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In this work, we propose a partitioning of the first-order reduced density matrix corresponding to anN-electron
system into first-order reduced density matrices associated with regions defined in the real space (regional
matrices). The treatment is based on an isopycnic orbital localization transformation that provides regional
matrices that are diagonalized by identical localized orbitals, having many attributes associated with chemical
concepts (appropriate localization in space, high transferability, etc.). Although the obtained numerical values
are similar to those arising from previous studies, their interpretation is more rigorous and the computational
cost is much lower.

1. Introduction

In previous studies on population analysis we have reported
satisfactory results of chemical interest implementing partition-
ings of the first-order reduced density matrix of anN-electron
system in terms of correlated holes1 and first-order density
matrices associated with Bader’s regions.2 In both procedures,
the extraction of the chemical information contained in these
regional matrices has required two steps: (a) the partitioning
of the first-order reduced density matrix into matrices associated
with M spatial regions and then (b) the performance of an
isopycnic localization transformation of each one of the matrices
arising from that partitioning. Although the numerical deter-
minations obtained are in good agreement with the genuine
chemical knowledge of the systems studied, in both treatments
the results corresponding to each regional matrix have been
obtained from adifferentlocalized orbital set and consequently
these procedures do not provide a rigorous comparison between
the results of each fragment.

The aim of this paper is to avoid this drawback by reporting
a simpler treatment where only one isopycnic transformation
is needed that provides all the results expressed in an identical
basis set. This transformation is performed before the partition-
ing of the N-electron first-order reduced density matrix and
consequently this treatment reverses the order in the performance
of the two above-mentioned steps. This model, which represents
a rigorous foundation for Cioslowski definitions of ionicity and
bonding multiplicity by means of bond orders,3,4 provides
regional matrices having many attributes usually associated with
physical and chemical concepts (fulfillment of ensemble rep-
resentability,5 appropriate localization in space, high transfer-
ability, etc.). All resulting regional matrices are diagonalized
by identical localized orbitals and, consequently, the eigenvalues
(electronic populations) of the density matrices corresponding
to atomic spatial basins or those corresponding to unions of

these basins (i.e., functional groups or any other arbitrary atomic
associations) are strictly and straightforwardly comparable,
which constitutes a significant accomplishment in a theoretical
point of view. Apart from these achievements of theoretical
nature, this treatment possesses another important advantage in
a practical point of view: the computational cost is decreased
by a factor ofM because only one localization transformation
is carried out whereasM localization ones are needed in previous
treatments although the results turn out to be similar to those
arising from former methods.

The article is organized as follows. The second section reports
the main features of the isopycnic orbital localization transfor-
mations used in this work. The third section describes the
decomposition of the usual first-order reduced density matrix
into first-order matrices associated with Bader’s atomic basins.
This section also presents a study of the properties of these
devices including their representability. The fourth section
reports the computational aspects of this work, the results found
in selected molecules, the corresponding discussion and a
comparison between the present proposal and our previously
described partitioning model.2 Finally, the last section sum-
marizes the concluding remarks.

2. Background of Isopycnic Orbital Localization
Transformations

Quantum-chemical calculations produceN-electron wave
functions from which several quantities of interest can readily
be derived. One of these quantities is the first-order reduced
density matrixΓ(x,x′). This matrix, which uniquely determines
expectation values of all one-electron operators, is usually
described in terms of their natural spin-orbitals,ψi(x), which
are defined by the following equations:
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Γ(x,x′) ) ∑
i

niψi
/(x) ψi(x′) (1)
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wherex and x′ stand for the space and spin coordinates. The
normalization condition, eq 2, determines the values of the
occupation numbers,ni. There are, however, infinitely many
sets of spin-orbitals,φi(x), and the corresponding occupation
numbers,νi, that satisfy eqs 1 and 2, but not necessarily the
orthogonality condition, eq 3. Any linear transformation between
the functionsψi(x) andφi(x) leaves the first-order density matrix,
rather than the wave function itself, invariant. Such a transfor-
mation, which has been termed asisopycnic, is defined by means
of a matrixC which satisfies6

and

whereUij are elements of a unitary matrix. This transformation,
which preserves the diagonal form ofΓ(x,x′) and yields real
occupation numbers,νi, satisfying the conditions

allows one to localize natural spin-orbitals that originate from
arbitrary wave functions. Orbital localization is accomplished
by finding an isopycnic orbital transformation matrix,C, that
maximizes the localization index

where the tensorTklmn defines the localization procedure.
Although several definitions forTklmn are possible,7-13 in this
paper we are interested in the Cioslowski localization criterion.14

