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ABSTRACT: Supply processes play an important role in customer satisfaction and company costs. The main characteristics of this
problem are given by several decisions that follow a hierarchical structure and a very uncertain context, conditioning the success of
the solutions proposed. Two significant sources of uncertainty are considered in this work, namely, provision and demand, both
modeled as exogenous variables with random behavior. An optimization model is formulated to reduce the effects of the uncertainty
in the company supply process. Because of the problem complexity, a multicriteria model is required to bring a comprehensive
solution. Several Pareto-optimal solutions are obtained through application of the ε-constraint technique. The original formulation
is a nonconvex one that is then transformed to obtain a disjunctive linear model that guarantees a global result.

1. INTRODUCTION

Competitiveness in global markets is a challenging goal in
today’s economy. Production companies show a permanent
interest in improving all of their business activities with the aim
of diminishing costs, growing profits, and increasing customer
satisfaction. In this context, the supply process is one of the most
important activities in the company operation because it involves
planning material requirements; selecting suppliers; and defining
inventory levels, delivery alternatives, and commercial agreements
to satisfy product demand. These activities are greatly affected by
business uncertainty. For that reason, company managers and
researchers have focused their work on modeling risk factors in
decision making.1�3

Provision uncertainty is one critical point for most companies
given their reliance on their suppliers to manage their inventories
and satisfy demand. The evaluation and selection of sources are
then essential to improve a company's performance.4 Hence, in
addition to prices, discounts, and other commercial characteristics,
suppliers’ provision failures are taken into account in this work.

On the other hand, demand forecast accuracy is also an issue
to address. Several demand uncertainty sources can be identified
in the business environment. According to the horizon length, those
sources are classified as short-term and long-term uncertainties.5

The former includes orders canceled at the last minute, urgent
requests from clients, changes in the priority of an order, and so
on. Long-term uncertainty involves price fluctuations in final pro-
ducts, seasonal variations in demand levels, changes in consumer
preferences, and increases in clients’ expectations, among other.

It is noteworthy that, if demand uncertainty is underestimated,
planning decisions will not prepare a company against risks in addi-
tion to not allowing it to take advantage of market opportunities.
In this context, there are two main alternatives to consider:
adjusting product stock levels, which increases the probability of
stock-out situations, and raising stock levels to ensure customer
satisfaction, thereby increasing inventory costs and capital invested.

The inclusion of demand variability in planning problems aims
to mitigate the negative effects of uncertainty. Doing so provides
better information to the company, which can definitely improve

its planning process accuracy. Demand is not only one of the
main uncertainty sources, but also one of the major influences
over economic results. Because demand is an exogenous variable,
companies can influence it by applying marketing tools such as
promotions and publicity, but they can never control it.

A growing interest in modeling demand uncertainty is ob-
served inmany scientific works. Gupta andMaranas6 developed a
model of two-stage stochastic programmingwith uncertain demand.
This parameter was modeled using a normal distribution with a
known mean and a known standard deviation that was estimated
in the second stage through the analytical integration of the
distribution curve. As an advantage, this method does not
increase the model size, but it does introduce nonlinearities into
the formulation.

A normal probability distribution was also applied by You and
Grossmann7 to represent uncertainty in demand behavior. The
model designed a three-level supply chain to minimize investment
costs, transportation costs, fixed costs in order satisfaction, inven-
tory holding costs in distribution centers, and safety stock costs
to ensure certain service levels in demand. The service level is
defined as the probability that the inventory level is greater than
the demand. The original proposed model is an integer nonlinear
program(INLP) because of inventory costs in the objective function.

The objective function is also a notable issue in this article. As a
general practice, cost minimization and profit maximization are
the most common objective functions in planning problems
regarding purchases, inventory, and sales. However, sometimes,
there are other targets in the company planning area that are
difficult to measure as unique criteria. This is especially true as
problems increase in terms of the numbers and types of decisions
considered. Indeed, in many cases, it is certainly convenient to
define several objective functions to optimize.
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Multicriteria programming includes problems with two or
more objectives in conflict. In this area, if a problem is well-
formulated, no solution can optimize all targets at the same time.
In contrast to single-objective optimization, a solution to a multi-
objective problem is more a concept than a definition.8 Typically,
there is no single global solution, and the predominant concept
to calculate an optimal point is given by Pareto optimality.9 One
important goal in this kind of problem is to find these solutions
and quantify how good each solution is in relation to the others.

