditions imposed on the interface Γ := ∂ΩM ∩ ∂ΩP .
We are looking for a topology of the mechanical part ΩM that minimizes a given
shape functional defined on Γ� ⊂ ∂ΩM , by keeping the piezoelectric device ΩP fixed.

In order to define the possible directions of shape-topological modifications in
the subdomain ΩM , a small inclusion is introduced. This means that we have at our
disposal two materials and try to improve the design by an optimal distribution of
more expensive material in the mechanical subdomain. The variation of the shape
functional associated with the inclusion Bε is called the topological derivative [27, 31].
In order to evaluate the topological derivative we need to recover the asymptotics
of solutions to the coupled model, find the asymptotics of the shape functional, and
introduce the adjoint state in such a way that the result of asymptotic analysis can be
used in numerical methods. This approach is used in [26] for the purpose of asymptotic
analysis of elasticity boundary value problems in three spatial dimensions.

In this work we propose an alternative approach, which is much simpler compared
to the general case considered in [26]. Our goal is the identification of the topological
derivative in such a way that it can be directly used in numerical methods. Therefore,
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we combine all the elements of analysis performed in [27, 33] and obtain a method
which is sufficiently simple to be used in applied shape-topological design. The method
is presented for a coupled model of elastic and piezoelectric materials; however, it is
general and can be used for more complex models of multiphysics.

3.1. The mechanical model. We are interested in the following system:

(3.1)

⎧⎨
⎩

divσ(u) = 0 in ΩM ,
divS(w, q)
divφ(w, q)

=
=

0
0

}
in ΩP ,

where the first equation describes the linear elasticity system while the second one
gives the coupled system representing the electromechanical interaction phenomenon.
The equations are coupled on the interface Γ. In particular, σ(u) is the mechanical
stress tensor, S(w, q) is the electromechanical stress tensor, and φ(w, q) is the electric
displacement. The constitutive laws describing the elastic behavior and piezoelectric
effects, both in the linearized case of small mechanical deformations and for electric
fields, are

(3.2)

⎧⎨
⎩

σ(u) = C∇su,
S(w, q) = A∇sw + P∇q,
φ(w, q) = PT∇sw −K∇q,

where u and w are the mechanical and electromechanical displacements, respectively,
and q is the electric potential. In addition, C and A are the elasticity fourth-
order tensors respectively associated to the elastic and electromechanical parts, P
the piezoelectric coupling third-order tensor, and K the dielectric second-order ten-
sor. As usual C, A, and K satisfy the symmetry conditions Cijkl = Cjikl = Cklij ,
Aijkl = Ajikl = Aklij , and Kij = Kji, whereas P satisfies Pijk = Pjik . It is assumed
for simplicity that all constitutive tensors are piecewise constant, i.e., constant in each
subdomain ΩM and ΩP . In the case of isotropic elasticity, the tensor C takes the form

(3.3) C = 2μI+ λ(I ⊗ I),

where μ and λ are the Lamé coefficients and I and I are the second- and fourth-order
identity tensors, respectively. We complement the system (3.1) with the following
boundary conditions:

(3.4) u = 0 on ΓD, σ(u)n = ku on Γ�, and

{
q = 0 on Γ0,
q = q on Γ,

where Γ�, ΓD, and Γ0 are parts of the boundary ∂Ω and n is the outward unit normal
vector pointing toward the exterior of Ω. If it is not specified, we consider homoge-
neous natural (Neumann) boundary conditions of the form σ(u)n = 0, S(w, q)n = 0,
and φ(w, q) · n = 0 on a part of ∂Ω. Finally, we consider the following transmission
conditions:

(3.5)

{
u = w

σ(u)n = S(w, q)n
on Γ,

where n is the unit normal vector pointing toward the exterior of ΩM . The variational
formulation of the above coupled system reads as follows.
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Problem 3.1. Find u ∈ V and q ∈ Q such that

(3.6)

⎧⎪⎪⎨
⎪⎪⎩

∫
ΩM

σ(u) · ∇sη −
∫
Γ�

ku · η +
∫
ΩP

S(w, q) · ∇sη = 0 ∀η ∈ V ,∫
ΩP

φ(w, q) · ∇ξ = 0 ∀ξ ∈ Q0,

where u = u in ΩM and u = w in ΩP . The space V of displacements fields is defined
as

(3.7) V =
{
v ∈ H1(Ω) : v|ΓD

= 0
}
,

while the electric potential sets Q and Q0 are respectively defined as
(3.8)

Q =
{
q ∈ H1(ΩP ) : q|Γ = q, q|Γ0

= 0
}
, Q0 =

{
q ∈ H1(ΩP ) : q|∂ΩP = 0

}
.

3.2. The shape functional. We are interested in the topology design of piezo-
electric actuators, which consist of multiflexible structures actuated by piezoceramic
devices that generate an output displacement in a specified direction on the boundary
of the actuated part. Therefore, let us introduce a tracking-type shape functional of
the form

(3.9) J(u) = −
∫
Γ�

u · e,

where e is used to denote a given direction on the boundary Γ� (see Figure 2).

3.3. The adjoint state. As mentioned before, we are going to evaluate the
shape gradient of functional (3.9). For further simplification, we introduce an adjoint
system of the form

(3.10)

⎧⎨
⎩

divσ(ua) = 0 in ΩM ,
divSa(wa, qa)
divφa(wa, qa)

=
=

0
0

}
in ΩP ,

where σ(ua), Sa(wa, qa), and φa(wa, qa) are, respectively, the adjoint mechanical
stress tensor, electromechanical stress tensor, and electrical displacement, given by

(3.11)

⎧⎨
⎩

σ(ua) = C∇sua,
Sa(wa, qa) = A∇swa − P∇qa,
φa(wa, qa) = −PT∇swa −K∇qa,

where ua, wa, and qa are the adjoint mechanical displacement, electromechanical
displacement, and electric potential, respectively. The system (3.10) has the boundary
conditions

(3.12) ua = 0 on ΓD, σ(ua)n = kua + e on Γ�, and qa = 0 on ∂ΩP

and the transmission conditions

(3.13)

{
ua = wa

σ(ua)n = Sa(wa, qa)n
on Γ.