In this case, the tensorT is defined through the theory of atoms
in molecules (AIM).15 As is well-known, this theory carries out
a partitioning of the physical space based on the topological
properties of the electron density function. The whole three-
dimensional space is divided into disjunct atomic basinsΩA,
which are defined by surfaces having zero flux in the gradient
vector field of the electron density. Thus, within this procedure
the tensorT is defined so as to maximize an AIM charge-density
overlap functional,

in which 〈ψi|ψj〉ΩA are the overlap integrals over the Bader
atomic basinsΩA (where the integration is limited to this kind
of basins). The quantity〈ψi|ψi〉ΩA defines the atomic population
(occupancy) of theith spin-orbital on the atomic regionΩA,
and the quantity

is thelocalization indexof the ith spin-orbital and its inverse,
Li

-1, is equal to the effective number of atoms spanned by the
ith spin-orbital.14

Localized spin-orbitals resulting from this localization
procedure do indeed have many attributes usually associated
with chemical concepts (appropriate localization in space, high
transferability, etc.) so that they can be regarded as the
theoretical counterpart of the classical chemical pictures such
as bonds, nonbonding electron pairs, core orbitals, valences and
so forth, as has been shown in ref 4. Therefore, the description
of the first-order reduced density matrix in terms of these orbitals
seems to be an adequate starting point to propose a partitioning
of the first-order reduced density matrix corresponding to an
N-electron system into first-order density matrices, each of them
associated with an atomic basin defined in the AIM theory.

3. Partitioning of the First-Order Reduced Density
Matrix

Let us consider the description of the first-order reduced
density matrix in terms of its localized isopycnic-related natural
spin-orbitals

Our philosophy is to combine these localized spin-orbitals
according to their presence on the atomic basins in the molecule,
to construct a set of first-order density matrices, each of them
associated with an atomic basin defined in the AIM theory.
Thus, let us consider the quantity〈φi|φi〉ΩA which, as mentioned
above, defines the atomic population (occupancy) of theith
localized spin-orbital on the atomic regionΩA. This quantity,
which satisfies the relations

yields a natural partitioning of the first-order reduced density
matrix

where

and

The matricesΓΩA(x,x′) constitute thefirst-order reduced density
matricesassociated with the regionsΩA. From their definitions,
eq 16, it follows that these matrices retain the chemical attributes
of the localized orbitals from which they arise (appropriate
localization in space, high transferability, etc.). Moreover, all
of them diagonalize in thesameisopycnic basis set,φi(x), and
possess features similar to those of the ordinary reduced density
matrix: each matrix is Hermitian and its trace is given byNΩA,
the number of electrons within the basinΩA, which coincides
with Bader’s (electronic) atomic charge as may be seen from

Γ(x,x′) ) ∑
i

νiφi
/(x) φi(x′) (12)

0 e 〈φi|φi〉ΩA
e 1 (13)

∑
ΩA

〈φi|φi〉ΩA
) 1 (14)

Γ(x,x′) ) ∑
ΩA

ΓΩA
(x,x′) (15)

ΓΩA
(x,x′) ) ∑

i

νi(ΩA)φi
/(x) φi(x′) (16)

νi(ΩA) ) νi〈φi|φi〉ΩA
(17)

〈ψi|ψi〉 ) 1 (2)

〈ψi|ψj〉 ) 0 i * j (3)

φi(x) ) ∑
j

Cijψj(x) (4)

Cij ) Uij(nj/νi)
1/2 (5)

νi ) ∑
j

njUij
/Uij (6)

0 e νi e 1 (7)

∑
i

νi ) N (8)

L ) ∑
i
∑
klmn

νi
2Cik

/CilCim
/ CinTklmn (9)

Tklmn ) ∑
ΩA

〈ψk|ψl〉ΩA
〈ψm|ψn〉ΩA

(10)

Li ) ∑
ΩA

〈ψi|ψi〉ΩA
〈ψi|ψi〉ΩA

(11)
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where eqs 4-6 have been taken into account. The occupation
numbers of thenonorthonormallocalized natural spin-orbitals
of ΓΩA(x,x′), νi(ΩA), satisfy

and, similarly, it follows that (see Appendix)

whereni(ΩA) are the occupation numbers of theorthonormal
canonical natural spin-orbitals ofΓΩA(x,x′), that is

where

andψ̃i(x), which in general differs from the original canonical
one ψi(x), is related toφi(x) through a new isopycnic orbital
transformation

whereŨij are elements of a new unitary matrix. Finally, it must
be noted that these regional matrices are definedafter the
localized orbitals have been determined. This fact provides that
these matrices possess the important property of being inde-
pendent of the orbital representation.