Onemethod extensively used to model this context is given by
the ε-constraint technique, proposed by Haimes et al.10 This
approach has been mainly applied for supply chain design or
enterprise-wide optimization, both characterized by a wide deci-
sion scope and a large number of goals to satisfy.7,11�13 This
procedure presents multiple Pareto solutions that are analyzed to
estimate the best result for the problem. At this point, manager
expertise is crucial to determine the selected solution and under-
stand the tradeoff between the conflictive targets.

This work integrates and completes two problems presented
by Rodriguez and Vecchietti.14,15 In this case, a procurement
problem is tackled considering that demand follows an uncertain
behavior. This context leads to a much more realistic representa-
tion that is also more difficult to solve. In the present article, the
formulation of the procurement optimization problem includes
selection of contracts offered by suppliers, rawmaterial purchases
under provision uncertainty, inventory levels, and delivery decisions.
Uncertain demand is now a random parameter modeled by a
probabilistic approach which introduces nonconvexities in the
formulation. A binary reformulation is applied to linearize the
original model and guarantee a global optimum. Because of the
complexity of this new problem, several objectives are selected to
find an optimal solution. As mentioned, the ε-constraint technique
is applied to obtain several Pareto solutions.

Finally, the problem presents several discrete decisions that
follow a hierarchical structure in which many constraints must be
satisfied subordinate to the decisions already made. Then, a
natural representation of this process is approached by the use of
generalized disjunctive programming (GDP).16 We propose a
comprehensive disjunctive formulation that integrates supplier
selection, material purchases, inventory levels, demand satisfaction,
and purchase contract decisions under provision and demand
uncertainty on a medium-term planning horizon.

2. PROBLEM DESCRIPTION

The problem approached is centered in a company that aims
to define purchases of raw materials in a multiperiod horizon
plan. Products are manufactured using several materials that are
grouped into families. This provides flexibility in purchase deci-
sions because different material types can be used to satisfy a final
product, provided that they belong to the same family.

Another important decision in the problem is given by the
selection of the suppliers. In this work, a potential group of pro-
viders offers a variety of purchase contracts to sign with them. In
general terms, those contracts are classified as quantity-flexibility type,
where the buyer commits to purchase a minimum amount with a
discounted price. Special characteristics, such as longer relationship
terms constraints and payment flexibility, are also included. Addition-
ally, contracts include a maximum quantity to restrict the order size.

Uncertainty in the provision process exists because the
suppliers could send just part of the requested amount. Applying
a discrete probability distribution, each possible failure range is

associated with an occurrence probability, as shown in Figure 1.
Then, the expected received quantity of each material depends
on the amounts ordered and the suppliers selected.

It is assumed that partial deliveries are allowed to complete a
purchase order and that transportation cost is paid by the company.
It is also considered that different transportation sizes have diffe-
rent fixed cost. This situations leads to nonlinear terms, as explained
in the Problem Formulation.

As mentioned in the previous section, considering determi-
nistic demand is a sheer simplification of a real context. Especially
when the planning horizon exceeds the short term, the demand
value is, in fact, a data point from a demand forecast. Actual demand,
in contrast, is historic data given by the client’s requestswhether they
were satisfied or not. In general, a comparison between demand
forecast and historic demand shows somedifferences as presented in
Figure 2. In some cases, several demand forecasts are considered to
evaluate different optimistic and pessimistic scenarios.17

The normal distribution is widely used in the literature to
model demand uncertainty.18�21 Clients’ behavior in general
corresponds to this type of function.22,23 Additionally, the central
limit theorem supports the idea of using a normal distribution to
represent demand under uncertainty.24 For those reasons, this
distribution was assumed in this article to model the demand
parameter as a random exogenous variable. However, it is remark-
able that the proposed approach could also be used assuming a
different distribution function, simply changing the correspond-
ing functional form in the formulation.

The objectives pursued include minimizing material purchase
costs, inventory holding costs, and delivery costs and maximizing
demand satisfaction. The first three objectives are considered in the

Figure 1. Supplier uncertainty with a discrete probability distribution.

Figure 2. Demand uncertainty: Forecast versus actual.
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cost function, whereas demand satisfaction is assumed as an inde-
pendent expression. As a consequence, this second objective is con-
sidered as a ε constraint, to bring a set of Pareto-optimal solutions.