The variational formulation of the coupled system for adjoint state equations reads
as follows.
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Problem 3.2. Find ua ∈ V and qa ∈ Q0 such that
(3.14)⎧⎪⎪⎨

⎪⎪⎩

∫
ΩM

σ(ua) · ∇sη −
∫
Γ�

kua · η +
∫
ΩP

Sa(wa, qa) · ∇sη =

∫
Γ�

e · η ∀η ∈ V ,∫
ΩP

φa(wa, qa) · ∇ξ = 0 ∀ξ ∈ Q0,

where ua = ua in ΩM and ua = wa in ΩP .

4. Topological derivative. The topological derivative of functional (3.9) is
evaluated for the insertion of a small inclusion in ΩM with the material properties de-
pending on the contrast. To describe the topological perturbation of ΩM we introduce
a piecewise constant function γε of the form

(4.1) γε = γε(x) :=

{
1 if x ∈ ΩM \Bε,
γ if x ∈ Bε,

where 0 < γ < ∞ is the contrast parameter on the material properties and Bε(x̂)
for x̂ ∈ ΩM . Note that in this case the topologies of the original and perturbed
domains are preserved. However, we are introducing a nonsmooth perturbation in
the coefficients of the differential operator through the contrast γε, by changing the
material property of the background in a small region Bε ⊂ ΩM . Therefore, the
sensitivity of the shape functional with respect to the nucleation of an inclusion can
also be handle through the topological asymptotic analysis concept, which actually
is the best approach for such a problem. The variational formulation associated with
the perturbed coupled system reads as follows.

Problem 4.1. Find uε ∈ V and qε ∈ Q such that

(4.2)

⎧⎪⎪⎨
⎪⎪⎩

∫
ΩM

σε(uε) · ∇sη −
∫
Γ�

kuε · η +
∫
ΩP

S(wε, qε) · ∇sη = 0 ∀η ∈ V ,∫
ΩP

φ(wε, qε) · ∇ξ = 0 ∀ξ ∈ Q0,

where σε(uε) = γεC∇suε. In addition, uε = uε in ΩM and uε = wε in ΩP .

4.1. Preliminaries. In this paper a coupled model is considered in the domain
Ω. The coupled system (3.6) is well-posed and can be written in the strong form as
an abstract equation for the unknown functions U := (u,w, q),

(4.3) LU = F,

in the appropriate function spaces over the domain Ω, where F is a vector that has
the generalized loading system for the problem and L is the matrix of the complete
system of equations. The weak form reads

(4.4) L(U,Φ) = (F,Φ),

with the test functions Φ. The bilinear form associated with the elastic component
of the coupled model in the subdomain ΩM is simply given by standard expression of
linear elasticity,

(4.5) (u, η) �→ a(ΩM ;u, η) :=

∫
ΩM

σ(u) · ∇sη



772 AMIGO, GIUSTI, NOVOTNY, SILVA, AND SOKO�LOWSKI

in the unperturbed subdomain ΩM , as well as by

(4.6) (u, η) �→ aε(Ω
M ;u, η) :=

∫
ΩM

σε(u) · ∇sη

in the perturbed subdomain by an inclusion. Here ε→ 0 is the parameter which gov-
erns the size of the topological perturbation. In the latter case, the weak formulation
of the coupled model also depends on the small parameter ε and can be rewritten as

(4.7) Lε(Uε,Φ) = (F,Φ)

or written in the strong form LεUε = F . The perturbed system is also well-posed for
ε ∈ [0, ε0), with ε0 > 0; i.e., the inverse operator is uniformly bounded: ‖Uε‖ ≤ C‖F‖
in appropriate norms. However, in the case of a cavity the associated function spaces
are obviously dependent on the small parameter ε. The case of an inclusion is therefore
the regular perturbation of the problem in the fixed function spaces setting.

We proceed further with the domain decomposition technique in the subdomain
ΩM := BR∪ΓR∪ΩM

R , where BR is the ball of radius R which contains the topological
perturbation denoted by Bε, ΓR ≡ ∂BR stands for the boundary of BR, and the
remaining subdomain ΩM

R := ΩM \ BR is far from the singular topological domain
perturbation.

Let uε denote the solution of coupled equations in the perturbed domain Ω,
i.e., including the inclusion Bε. We are going to show that the restriction of uε to
the truncated domain solves a boundary value problem with the nonlocal boundary
conditions on ΓR defined by the Steklov–Poincaré operator. Since for all ε ∈ [0, ε0)

(4.8) aε(Ω
M ;uε, η) = a(ΩM

R ;uε, η) + aε(BR;uε, η)

and the last term is equivalent to the Steklov–Poincaré component, then by construc-
tion

(4.9) aε(BR;uε, η) ≡ (Aε(uε), η)ΓR .

Henceforth the bilinear form in the topologically perturbed domain ΩM can be re-
placed by the bilinear form in the unperturbed domain ΩM

R , however with a nonlocal
pseudodifferential operator

(4.10) aε(Ω
M ;uε, η) = a(ΩM

R ;uε, η) + (Aε(uε), η)ΓR .