All these properties ensure the (ensemble) representability5

of the ΓΩ(x,x′) matrices and therefore their physical grounds
and usefulness to describe first-order properties within theΩ
regions. We must emphasize that the partitioning described in
eq 15 leads to genuine first-order reduced density matrices
associated with regionsΩ. In a previous study,2 we described
a partitioning of the first-order reduced density matrix from a
symmetrical expansion of the first-order reduced density matrix
that preserves the essential properties of that matrix and also
leads to true first-order reduced density matrices associated with
regionsΩ. However, as has been pointed out in the Introduction,
the former treatment required to perform a localization in each
one of the regional matrices obtained and consequently the
comparison of results is not rigorous. Moreover, that partitioning
increases the computational expense becauseM different local-
ized basis sets need be constructed whereas only one is required
in the present proposal. Both partitionings are distinct as a
consequence of the different order in which localization and
partitioning are performed in the present and the former model.
These studies show that the partitioning of reduced density
matrices allows different approaches that deserve to be consid-
ered in the description of atomic or functional groups.

4. Computational Details, Results and Discussion

In the previous sections we have expressed the first-order
reduced density matrices in terms of spin-orbitals. However,

for practical reasons the numerical determinations reported in
this work have been performed through a spin-free formulation.
As is well-known, the spin-free first-order reduced density
matrix is given by

where{r,σ} stands for the set of spatial and spin coordinates,
respectively. Analogously, the spin-free version of theΓΩ({r,σ},-
{r′,σ}) quantity will be defined as

For states having spin quantum numberSz ) 0 (singlets and
other states), the spin-free first-order reduced density matrix
associated with the regionΩ can be calculated straightforwardly
starting with the matrixΓ(r,r′). This allow us to handle matrices
of lesser size with lower computational expenses than those
demanded by the spin-orbital formulation. The treatment of
states withSz * 0 requires the independent evaluation of the
ΓΩ({r,R},{r′,R}) and ΓΩ({r,â},{r′,â}) matrices, becauseΓΩ-
({r,R},{r′,R}) * ΓΩ({r,â},{r′,â}),16,17and then, in a subsequent
step, to add both spin blocks according to eq 25.

The ΓΩ(r,r′) matrices can be extended to unions between
basins∪AΩA, that is,

where

and the sum∑′ΩA is restricted to theΩA regions that are included
in the union set∪AΩA. Obviously, if∪AΩA is the whole space
Γ(∪AΩA)(r,r′) ) Γ(r,r′) and N(∪AΩA) ) N. These properties
guarantee that theΓΩ(r,r′) matrices are appropriate tools to
describe molecular fragments of chemical interest, like atoms,
functional groups, etc. Such a description allows one to analyze
electronic populations and their degeneracies in terms of inner
shells, lone pairs, inner bondings within a determined region
Ω as well as bondings of that region with the rest of the
molecule.

To test the usefulness of the above proposed partitioning of
first-order reduced density matrix, we have chosen the series
of hydrides of the second-row elements, some diatomic mol-
ecules and simple hydrocarbons, all of them in the singlet ground
states so that the spin-free formulation can be used. The
calculations were carried out using Gaussian0318 program, which
generated the first-order reduced density matrix elements and
the overlap matrices〈ψi|ψj〉ΩA. In a subsequent step, these
matrices were subjected to our own computational implementa-
tion. The results reported for those systems have been obtained
with the basis sets 6-31G(d,p) except for the acetylene molecule
which has been calculated with the 6-31G basis set to avoid
the occurrence of the nonnuclear attractor, which appears with
the former set.19,20 A study of the basis set dependency of this
methodology has also been performed using several basis sets
on the HF molecule, chosen as test example. For all systems,
the geometries were optimized for the corresponding basis sets
within configuration interaction (CI) wave functions with single
and double excitations (SDCI) arising from Hartree-Fock
reference states.