3. PROBLEM FORMULATION

3.1. Original Model. 3.1.1. Inventory Constraints. The expected
stock level at the beginning of each time period is determined in eq 1
and is calculated as the stock level in the previous period plus the
expected quantity sent by the suppliers minus the expected demand
to satisfy

sft ¼ sf ðt�1Þ þ eqf ðt�1Þ � df ðt�1Þ " f ∈ F, " t g t2 ∈ T

ð1Þ
Variable Sft defines the expected level in stock for each material
family f at the beginning of period t. Variable eqf(t�1) corresponds to
the expected quantity sent by the suppliers in the previous term,
which depends on the suppliers selected and the amount ordered
from them. This restriction applies from period t2 because the initial
stock in period t1 is given by the parameter ISf.

Demand follows a normal probability distribution with
known mean and standard deviation (Figure 3). Then, the
variable dft indicates the amount of material f planned to satisfy
the potential demand in period t. This variable is calculated in
eq 2 according to the level of demand satisfaction (Demandpt)
desired

dft ¼ ∑
"p ∈ PFpf

DemandptRpf " f ∈ F, " t ∈ T ð2Þ

∑
"f ∈ F

sft e SC " t ∈ T ð3Þ

Constraint 3 restricts the amount of materials in stock at the
beginning of each period.
Equation 4 defines the initial stock of each family in the

planning horizon. The definition of the average inventory
level for each period and family is given in eq 5, where variable
eoqjft defines the delivery size from supplier j for family f in
period t.

sft1 ¼ ISf " f ∈ F ð4Þ

savgft ¼
sft þ ∑

"j ∈ J

eoqjft þ sf ðtþ1Þ

2
" f ∈ F, " t ∈ T

ð5Þ

3.1.2. Purchase and Delivery Decisions. The purchase process
presents several discrete decision variables that follow a hier-
archy. A natural approach to model this situation is applied using
nested disjunctions as shown in eq 6

y1jft

∑
k ∈ FKfk

qjkt e ∑
k ∈ FKfk

Qmaxjkt

y2jkt
qjkt e Qmaxjkt

∨
c ∈ C

ðc, t, t0Þ ∈ TPctt0

y3jckt
qjkt g Qmincj

wjckt ¼ qjktPCjktð1� δjcÞ þ FCjc

wjckt ¼ mjckt0

2
66664

3
77775

2
6666666664

3
7777777775

∨ ¬y2jkt
qjkt ¼ 0

" #
" k ∈ FKfk

2
66666666666666664

3
77777777777777775

∨
¬y1jft

∑
k ∈ FKfk

qjkt

2
64

3
75

" j ∈ J, " f ∈ F, " t ∈ T, where δjc1 ¼ 0; δjc2 > 0; δjc3 > δjc2 ; δjc4 < 0 ð6Þ

where δjc1 = 0, δjc2 > 0, δjc3 > δjc2, and δjc4 < 0. Each disjunction
represents one level in the decision process that restricts the
decisions of the below levels. In the first step, Boolean variable
y1jft selects which families f are bought from each supplier j in
period t. In the negative case, no material is ordered related to
that family, supplier, and period. In the affirmative, the total
quantity ordered must be lower than the maximum capacity of
supplier j. In the following level, variable y2jkt indicates the selec-
tion of material k from family f, according to FKfk, in period t. Set

FKfk defines which materials correspond to each family f. In this
term, the ordered of material k quantity in period t cannot be
greater than the corresponding supplier capacity. In the third level,
variable y3jckt represents that a commercial alternative c must be
chosen to order material k from supplier j in period t.
The first option, c1, considers not signing any contract with the

supplier. Then, a regular price is paid, and a minimum quantity is
not required. The first contract, c2, includes a discount over the
total quantity ordered and restricts the minimum amount for the

Figure 3. Demand uncertainty with a normal distribution.
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purchase order. Contract c3 also offers a discount and requires a
minimum quantity. It also promotes longer relationships with
suppliers because it can be chosen only if some contract has been
selected before for that material and supplier. Finally, contract c4
also imposes a minimum order amount but offers a longer payment
term. Because of this financial flexibility, an interest rate must be
paid over the regular price. More details about contract types
modeled can be found in Rodriguez and Vecchietti.14Many other
articles support the idea of using contracts to formalize the pur-
chase process13,25�27 and propose different approaches to im-
plement this strategy.
Despite the expression of the hierarchical decisions by means

of nested disjunctions, the decisions cannot be implemented
directly. To solve the problem, nested disjunctions must be trans-
formed into GDP form as simple disjunctions.28 For that purpose,
the disjunctions in expression 6 must be rewritten as single
disjunctions (eqs 7�9), and some additional constrains must be
also included in the model.