This replacement is in fact crucial for the proofs of topological differentiability for the
shape functionals defined for the coupled system. Actually, the asymptotic expansion
of the solutions to the coupled model in the truncated domain can easily be deduced
from the well-posedness of the model. It means that for the linear model, and the
regular perturbations of the differential operator, the asymptotic expansion of the
Steklov–Poincaré operator,

(4.11) Aε = A+ f(ε)A′ +Rε

with f(ε) ∼ |Bε|, implies the asymptotic expansion of the solutions to the coupled
model in the truncated domain ΩM

R ∪ ΓR ∪ ΩP of the same form,

(4.12) Uε = U + f(ε)U ′ + Ũε,

where Ũε is the remainder; namely, ||Ũε|| = o(f(ε)) in appropriated norms.
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4.2. Topological asymptotic expansion of the Steklov–Poincaré opera-
tor. The proposed method of asymptotic analysis is employed now on the coupled
system defined in ΩR. The dependence of the model on the small parameter ε → 0
occurs in the nonlocal boundary conditions imposed on ΓR. The variational form of
(4.2) restricted to ΩR is obtained:

(4.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
ΩM\BR

σε(uε) · ∇sη +

∫
∂BR

Aε(uε) · η

−
∫
Γ�

kuε · η +
∫
ΩP

S(wε, qε) · ∇sη = 0 ∀η ∈ V ,∫
ΩP

φ(wε, qε) · ∇ξ = 0 ∀ξ ∈ Q0,

where BR = BR(x̂) is a ball of radius R and center at x̂ ∈ ΩM .
The Steklov–Poincaré operator on the interior boundary ∂BR of the truncated

domain ΩR,

(4.14) Aε : ϕ ∈ H1/2(∂BR) → σε(vε)n ∈ H−1/2(∂BR),

by construction coincides with the Dirichlet-to-Neumann map of the linear elasticity
on the ball BR,

(4.15)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

divσε(vε) = 0 in BR,
σε(vε) = γεC∇svε,

vε = ϕ on ∂BR,
�vε�

�σε(vε)�n
=
=

0
0

}
on ∂Bε,

with Aε(ϕ) = σε(vε)n, which assures the identity vε = uε|BR in BR, where uε is the
solution of the perturbed problem in Ω.

Remark 4.2. If the Steklov–Poincaré operator ϕ �→ Aε(ϕ) of problem (4.13) is
the Dirichlet-to-Neumann map defined by (4.15), then the solution to (4.13) coincides
with the restriction to ΩR of the solution to the perturbed problem in Ω.

The identity for the energy functional of (4.15) holds as

(4.16)

0 = −
∫
BR

divσε(vε) · vε =
∫
BR

σε(vε) · ∇svε −
∫
∂BR

σε(vε)n · vε

=

∫
BR

σε(vε) · ∇svε −
∫
∂BR

Aε(ϕ) · ϕ;

hence the elastic energy in BR equals the energy of the Steklov–Poincaré operator
on the boundary. Thus we conclude that the asymptotic expansion of the Steklov–
Poincaré operator on the common boundary ∂BR equals the asymptotic expansion of
the elastic energy in the domain BR. Namely,

(4.17)

∫
BR

σε(vε) · ∇svε =

∫
∂BR

Aε(ϕ) · ϕ

for the mapping defined by (4.15),

(4.18) ϕ ∈ H1/2(∂BR) → σε(vε)n ∈ H−1/2(∂BR).
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Since the operator Aε is symmetric, we can also write

(4.19)

∫
BR

σε(vε) · ∇svε = 〈Aε(ϕ), ϕ〉(H−1/2×H1/2)(∂BR).

It is well known that the topological asymptotic expansion for the energy functional
takes the following form [27]:

(4.20)

∫
BR

σε(vε) · ∇svε =

∫
BR

σ(v) · ∇sv + f(ε)Pγσ(v(x̂)) · ∇sv(x̂) + o(f(ε)),

where v = u|BR is the solution to the original (unperturbed) problem (3.6) and
Pγ is the Pólya–Szegö polarization tensor [2]. According to the expansion given in
Corollary 2.5 and by the symmetry of the Steklov–Poincaré operator, the expansion
of the energy functional can also be written as

(4.21) 〈Aε(ϕ), ϑ〉 = 〈A(ϕ), ϑ〉 + f(ε)〈B(ϕ), ϑ〉+ 〈Rε(ϕ), ϑ〉,

where 〈Rε(ϕ), ϑ〉 = o(f(ε)). Then, from the asymptotic expansion of the energy
functional, we get

(4.22) 〈B(ϕ), ϑ〉 = Pγσ(ϕ(x̂)) · ∇sϑ(x̂) ∀x̂ ∈ ΩM .

4.3. Topological asymptotic expansion of the solution. We consider the
following ansätze for the solutions uε, wε, qε to the topologically perturbed coupled
system (4.2):

uε = u+ f(ε)g + ũε,(4.23)

wε = w + f(ε)h+ w̃ε,(4.24)

qε = q + f(ε)p+ q̃ε,(4.25)

where u,w, q are solutions to the original (unperturbed) coupled system (3.6); g, h, p
are the first-order asymptotic correction terms; and ũε, w̃ε, q̃ε are the remainders.
Now, we plug these ansätze into (4.13) and collect the terms with the same powers of
ε to obtain three boundary value problems. The first problem for u, w, and q is

(4.26)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
ΩM\BR

σ(u) · ∇sη +

∫
∂BR

A(u) · η

−
∫
Γ�

ku · η +
∫
ΩP

S(w, q) · ∇sη = 0 ∀η ∈ V ,∫
ΩP

φ(w,q) · ∇ξ = 0 ∀ξ ∈ Q0.