∫dx ΓΩA
(x,x) ) ∑

i

νi(ΩA) ) ∑
i

νi〈φi|φi〉ΩA

) ∑
ikl

(nknl)
1/2Uik

/Uil〈ψk|ψl〉ΩA

) ∑
kl

(nknl)
1/2δkl〈ψk|ψl〉ΩA

)

∑
k

nk〈ψk|ψk〉ΩA
) NΩA

(18)

0 e νi(ΩA) e 1 (19)

0 e ni(ΩA) e 1 (20)

ΓΩA
(x,x′) ) ∑

i

ni(ΩA)ψ̃i
/(x) ψ̃i(x′) (21)

ni(ΩA) ) ∑
jk

[νj(ΩA) νk(ΩA)]1/2 Ũji
/Ũki〈φj|φk〉 (22)

C̃ij ) Ũij[ni(ΩA)/νj(ΩA)]1/2 (23)

Γ(r,r′) ) ∑
σ

Γ({r,σ},{r′,σ}) (24)

ΓΩ(r,r′) ) ∑
σ

ΓΩ({r,σ},{r′,σ}) (25)

Γ(∪AΩA)(r,r′) ) ∑
i

νi(∪AΩA) φi
/(r) φi(r′) (26)

νi(∪AΩA) ) ∑
ΩA

′

νi〈φi|φi〉ΩA
(27)
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The results in Table 1 show the valuesNΩ found in the
monatomic and diatomic fragments that can be outlined in the
series of hydrides of the second-row elements. This table also
reports the partitioningNΩ ) ∑iνi(Ω) in terms of the nonneg-
ligible νi(Ω) values (see eq 18) as well as the degeneracy of
the corresponding localized orbitals. These quantities allow us
to carry out a suitable assignment of these orbitals in good
agreement with the genuine chemical knowledge, as is shown
in column six. Theνi(Ω) values point out the polarity of the
bonding of the regionΩ with other regions; e.g., the diatomic
fragments A-H (A ) Be, B, C, N, O, F) fulfill νi(H) > νi(A)
in the systems BeH2 (1.804> 0.138) and BH3 (1.576> 0.307),
showing the negative character of the H basins butνi(H) < νi-
(A), as expected, in the compounds NH3 (0.606< 1.339), H2O
(0.389 < 1.573) and HF (0.266< 1.706). A quantitative
measure of this polarity has been written down in column seven
of this table, which reports the ionicity (as a percentage) of the
bondings A-H. The ionicity of these bondings has been
evaluated in terms of the valuesνi(A) andνi(H) corresponding
to the localized orbitalsφi(r) which describes that bonding as2

which is identical to the ionicity index of the bondings A-H

arising from the more conventional method reported by Cioslows-
ki and Mixon3

In the last column of Table 1 we report a covalent bond order
derived from this framework. This quantity, which is consistent
with the exchange definition derived in ref 21, allows one to
assess the index of bonding between two atoms A and B
according to the Lewis (resonance) structure described by the
particular set of localized orbitalsφi(r). This quantity can be
calculated directly knowing the electronic populations associated
with ΓΩ(r,r′) matrices as

A comparison of our definition with that reported in ref 4

shows that both quantities are coincident. These results confirm,
as has been pointed out in the Introduction, that the ionicity

TABLE 1: Calculated Eigenvaluesνi(Ω) (Electronic Populations) and Assigned Eigenvectors of Localization Based First-Order
Reduced Density Matrices Associated with Bader’s Regions, Ionicities of Bonds (as a Percentage) and Covalent Bond Orders for
Second-Row Hydrides in the SDCI Treatment Using the 6-31G(d,p) Basis Set

system fragment (Ω) NΩ νi(Ω) degeneracy assignment ionicity bond covalent bond order

BeH2 Be 2.277 1.991 1 1sBe Be-H 0.261
0.138 2 σBeH 85.8

H 1.862 1.804 1 σBeH 85.8 H-H 0.088
BeH 4.138 1.995 1 1sBe

1.942 1 σBeH (inner H)
0.162 1 σBeH (outer H)

BH3 B 2.946 1.997 1 1sB B-H 0.512
0.307 3 σBH 67.4

H 1.685 1.576 1 σBH 67.4 H-H 0.136
BH 4.631 1.998 1 1sB

1.883 1 σBH (inner H)
0.349 2 σBH (outer H)