y1jft

∑
k ∈ FKfk

qjkt e ∑
k ∈ FKfk

Qmaxjkt

2
64

3
75 ∨

¬y1jft

∑
k ∈ FKfk

qjkt ¼ 0

2
64

3
75

" j ∈ J, " f ∈ F, " t ∈ T ð7Þ

y2jkt
qjkt e Qmaxjkt

" #
∨ ¬y2jkt

qjkt ¼ 0

" #
" j ∈ J, " k ∈ FKfk, " t ∈ T

ð8Þ

∨
c ∈ C

ðc, t, t0 Þ ∈ TPvtt0

y3jckt
qjkt g Qmincj

qjkt e Qmaxcj

wjckt ¼ qjkt PCjktð1� δjcÞ þ FCjc

wjckt ¼ mjckt0

2
6666664

3
7777775
∨

¬y2jkt
qjkt ¼ 0

" #
" j ∈ J, " k ∈ K, " t ∈ T ð9Þ

As mentioned above, the expected amount of each material is
determined by the selected suppliers and the quantities ordered
from each of them. The formula to calculate eqft is derived as a
function gift(y

�
1) showing a binary relationship between the

subscript i and the selection of suppliers given by the binary
variable Y1jft. This formula sets the value of the subscript i as

ift ¼ ∑
J

j¼ 1
2j � 1Y1jft " f ∈ F, " t ∈ T ð10Þ

where ift ∈ Ift = {0, ..., 2
j� 1} and Y1jft ∈ {0,1} is a binary variable

indicating the choice of supplier for each family and period.
Because of this procedure, the value of this subscript sym-
bolizes what providers have been chosen. Considering all possible
combinations in selecting suppliers leads to the whole represen-
tation of set Ift.
Then, the expected quantity of each family and period can be

determined from a new Boolean variable vift, which is equivalent
to the set of selected suppliers according to the value of ift, as

shown in equation 11

v0ft
eqft ¼ g0ft

" #
∨ v1ft

eqft ¼ g1ft

" #
∨ v2ft

eqft ¼ g2ft

" #
∨ 3 3 3 ∨

vð2J�1Þft
eqft ¼ gð2J�1Þft

" #
" f ∈ F, " t ∈ T ð11Þ

For instance, if the solution for family f in period t is given by
¬y1j4ft ∧ ¬y1j3ft ∧ y1j2ft ∧ ¬y1j1ft, meaning that only supplier j3 is
chosen for that family and period, then the procedure applies as
follows

¬ y1j4 ft ∧ ¬ y1j3 ft ∧ y1j2 ft ∧ ¬ y1j1 ft f binary representation : 0010

ift ¼ 0� 23 þ 0� 22 þ 1� 21 þ 0� 20

¼ 0 þ 0 þ 2 þ 0 ¼ 2

Then, variable v2ft is true and function g2ft(y
�
1) must be satisfied.

For more details about this procedure, see Rodriguez and
Vecchietti.14

As regards consistency of delivery and purchase decisions
it is necessary to impose a restriction that the purchased
quantities must be equal to the total shipped quantities of a
given family, supplier, and period. This restriction is defined in
the following equation

∑
k ∈ FKfk

qjkt ¼ njft eoqjft " j ∈ J, " f ∈ F, " t ∈ T

ð12Þ
where the integer variable njft represents the number of
material shipments ordered for family f from provider j in
period t and eoqjft is the size of the delivery order.
The unit cost of each shipment is modeled as a fixed cost paid

for all units delivered. As shown in Figure 4, this unit cost varies
according to the total delivery size. For an order size less than or
equal to EOQ1, the fixed cost for each shipment is given by DC1;
if the amount exceeds EOQ1 and is not greater than EOQ2, then
the associated fixed cost is DC2. Finally, the upper bound for each
delivery is given by EOQ3. In this case, the cost of each shipment
equals DC3. Disjunction 13 models the unit transportation costs

Figure 4. Fixed unit per delivery order.
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in sections

u1jft
eoqjft e EOQ 1

dcjft ¼ DC1

2
664

3
775 ∨

u2jft
eoqjft e EOQ 2

dcjft ¼ DC2

2
664

3
775 ∨

u3jft
eoqjft e EOQ 3

dcjft ¼ DC3

2
664

3
775 " j ∈ J, " f ∈ F, " t ∈ T ð13Þ

Boolean variables u1jft, u2jft, and u3jft select the means of transport
to use, which conditions themaximumvolume to carry per shipment
and its unit cost. The total shipping cost for each material family,
supplier, and time period, tdcjft, is defined in constraint 14, as the
bilinear product of the number of deliveries, njft, and the cost of
each shipment, dcjft

tdcjft ¼ njft dcjft " j ∈ J, " f ∈ F, " t ∈ T ð14Þ

3.1.3. Logical Constraints. Some logical constraints are also
considered to maintain the hierarchical meaning of the purchase
decision process. The restriction