The second problem for g, h, and p is

(4.27)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
ΩM\BR

σ(g) · ∇sη +

∫
∂BR

(A(g) + B(u)) · η

−
∫
Γ�

kg · η +
∫
ΩP

S(h, p) · ∇sη = 0 ∀η ∈ V ,∫
ΩP

φ(h, p) · ∇ξ = 0 ∀ξ ∈ Q0,
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and the third problem for the remainders ũε, w̃ε, and q̃ε is

(4.28)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
ΩM\BR

σε(ũε) · ∇sη +

∫
∂BR

Aε(ũε) · η

−
∫
Γ�

kũε · η +
∫
ΩP

S(w̃ε, q̃ε) · ∇sη =

∫
∂BR

Fε · η ∀η ∈ V ,∫
ΩP

φ(w̃ε, q̃ε) · ∇ξ = 0 ∀ξ ∈ Q0,

where the source Fε is given by

(4.29) Fε = −(Rε(u) + f(ε)Rε(g) + f(ε)2B(g)).
The estimations ||ũε||H1(ΩM\BR) = o(f(ε)), ||w̃ε||H1(ΩP ) = o(f(ε)), and ||q̃ε||H1(ΩP ) =

o(f(ε)) hold true for the remainders [27].

4.4. Topological asymptotic expansion of the shape functional. Now we
are in position to establish the asymptotic expansion of the shape functional and
obtain its topological derivative. After introducing the first ansatz in the shape func-
tional associated to the perturbed problem, we have

J(uε) = −
∫
Γ�

(u+ f(ε)g + ũε) · e

= −
∫
Γ�

u · e− f(ε)

∫
Γ�

g · e−
∫
Γ�

ũε · e

= J(u)− f(ε)

∫
Γ�

g · e+ o(f(ε)).(4.30)

Now, let us rewrite the adjoint system (3.14) as

(4.31)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
ΩM\BR

σ(ua) · ∇sη +

∫
∂BR

A(ua) · η

−
∫
Γ�

kua · η +
∫
ΩP

Sa(wa, qa) · ∇sη =

∫
Γ�

e · η ∀η ∈ V ,∫
ΩP

φa(wa, qa) · ∇ξ = 0 ∀ξ ∈ Q0.

By taking g, h, and p as the test functions in (4.31), we have the following equalities:∫
ΩM\BR

σ(ua) · ∇sg +

∫
∂BR

A(ua) · g −
∫
Γ�

kua · g

+

∫
ΩP

A∇swa · ∇sh−
∫
ΩP

P∇qa · ∇sh =

∫
Γ�

e · g,(4.32)

−
∫
ΩP

P�∇swa · ∇p−
∫
ΩP

K∇qa · ∇p = 0.(4.33)

On the other hand, by taking ua, wa, and qa as the test functions in (4.27), we obtain∫
ΩM\BR

σ(g) · ∇sua +

∫
∂BR

(A(g) + B(u)) · ua −
∫
Γ�

kg · ua

+

∫
ΩP

A∇sh · ∇swa +

∫
ΩP

P∇p · ∇swa = 0,(4.34) ∫
ΩP

P�∇sh · ∇qa −
∫
ΩP

K∇p · ∇qa = 0.(4.35)
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Combining the above equalities yields the following important result:∫
Γ�

e · g = −
∫
∂BR

B(u) · ua

= −〈B(u), ua〉(H−1/2×H1/2)(∂BR)

= −Pγσ(u(x̂)) · ∇sua(x̂),(4.36)

where we have considered the symmetry of the bilinear forms. Finally, the topological
asymptotic expansion of the shape functional leads to

(4.37) J(uε) = J(u) + f(ε)Pγσ(u(x̂)) · ∇sua(x̂) + o(f(ε)).

By assuming that the inclusion is far from the piezoelectric part, the topological
derivative is given by the following closed formula:

(4.38) Tγ(x̂) = Pγσ(u(x̂)) · ∇sua(x̂) ∀x̂ ∈ ΩM ,

where u and ua are solutions to the original unperturbed direct (i.e., (3.6)) and adjoint
(i.e., (3.14)) systems, respectively.

Corollary 4.3. In two spatial dimensions, the function f(ε) = ε2 and the po-
larization tensor for inclusions (0 < γ <∞) reads [27] (see also [10])

(4.39) Pγ = π
1− γ

1 + γβ

(
(1 + β)I +

1

2
(α− β)

1− γ

1 + γα
I ⊗ I

)
,

with the constants α and β given by

(4.40) α =
λ+ μ

μ
and β =

λ+ 3μ

λ+ μ
.

In three spatial dimensions, the function f(ε) = ε3 and the polarization tensor for
holes (γ = 0) yield [27] (see also [12])

(4.41) P0 = 2π
1− ν

7− 5ν

(
10I− 1− 5ν

1− 2ν
I ⊗ I

)
,

where ν is the Poisson ratio.

5. Numerical implementation. A numerical procedure has been defined to
evaluate the topological derivative Tγ(x̂) of the shape functional J(u) in (3.9).

First, the constitutive properties for the direct problem (3.1) are defined according
to (3.2). Thus, the tensor C is defined for the elastic part ΩM , and tensors A, P ,
and K are defined for the electromechanical part ΩP . The boundary conditions for
the direct problem (3.1) are also specified according to (3.4). Thus, the mechanical
displacement is specified as u = 0 on ΓD, σ(u)n − ku = 0 on Γ� (where k is the
stiffness of the spring), and the electric potential q is defined on ∂ΩP = Γ∪Γ0. Next,
either problem (3.1) or (3.6) is solved to obtain the displacement field u in ΩM .