CH4 C 5.845 2.000 1 1sC C-H 0.970
0.947 4 σCH 1.1

H 1.039 0.967 1 σCH 1.1 H-H 0.038
CH 6.884 2.000 1 1sC

1.914 1 σCH (inner H)
0.966 3 σCH (outer H)

NH3 N 8.010 2.000 1 1sN N-H 0.875
1.929 1 lone pair
1.339 3 σNH 37.7

H 0.663 0.606 1 σNH 37.7 H-H 0.015
NH 8.674 2.000 1 1sN

1.944 1 lone pair
1.945 1 σNH (inner H)
1.351 2 σNH (outer H)

H2O O 9.148 2.000 1 1sO O-H 0.655
1.974 1 σ-lone pair
1.953 1 π-lone pair
1.573 2 σOH 60.4

H 0.426 0.389 1 σOH 60.4 H-H 0.006
OH 9.574 2.000 1 1sO

1.963 2 σ-lone pair;
σOH (inner H)

1.979 1 π-lone pair
1.581 1 σOH (outer H)

HF F 9.711 2.000 1 1sF F-H 0.479
1.988 1 σ-lone pair
1.975 2 π-lone pair
1.706 1 σFH 73.0

H 0.289 0.266 1 σFH 73.0

|νi(A) - νi(H)

νi(A) + νi(H)| (28)

|〈φi|φi〉A - 〈φi|φi〉H

〈φi|φi〉A + 〈φi|φi〉H
| (29)

PAB ) ∑
i

νi(A) νi(B) (30)

PAB ) ∑
i

νi
2〈φi|φi〉A〈φi|φi〉B (31)
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index and the bond order can be derived suitably from our
methodology of regional reduced density matrices.

In Table 2 we report identical quantities to those mentioned
in the previous one, describing atoms contained in diatomic
(homonuclear and heteronuclear) molecules and fragments of
chemical interest in the simplest hydrocarbons possessing single,
double and triple bond orders. A survey of the values found
shows that the degeneracies and assignments are in excellent
agreement with the expected features for these molecules. The
polarity of the bondings in homonuclear molecules (N2 and F2)
is zero whereas the CO molecule presents reasonable values
for bothσCO andπCO bonds. Similar comments deserve the bond
orders found for all systems as in the diatomic molecules as in
the hydrocarbons (single, double and triple bondings C-C and
C-H). The method predicts very low values for the polarity of

the bondings C-H in the C2H6 and C2H4 molecules and a higher
one for the C2H2 system in which the H fragment has a positive
charge in good agreement with the well-known properties of
this hydrocarbon.

Table 3 shows the values of ionicity and covalent bond order
obtained for the HF molecule within this methodology using
several basis sets. Starting with a minimal STO-3G basis set,
the increase of the basis set size initially provides an increase
of the ionicity and the corresponding decrease of the covalent
bond order, and this effect in reinforced when polarization
functions are included. However, as can be observed in the table,
once the basis set size is sufficiently large, further size increases
do not provide substantial changes in the reported quantities.
These results allow us to infer the stability of the ionicity and
bond order values once the basis set is large enough.

TABLE 2: Calculated Eigenvaluesνi(Ω) (Electronic Populations) and Assigned Eigenvectors of Localization Based First-order
Reduced Density Matrices Associated with Bader’s Regions, Ionicities of Bonds (as a Percentage) and Covalent Bond Orders for
Diatomic Molecules and Hydrocarbons in the SDCI Treatment Using the 6-31G(d,p) Basis Set

system fragment (Ω) NΩ νi(Ω) degeneracy assignment ionicity bond covalent bond order

N2 N 7.000 2.000 1 1sN N-N 2.913
1.966 1 σ-lone pair
0.989 1 σNN′
0.974 2 πNN′

CO C 4.738 1.996 1 1sC C-O 1.558
1.856 1 σ-lone pair
0.224 1 σCO 77.4
0.288 2 πCO 70.5

O 9.262 2.000 1 1sO
1.983 1 σ-lone pair
1.754 1 σCO 77.4
1.666 2 πCO 70.5

F2 F 9.000 2.000 1 1sF F-F 1.180
1.978 1 σ-lone pair
1.956 2 π-lone pair
0.964 1 σFF′