∑
"c 6¼c1

Y3jckt�1 g Y3jc3kt " j ∈ J, " k ∈ K, " t ∈ T

ð15Þ
prevents the ordering of materials by signing contract c3 if the
company has not purchased the material from that supplier j
previously. According to eq 16, the selection of contract c3 is
available from period t2.

Y3jc3kt1 e 0 " j ∈ J, " k ∈ K ð16Þ

Expression 17 forces the choice of at least one material from a
family if that family has been selected from supplier j.

∑
"k ∈ FKfk

Y2jkt g Y1jft " j ∈ J, " f ∈ F, " t ∈ T ð17Þ

The last logical constraint

∑
c
Y3jckt ¼ Y2jkt " j ∈ J, " c ∈ C, " k ∈ K, " t ∈ T

ð18Þ

requires that, when a material is chosen, one contract must be
selected. On the contrary, if no material has been selected, a
contract is also not selected.
3.1.4. Objective Functions. As discussed in the previous

section, this optimization problem suggests the inclusion of
several objectives to bring a comprehensive approach. In general,
a multicriteria problem can be written as

min f1ðxÞ
min f2ðxÞ
l

min fnðxÞ
s:t:

gðxÞ ¼ 0

hðxÞ g 0

where x ∈ X

ð19Þ

In this problem, we first want to minimize the costs of raw
material purchasing, inventory holding, and transportation.
Although the objectives from procurement, inventory man-
agement, and transportation can be very different and even
conflicting with each other, it is possible to unify them in
economic terms to handle a single objective function, such as
the one given by

min∑
t

∑
j
∑
c
∑
k
mjckt þ ∑

f
savgftCOSTavgftMS þ ∑

f
∑
j
tdcjft

 !

ð1 þ RRÞt
ð20Þ

However, the consideration of uncertain demand intro-
duces new issues to analyze. On one hand, we must define
which objective is pursued in this case. Because customer
satisfaction is a crucial component that is difficult to weigh in
economic terms, minimizing lost sales is considered an
appropriate objective. This goal is defined as the expected
customer orders that cannot be satisfied because of lack of
materials to produce what is required.
Given the random demand shown in Figure 3, it is possible

to estimate the probability of lost sales for a product as the
area under the curve such that the actual demand exceeds
Demand, where Demand is a variable that represents the
sales target of the company. This concept is shown in Figure 5
as the red stripped area under the curve of the density
function.
In this case, the objective is to minimize the expected unmet

demand, that is, the expected lost sales. Assuming a normal
density function to describe uncertain demand, the expected lost
sales, L(Demand,μ,σ), are given by

LðDemand, μ, σÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p
Z ∞

Demand
ðx�DemandÞ

exp � 1
2

x� μ

σ

� �2
" #

dx ð21Þ

Figure 5. Lost sales probability.
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For p products and t periods, this objective can be generalized as

min LðDemandpt , μpt , σptÞ " p ∈ P, " t ∈ T ð22Þ

Because the presented problem corresponds to a multicriteria
one, the strategy used to solve it is given by the ε-constraintmethod.
This procedure, originally proposed by Haimes et al.,10 selects
one of the objectives of the problem as a priority. The other func-
tions are used to form additional restrictions such as fo(x) e εo,
where εo determines an upper bound for the objective function to
be minimized. The primary advantage of this method is that a
systematic variation of the parameter εo leads to a Pareto-optimal
solution set.29 On the other hand, it should be noted that the
inappropriate choice of parameters εo could result in infeasible
formulations.8 In this case, the second objective shown in eq 22 is
considered as a constraint in the formulation assuming different
values for parameter ε, as shown in eq 23

1

σ
ffiffiffiffiffiffi
2π

p
Z ∞

Demandpt

ðxpt �DemandptÞ

exp � 1
2

xpt � μpt
σpt

 !2
2
4

3
5 dxpt e εpt " p ∈ P, " t ∈ T

ð23Þ
Finally, the original problem is formulated as a multiobjective

model using eqs 1�5, 7�18, 20, and 23, which is a nonlinear and
nonconvex model because of bilinearities in constraints 12 and
14 and the integral calculation in eq 23. The model is thus
transformed to give a global optimal solution.