Then, we move to the adjoint problem, by first defining the constitutive properties
for problem (3.10) according to (3.11). The tensors C, A, P , and K are the same;
however, in (3.11) there is a change in the sign of P . The boundary conditions for
the adjoint problem (3.10) are also defined according to (3.12). Thus, the adjoint
mechanical displacement is specified as ua = 0 on ΓD, σ(ua)n − kua = e on Γ�



DESIGN OF FLEXTENSIONAL PIEZOELECTRIC ACTUATORS 777

(where k is the stiffness of the spring and e is the prescribed direction (vector) for
the maximization of the displacement u according to (3.9)), and the adjoint electric
potential is defined as qa = 0 on ∂ΩP . Next, either problem (3.10) or (3.14) is solved
to obtain the adjoint displacement field ua in ΩM . Thus, the adjoint problem has the
same structure of the direct problem (3.1), with a change in the sign of the tensor P
and homogeneous boundary conditions on ΓD and ∂ΩP , and nonhomogeneous Robin
boundary condition on Γ�.

With the direct and adjoint displacements, u and ua in ΩM , and the values of γ,
the topological derivative Tγ(x̂) of the shape functional J(u) in (3.9) is calculated at
each point x̂ ∈ ΩM by using (4.38).

Remark 5.1. For the topological derivative evaluation, we need only the stress
associated to the direct displacement u and the strain associated to the adjoint dis-
placement ua in the mechanical part of the domain ΩM . In addition, the Poisson
ratio ν is used to calculate the constants α and β in (4.40).

In order to simplify the numerical implementation we consider that the elastic
body ΩM is decomposed into two subdomains Ωs and Ωw. The domain Ωs = ΩM \Ωw

represents the elastic part, while Ωw ⊂ ΩM is filled with a very complacent material,
used to mimic voids. This procedure allows us to work in a fixed computational do-
main. Now, we introduce a volume constraint in Ωs of the form |Ωs| ≤M . Therefore,
the optimization problem we are dealing with can be written as follows:

(5.1) Minimize
Ωs⊂ΩM

Jρ(u) = J(u) + ρ|Ωs|,

where ρ is a fixed multiplier used to target the volume M .
Having made the above considerations, the topological derivative-based optimiza-

tion algorithm devised in [3] stands out as a particularly well-suited choice for solving
the optimization problem that we are dealing with. The procedure relies on a level-
set domain representation [28] and the approximation of the topological optimality
conditions by a fixed point iteration. In particular, the algorithm displays a marked
ability to produce general topological domain changes uncommon to other method-
ologies based on a level-set representation, and it has been successfully applied in
[3] to topology optimization in the context of two dimensional elasticity and flow
through porous media. For completeness, the algorithm is outlined in the following.
For further details we refer the reader to [3].

With the adoption of a level-set domain representation, the strong material is
characterized by a function Ψ ∈ L2(ΩM ) such that

(5.2) Ωs = {x ∈ ΩM : Ψ(x) < 0},

whereas the weak material domain is defined by

(5.3) Ωw = {x ∈ ΩM : Ψ(x) > 0}.

Now, let us consider the topological derivative T ρ
γ (x̂) of the shape functional Jρ(u)

in (5.1). According to [3], an obvious sufficient condition of local optimality for an
optimization problem for the class of perturbations consisting of circular inclusions is

(5.4) T ρ
γ (x̂) > 0 ∀x̂ ∈ ΩM .

To devise a level-set–based algorithm whose aim is to produce a topology that
satisfies (5.4), it is convenient to define the function

(5.5) G(x̂) =

{
−Gs(x̂) if x̂ ∈ Ωs,
+Gw(x̂) if x̂ ∈ Ωw,



778 AMIGO, GIUSTI, NOVOTNY, SILVA, AND SOKO�LOWSKI

with Gs(x̂) and Gw(x̂) given by

(5.6)
Gs(x̂) := T ρ

γ (x̂) with γ = γ∗ and x̂ ∈ Ωs,
Gw(x̂) := T ρ

γ (x̂) with γ = 1
γ∗ and x̂ ∈ Ωw,

where 0 < γ∗ � 1 is the material parameter threshold used to mimic voids.
With the above definitions and (5.2)–(5.3) it can be easily established that the

sufficient condition (5.4) is satisfied if the following equivalence relation between g
and the level-set function Ψ holds:

(5.7) ∃ τ > 0 s.t. G = τ Ψ,

or, equivalently,

(5.8) θ := arccos

[ 〈G,Ψ〉L2(ΩM )

‖G‖L2(ΩM ) ‖Ψ‖L2(ΩM )

]
= 0,

where θ is the angle between the vectors G and Ψ in L2(ΩM ).
Let us now explain the algorithm. We start by choosing an initial level-set function

Ψ0 ∈ L2(ΩM ). In a generic iteration n, we compute function Gn associated with the
level-set function Ψn ∈ L2(ΩM ). Thus, the new level-set function Ψn+1 is updated
according to the following linear combination between the functions Gn and Ψn:

(5.9)

Ψ0 ∈ L2(ΩM ),

Ψn+1 =
1

sin θn

[
sin((1 − κ)θn)Ψn + sin(κθn)

Gn

‖Gn‖L2(ΩM )

]
∀n ∈ N,

where θn is the angle between Gn and Ψn, and κ is a step size determined by a linear-
search performed in order to decrease the value of the objective function Jρ(un),
with un solution to (3.1) associated with Ψn. The process ends when the condition
θn ≤ εθ is satisfied in some iteration, where εθ is a given small numerical tolerance.
In particular, we can choose

(5.10) Ψ0 ∈ S = {ϕ ∈ L2(ΩM ) : ‖ϕ‖L2(ΩM ) = 1},

and by construction, Ψn+1 ∈ S ∀n ∈ N. If at some iteration n the linear-search
step size κ is found to be smaller than a given numerical tolerance εκ > 0 and the
optimality condition is not satisfied, namely θn > εθ, then a uniform mesh refinement
of the hold-all domain Ω is carried out and the iterative process is continued.

Table 1

PZT-5A properties.