C2H6 (D3h) C 5.838 2.000 1 1sC C-C 0.985
(H3C-C′H3′) 0.936 1 σCC′ C-H 0.963

0.930 3 σCH 2.6
H 1.054 0.979 1 σCH 2.6 H-H 0.040
CC′ 11.675 2.000 2 1sC; 1sC′

1.872 1 σCC′
0.949 6 σCH; σC′H′

CH3 9.000 2.000 1 1sC
1.949 3 σCH

0.985 1 σCC′
C2H4 C 5.953 2.000 1 1sC C-C 1.857
(H2C-C′H2′) 0.981 2 σCH 1.6 C-H 0.984

0.965 1 σCC′
0.917 1 πCC′

H 1.024 0.951 1 σCH 1.6 H-H 0.031
CC′ 11.901 2.000 2 1sC; 1sC′

1.929 1 σCC′
1.835 1 πCC′
1.002 4 σCH; σC′H′

CH2 8.000 2.000 1 1sC
1.947 2 σCH

0.987 1 σCC′
0.971 1 πCC′

C2H2
a C 6.137 2.000 1 1sC C-C 2.785

(HC-C′H′) 1.175 1 σCH 19.2 C-H 0.986
0.972 1 σCC′
0.955 2 πCC′

H 0.863 0.797 1 σCH 19.2 H-H 0.001
CC′ 12.274 2.000 2 1sC; 1sC′

1.945 1 σCC′
1.910 2 πCC′
1.181 2 σCH; σC′H′

CH 7.000 2.000 1 1sC
1.972 1 σCH

0.991 1 σCC′
0.972 2 πCC′

a Calculated in the 6-31G basis set.
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In ref 2 we described a model that performs a topological
partitioning of the first-order reduced density matrix according
to an algebraic symmetrical expansion of that matrix, i.e.

where

This model deals with the natural orbitalsψi(r) and their
corresponding occupation numbersni. The extraction of the
chemical information contained in these regional matrices
requires the performance of an isopycnic localization transfor-
mation of each one of the matrices whereas in the present model
the resulting regional first-order reduced density matrices
diagonalize in the same localized basis set. This property renders
a direct and strictly valid comparison between atomic popula-
tions and localized orbitals corresponding to different regional
matrices arising from the present model. The systems described
in Tables 1 and 2 were also calculated in ref 2 within the
symmetrical model. The results turn out to be similar to those
arising from the present scheme, although the former one is
computationally much more expensive. It is also interesting to
highlight that the ionicities index of a bond are almost identical
in both models.

Let us finish this section by pointing out that alternative
descriptions of some of the systems studied in the present work
can be derived from approaches others than AIM one. Thus,
for example, in the valence bond theory (VB) the bond in the
F2 molecule is interpreted in terms of a charge-shift bond in
which the resonance of the ionic structures is the stabilizing
contribution; this feature, which is not discriminated by the AIM
scheme, is supported by the electron localization function (ELF)
approach.23

5. Concluding Remarks

In conclusion, in this paper we report a procedure to
decompose the first-order reduced density matrix of anN-
electron system into regional first-order reduced density matrices
according to the three-dimensional atomic basins defined in the
AIM theory. The first step in this procedure involves one
isopycnic localization transformation, which provides that the
regional matrices resulting from the subsequent partitioning are

diagonalized by identical localized orbitals. We have performed
a study of the representability conditions for these regional
matrices whose fulfillment ensures the physical grounds and
the reliability of the information arising from these devices. We
have also described first-order reduced density matrices associ-
ated with unions of atomic basins, whose treatment provides
an important chemical information which has been related with
groups of atoms. The results obtained within this scheme have
allowed us to describe satisfactorily molecular fragments and
their bondings with a lower computational cost than previously
reported models. Moreover, our treatment evaluates the polarity,
ionicity and bonding multiplicity from the information contained
in the regional matrices leading to identical values than those
predicted by more conventional methods. The good agreement
between our results and those arising from the genuine chemical
knowledge shows that this methodology is a useful and cost
competitive tool for the understanding and description of
molecular structures. We are currently working on the applica-
tion of this methodology to determine functional groups in
several series of organic compounds.
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Appendix

Let us consider the expression that relates theΩA basin
canonical natural occupation numbers with those corresponding
to localized orbitals