� c11 c12 c13 c33 c44 e13 e15 e33 ε11 ε33
6.080 137.0 69.7 71.6 124.0 31.4 -4.0 10.4 13.8 7.9473 5.1507
g/cm3 GPa GPa GPa GPa GPa C/m2 C/m2 C/m2 nF/m nF/m

6. Numerical experiments. Several implementation examples are presented in
this section. In all of them, the materials considered are PZT-5A in fixed piezoelectric
domains and nickel or titanium in optimizable metallic domains; the properties of
these materials are given in Tables 1 and 2. Finally, the algorithmic parameters are
set as γ∗ = 1× 10−3, εθ = 1o, and εκ = 1× 10−4, while ρ is targeted according to the
required final volume M .
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Table 2

Nickel and titanium properties.

Nickel Titanium
� (g/cm3) 8.908 4.507
E (GPa) 204.6763 109.4027

ν 0.2866 0.2866

Fig. 3. Example 1: Design domain for piezoelectric moonie (dimensions in mm).

6.1. Example 1: Moonie. The first implementation example is the optimiza-
tion of a moonie, which is a widespread device used to amplify the displacements
generated by piezoelectric ceramics. In particular, the design domain considered is
shown in Figure 3, in which only one quadrant of the complete domain is represented,
based on horizontal and vertical symmetry assumptions. The objective is the max-
imization of the outward output displacement in the region Γ� in response to some
electric potential imposed on the electrode Γ, from the fixed ceramic domain denoted
by ΩP . In the output region Γ�, a spring k ensures enough stiffness to the resulting
topology obtained within the metallic design domain Ωs.

In the following results, the domain is discretized with a regular mesh of 1920
linear triangle elements at the beginning of the optimization procedure, and 491520
elements at the end. The electric potential applied to Γ is −100 V.

In Figure 4, the results for two different volume fractions V F are shown for both
nickel and titanium design domains, with the spring stiffness set to 1 kN/mm. The
deformed configuration of a selected result is shown in Figure 5. Furthermore, Figure
6 depicts the impact that the variation of the spring stiffness k has on the final
topology obtained, targeting the same final volume. Also in this case, the deformed
configuration of a selected result is presented in Figure 7. As the stiffness value
is increased, the coupling structure becomes stiffer and the hinges disappear. The
output displacements of each resulting topology presented are listed in Table 3.

The method gives a quite clear topology. We notice the presence of flexible
hinges in the design, which also appear for the results obtained by using topology
optimization based on the density method [29]. From the deformed configurations we
notice that the actuator generates the desired displacement.

6.2. Example 2: Inverter. The second example considers the same domain
from the previous section; however, the output displacement region Γ� is changed, as
depicted in Figure 8. This apparently simple modification in the design domain actu-
ally implies a completely different mechanism, since it seeks an output displacement
contrary to the natural movement of the structure, and this is the reason it is called
an inverter. The design domain remains Ωs, the objective is still the maximization of
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(a) V F = 0.34. (b) V F = 0.34.

(c) V F = 0.46. (d) V F = 0.46.

Fig. 4. Example 1: Results for nickel (left) and titanium (right) for different volume constraints
V F .

Fig. 5. Example 1: Deformed configuration for result from Figure 4(a).

Table 3

Example 1: Output displacements of moonie resulting topologies.

Volume fraction Displacement (μm)
4(a) Nickel 1 kN/mm 0.34 144.58
4(c) Nickel 1 kN/mm 0.46 148.77
6(a) Nickel 1 kN/mm 0.30 138.59
6(c) Nickel 10 kN/mm 0.30 39.13
4(b) Titanium 1 kN/mm 0.34 133.49
4(d) Titanium 1 kN/mm 0.46 133.93
6(b) Titanium 1 kN/mm 0.30 130.06
6(d) Titanium 10 kN/mm 0.30 33.92

the outward output displacement in Γ�, and all symmetry assumptions are also valid.
The domain is again discretized with the same mesh as in the previous example;

the electric potential applied to Γ is−100 V, and the spring stiffness is set to 1 kN/mm.
Figure 9 shows the results for two different volume constraints by considering nickel
and titanium design domains. The deformed configuration of a selected result is shown
in Figure 10. The output displacements of each resulting topology presented are listed
in Table 4.
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(a) k = 1 kN/mm. (b) k = 1 kN/mm.

(c) k = 10 kN/mm. (d) k = 10 kN/mm.

Fig. 6. Example 1. Results for nickel (left) and titanium (right) for V F = 0.30 and different
spring stiffness k.

Fig. 7. Example 1: Deformed configuration for result from Figure 6(d).

Fig. 8. Example 2: Design domain for piezoelectric inverter (dimensions in mm).

The presence of flexible hinges is also noticed in the results. Further, results from
Figures 9(a) and 9(b) show that the method is clearly able to obtain the topology
and not only the external shape of the coupling structure. From the deformed config-
uration we noticed that the inverter generates a displacement opposite to its natural
behavior.
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(a) V F = 0.30. (b) V F = 0.30.

(c) V F = 0.50. (d) V F = 0.50.

Fig. 9. Example 2: Results for nickel (left) and titanium (right) for different volume constraints
V F .

Fig. 10. Example 2: Deformed configuration for result from Figure 9(a).

Table 4

Example 2: Output displacements of inverter resulting topologies.

Volume fraction Displacement (μm)
9(a) Nickel 1 kN/mm 0.30 71.99
9(c) Nickel 1 kN/mm 0.50 70.37
9(b) Titanium 1 kN/mm 0.30 104.88
9(d) Titanium 1 kN/mm 0.50 112.55

6.3. Example 3: Gripper. The last implementation example investigates the
optimization of a gripper. In this case, a half part of the complete device is considered,
with horizontal symmetry, as indicated in Figure 11. Unlike the previous examples,
the desired output displacement direction is inwards, since a normally closed gripper
is being considered. Given the characteristic of the Γ� region, k is a distributed spring.