Defining

it follows that

and therefore

Moreover, because

TABLE 3: Basis Set Dependence of Ionicities of Bonds (as a
Percentage) and Covalent Bond Orders for the HF Molecule
in the SDCI Treatment

basis set dimension NΩF NΩH ionicity
covalent

bond order

STO-3G 6 9.372 0.627 40.2 0.825
3-21G 11 9.539 0.461 56.4 0.694
6-31G 11 9.592 0.408 61.6 0.632
D95V 11 9.601 0.399 62.8 0.619
6-31G(d) 17 9.684 0.316 70.1 0.513
cc-pVDZ 19 9.723 0.277 74.4 0.462
6-31G(d,p) 20 9.711 0.289 73.0 0.479
D95V(d,p) 20 9.715 0.285 73.7 0.427
6-31+G(d,p) 24 9.723 0.277 74.4 0.462
6-31G(2d,2p) 29 9.714 0.286 73.6 0.475
cc-pVTZa 44 9.745 0.255 76.4 0.433

a The 〈ψi|ψj〉ΩA integrals were obtained from Proaim program22 for
this basis set.

Γ(r,r′) ) ∑
ΩA

Γ′ΩA
(r,r′) (32)

Γ′ΩA
(r,r′) ) ∑

ij

(ninj)
1/2〈ψi|ψj〉ΩA

ψi
/(r) ψj(r′) (33)

ni(ΩA) ) ∑
jk

[νj(ΩA) νk(ΩA)]1/2Ũji
/Ũki〈φj|φk〉 (34)

|τi〉 ) ∑
k

[νk(ΩA)]1/2Ũki|φk〉 (35)

ni(ΩA) ) 〈τi|τi〉 (36)

ni(ΩA) g 0 (37)
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it follows that

Thus,

which proves eq 20.

References and Notes

(1) Bochicchio, R. C.; Torre A.; Lain L.J. Chem. Phys.2005, 122,
084117.

(2) Alcoba, D. R.; Lain, L.; Torre A.; Bochicchio, R. C.J. Chem. Phys.
2005, 123, 144113.

(3) Cioslowski, J.; Mixon, S.Inorg. Chem.1993, 32, 3209.

(4) Cioslowski, J.; Mixon, S.J. Am. Chem. Soc.1991, 113, 4142.
(5) Coleman, A. J.ReV. Mod. Phys.1963, 35, 668.
(6) Cioslowski, J.Int. J. Quantum Chem.1990, S24, 15.
(7) Foster, J. M.; Boys, S. F.ReV. Mod. Phys.1960, 32, 300.
(8) Edmiston, C.; Ruedenberg, K.J. Chem. Phys.1965, 43, S97.
(9) Magnasco, V.; Perico, A.J. Chem. Phys.1967, 47, 971.

(10) von Niessen, W.J. Chem. Phys.1972, 56, 4290.
(11) Reed, A. E.; Weinhold, F.J. Chem. Phys.1985, 83, 1736.
(12) Pipek, J.; Mezey, P. G.J. Chem. Phys.1989, 90, 4916.
(13) Alcoba, D. R.; Lain, L.; Torre, A.; Bochicchio, R. C.J. Comput.

Chem.2006, 27, 596.
(14) Cioslowski, J.J. Math. Chem.1991, 8, 169.
(15) Bader, R. F. W.Atoms in Molecules: A Quantum Theory;

Clarendon Press: Oxford, U.K., 1994; see also references therein.
(16) McWeeny, R.ReV. Mod. Phys.1960, 32, 335.
(17) Alcoba, D. R.; Valdemoro, C.Int. J. Quantum Chem.2005, 102,

629.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.Gaussian
03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

(19) Mayer, I.; Salvador, P.Chem. Phys. Lett.2004, 383, 368.
(20) Alcoba, D. R.; Lain, L.; Torre, A.; Bochicchio, R. C.Chem. Phys.

Lett. 2005, 407, 379.
(21) Bochicchio, R. C.; Lain, L.; Torre, A.Chem. Phys. Lett.2003, 374,

567.
(22) Biegler-König, F. W.; Bader, R. F. W.; Tang T. H.J. Comput.

Chem.1982, 3, 317.
(23) Shaik, S.; Danovich, D.; Silvi, B.; Lauvergnat, D. L.; Hiberty, P.

C. Chem.sEur. J. 2005, 11, 6358.

ni(ΩA) ) ∑
jk

[νj(ΩA) νk(ΩA)]1/2Ũji
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