In the following results, the domain is discretized with a regular mesh of 1596
linear triangle elements at the beginning of the optimization procedure, and 408576
elements at the end. The electric potential applied to Γ is −100 V, and the spring
stiffness is set to 1 kN/mm. Figure 12 shows the results for two different volume
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Fig. 11. Example 3: Design domain for piezoelectric gripper (dimensions in mm).

(a) V F = 0.40. (b) V F = 0.40.

(c) V F = 0.60. (d) V F = 0.60.

Fig. 12. Example 3: Results for nickel (left) and titanium (right) for different volume con-
straints V F .

constraints by considering nickel and titanium design domains. The deformed config-
uration of a selected result is shown in Figure 13. The output displacements of each
resulting topology presented are listed in Table 5.

Again, results from Figure 12 show that the method is able to obtain a clear
topology. From the deformed configurations we notice that the gripper generates the
desired movement.

7. Conclusions. In this paper the topological derivatives of the tracking-type
shape functional for the coupled models of elasto-piezoelectric type are derived in
two and three spatial dimensions. The associated shape optimization problems are
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Fig. 13. Example 3: Deformed configuration for result from Figure 12(d).

Table 5

Example 3: Output displacements of gripper resulting topologies.

Volume fraction Displacement (μm)
12(a) Nickel 1 kN/mm 0.40 -17.81
12(c) Nickel 1 kN/mm 0.60 -21.51
12(b) Titanium 1 kN/mm 0.40 -14.76
12(d) Titanium 1 kN/mm 0.60 -17.10

already analyzed from the point of view of shape optimization in previous work. In
this paper the preceding results are completed by the topological asymptotic analysis.
The remarkable simplicity of the closed form sensitivity given by (4.38) is to be noted.
In fact, once the solutions u,w, q and ua, wa, qa to the original (unperturbed) direct
(3.6) and adjoint (3.14) coupled systems have been obtained, the topological derivative
Tγ(x̂) can be evaluated for all x̂ ∈ ΩM . The information provided by Tγ(x̂) can
potentially be used in a number of practical applications such as, for example, the
shape-topological design of microtools. In particular, some numerical experiments of
topology optimization of piezoelectric actuators have been presented.

Appendix A. Proof of Theorem 2.3. Let us consider the plane elasticity
boundary value problem in a ring C(R, ε). In order to establish the exact formula
for the Steklov–Poincaré operator on ΓR, we use the analytic form of the solution
for the elasticity system in the ring, with the nonhomogeneous Dirichlet displace-
ment condition on the outer boundary ΓR and the traction-free inner boundary ∂Bε,
parameterized by the (small) inner radius ε.

Let us assume for simplicity that the center of the ring is located at origin of
the coordinate system, and take polar coordinates (r, θ) with er pointing outwards
and eθ perpendicularly in the counterclockwise direction. Then the displacement
u = urer + uθeθ on the outer boundary r = R is given in the form of a Fourier series:

(A.1) 2μ(ur + iuθ) =

k=+∞∑
k=−∞

Uke
ikθ .

The boundedness of the boundary data in H1/2(ΓR) translates (see Remark 2.4) into
inequality (2.17) for the Fourier coefficients Uk.

The solution in C(R, ε) must be compared with the solution in C(R), so we use
the complex variable method, described in [23, 33], to construct the solutions.

Proposition A.1. For plane domains with a hole, the solutions of the elasticity
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boundary value problems take the form

σrr − iσrθ = 2�φ′ − e2iθ(z̄φ′′ + ψ′),
σrr + iσθθ = 4�φ′,

2μ(ur + iuθ) = e−iθ(κφ− zφ̄′ − ψ̄),

(A.2)

where φ, ψ are given by complex series

φ = A log(z) +
k=+∞∑
k=−∞

akz
k,

ψ = −κĀ log(z) +

k=+∞∑
k=−∞

bkz
k.

(A.3)

Here μ is the Lamé constant, ν the Poisson ratio, κ = 3− 4ν in the plane strain case,
and κ = (3 − ν)/(1 + ν) for plane stress. In addition, �ϕ is used to denote the real
part of a complex function ϕ, while �ϕ is going to be used to denote its imaginary
counterpart.

Now, the displacement boundary condition for r = R is substituted into the last
line of (A.2) and, taking into account (A.3),

2μ(ur + iuθ) = 2κAr log(r)
1

z
− Ā

1

r
z

+

p=+∞∑
p=−∞

[
κrap+1 − (1 − p)ā1−pr

−2p+1 − b̄−(p+1)r
−2p−1

]
zp,

we obtain the infinite system of linear equations

p = −1: 2κAr log(r) + (κa0 − b̄0)− 2ā2r
2 = U−1,

p = 1: − Ā+ κr2a2 − b̄−2
1

r2
= U1,

p /∈ {−1, 1}: κrp+1ap+1 − (1− p)ā1−pr
−p+1 − b̄−(p+1)r

−(p+1) = Up.

(A.4)

The traction-free condition

σer = [σrr, σrθ]
�

on a circle means σrr = σrθ = 0. Hence, for r := ε, we have another infinite system
of linear equations,

p = −1: 2A+ 2ā2r
2 + 2

1

r2
b−2 = 0,

p = 1: (κ+ 1)
1

r2
Ā = 0,

p /∈ {−1, 1}: (1 + p)ap+1 + ā1−pr
−2p +

1

r2
bp−1 = 0.

(A.5)

Define d0 = κa0 − b̄0 since a0, b0 appear only in this combination. Using (A.4), we
may recover the solution for the full circle. Because in this case the singularities must
vanish, we have b−k = a−k = A = 0 for k = 1, 2, . . . , and after comparing the same
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powers of r, we find

d00 = U−1 +
2

κ
Ū1, �a01 =

1

(κ− 1)R
�U0, �a01 =

1

(κ+ 1)R
�U0,

a0k =
1

κRk
Uk−1, b0k = − 1

Rk

[
(k + 2)

1

κ
Uk+1 + Ū−(k+1)

]
, k > 1.

(A.6)

We use the same argument for the ring. Here singularities may be present, because
the origin is not in the ring. Hence, from (A.4) with r = R and (A.5) with r = ε, we
obtain A = 0 and the formulae

d0 = A−1 +
2R4

κR4 + ε4
Ū1, a2 =

R2

κR4 + ε4
U1,

�a1 =
R

(κ− 1)R2 + 2ε2
�U0, �a1 =

1

κ+ 1
�A0,

b−1 = − 2ε2R

(κ− 1)R2 + 2ε2
�U0, b−2 = − ε4R2

κR4 + ε4
Ū1.

The remaining part of the coefficients is computed later. However, we may at this
stage compare the results with known solutions for the uniformly stretched circle or
ring obtained in another way. In such a case U0 = 2μur(R) does not vanish and, for
the full circle, ψ = 0, φ = a01z with

a01 =
2μ

(κ− 1)R
ur(R).

For the ring we have φ = a1z, ψ = b−1
1
z , where

a1 =
1

(κ− 1) + 2ε2
2μuR(1), b−1 = − 2ε2

(κ− 1) + 2ε2
2μuR(1).

After substitutions we obtain, in both cases, the same results as given in [17]. Similarly
the comparison with the solution for the ring with displacement conditions on both
boundaries, obtained in [14] also using the complex method, confirms the correctness
of our formulas.

There remains to compute the remaining part of coefficients ak, bk for the ring.
Taking p = −k, k = 2, 3, . . . , the conditions on ΓR and ∂Bε lead to

κa−(k−1)R
−(k−1) − (k + 1)āk+1R

k+1 − b̄k−1R
k−1 = U−k,

−(k − 1)a−(k−1)ε
2 + āk+1ε

2(k+1) + b−(k+1) = 0,
(A.7)

while p = +k, k = 2, 3, . . . , results in

κak+1R
k+1 + (k − 1)ā−(k−1)R

−(k−1) − b̄−(k+1)R
−(k+1) = Uk,

(k + 1)ak+1ε
2(k+1) + ā−(k−1)ε

2 + bk−1ε
2k = 0.

(A.8)

These systems may be represented in a recursive form, convenient for numerical com-
putations and further analysis. Namely,

(A.9)

[
Sk(ε)11, Sk(ε)12
Sk(ε)21, Sk(ε)22

] [
ak+1

bk−1

]
=

[
Uk

Ū−k

]
,
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where the entries Sk(ε)ij are given by

Sk(ε)11 = κRk+1 − (k2 − 1)R1−kε2k + k2R−(k+1)ε2(k+1),

Sk(ε)12 = −(k − 1)(R1−kε2(k−1) −R−(k+1)ε2k),

Sk(ε)21 = −(k + 1)(Rk+1 + κR1−kε2k),

Sk(ε)22 = −Rk−1 − κR1−kε2(k−1),

as well as by

(A.10)

[
a−(k−1)

b−(k+1)

]
=

[
−(k + 1)ε2k, −ε2(k−1)

−k2ε2(k+1), −(k − 1)ε2k

] [
āk+1

b̄k−1

]
.

In fact the formulae (A.10), (A.9) are correct also for k = 0, 1 and in the limit ε→ 0+,
but the derivation must separate these cases. Thus, for given k > 1 and using some
initial ak, bk obtained earlier, we may first compute ak+1, bk−1 using (A.9) and then
a−(k−1), b−(k+1) from (A.10).

We may now use the above results for the asymptotic analysis of the solution. To
simplify the formulae, we assume R = 1, which means only rescaling and does not
diminish generality (in the general case, ε would be replaced by ε/R). Then by direct
computation we get the following bounds for the differences between the coefficients
on the full circle and the ring: For the initial values of k, they read

d0 − d00 = −ε4 2

κ(κR4 + ε4)
Ū1,

a1 − a01 = −ε2 2

(κ− 1)R((κ− 1)R2 + 2ε2)
�U0,

a2 − a02 = −ε4 1

κR2(κR4 + ε4)
U1,

(A.11)

and for higher values,

(A.12) |a3 − a03| ≤ Λ
(
|U2|ε4 + |U−2|ε2

)
,

and for k = 4, 5, . . . ,

(A.13) |ak − a0k| ≤ Λ
(
|Uk−1|ε3(k−1)/2 + |U1−k|ε3(k−2)/2

)
,

where the exponent k/2 has been used to counteract the growth of k2 in terms like
k2εk/2. Similarly

(A.14) |b1 − b01| ≤ Λ
(
|U2|ε4 + |U−2|ε2

)
,

and for k = 2, 3, . . . ,

(A.15) |bk − b0k| ≤ Λ
(
|Uk+1|ε3(k+1)/2 + |U−(k+1)|ε3k/2

)
.

From relation (A.10) we get other estimates:

|a−k| ≤ Λε2k
(
|Uk+1|+ |U−(k+1)|

)
, k = 1, 2, . . . ,

|b−k| ≤ Λε2(k−1) (|Uk−1|+ |U1−k|) , k = 3, 4, . . . .
(A.16)

Here Λ is a constant independent of ε and Ui. Observe that the corrections propor-
tional to ε2 are present only in a1, b1, a3, b−1, a−1. The rest is of the order at least
O(ε3) (in fact, O(ε4)).
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[31] J. Soko�lowski and A. Żochowski, On the topological derivative in shape optimization, SIAM
J. Control Optim., 37 (1999), pp. 1251–1272.
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