3.2. Linear Transformation.The discrete nature of one of the
variables involved in the bilinear terms enables the use of a
disjunctive representation to linearize these constraints. Each
Boolean variable represents one possible value of the discrete
variable njft, which is the number of shipments for a given family,
supplier, and period. Restrictions 12 and 14 are reformulated
through the single disjunction

β1jft
njft ¼ 1

∑
k ∈ FKfk

qjkt ¼ eoqjft

tdcjft ¼ dcjft

2
6666664

3
7777775 ∨

β2jft
njft ¼ 2

∑
k ∈ FKfk

qjkt ¼ 2eoqjft

tdcjft ¼ 2dcjft

2
6666664

3
7777775 ∨ 3 3 3 ∨

βNjft
njft ¼ N

∑
k ∈ FKfk

qjkt ¼ N � eoqjft

tdcjft ¼ N � dcjft

2
6666664

3
7777775 " j ∈ J, " f ∈ F, " t ∈ T

ð24Þ
As regards the transformation of eq 23, it is necessary to

consider some approximation of the integral to turn it into a linear
constraint. One possible strategy is to discretize the density function
of demand as shown in Figure 6. Although this technique does
not present the same degree of accuracy as the original formula-
tion, it allows a straightforward way to obtain the expected values
of the demand distribution function. Other authors7 have assumed
a triangular distribution to approximate the random behavior of
demand; however, this representation is further from the original
density function (assuming that normal behavior best reflects the
random nature of demand).
Because of the assumption that demand responds to a normal

probability pattern, it is relatively easy to obtain discrete values
from this distribution function. This information can be gathered
from statistical sources presented in tabular format for standard
normal random variables. Another alternative would be to apply
Monte Carlo simulation. The first strategy is applied in this work
given the connection between any random variable x with a
normal distribution and the standard variable z, whose probabil-
istic behavior is known.
Figure 7 shows a comparison between the probability dis-

tribution of a random variable x and the distribution of a normal
standard variable z. The relationship between these variables is
given by

z ¼ x� μ

σ
ð25Þ

In the problem under consideration, the generic variable x is
replaced by the variable Demandpt described above. Then, eq 25
is rewritten as

zpt ¼
Demandpt � μpt

σpt
" p ∈ P, " t ∈ T ð26Þ

In terms of the standard variable, the expected lost sales,
L(Demandpt,μpt,σpt), can be determined as

LðDemandpt , μpt , σptÞ ¼ LðzptÞσpt " p ∈ P, " t ∈ T

ð27Þ

Figure 6. Uncertain demand discretization.

Figure 7. Normal density curves for variable z and demand.
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Given the possible discrete values for standard variable zpt,
variable L(zpt) is calculated as

LðzptÞ ¼ ∑
"h ∈ H

yzhptLh " p ∈ P, " t ∈ T ð28Þ

where

∑
"h ∈ H

yzhpt ¼ 1 " p ∈ P, " t ∈ T ð29Þ

According to eq 28, L(zpt) depends on the zpt value, which is
selected by the new binary variable yzhpt and the corresponding
parameter Lh, which represents the expected value of the
standard variable for all z* > zpt. As mentioned above, this value
is obtained from known statistics tables.24 Additionally, eq 29
guarantees that only one value of variable zpt is chosen for each
product p and period t. Then, zpt is rewritten in terms of the
binary variable yzhpt, and eq 26 is transformed to

∑
"h ∈ H

yzhpt Zh ¼ Demandpt � μpt
σpt

" p ∈ P, " t ∈ T

ð30Þ
where Zh is a parameter that represents the value chosen for the
standard random variable. These transformations allow reformu-
lation of restriction 23 as

σpt∑
h
yzhpt Lh e εpt " p ∈ P, " t ∈ T ð31Þ

Finally, linear formulation is given by eqs 1�5, 7�11, 13, 15�18,
20, and 28�31.

4. RESULTS

In this section, a case study is presented with the aim of
showingmodel performance. To generate Pareto-optimal points,
problem resolution was carried through several runs considering
different values of the parameter εpt. Models were implemented
in the GAMS 22.7 system and executed on an Intel Pentium D
PC with a 2.8 GHz processor. Disjunctions were modeled with
LogMIP, using convex hull relaxation.
4.1. Case Study. Although the approach proposed is general

enough to be applied to a variety of industries, in this case, the com-
pany comes from a paper supply chain. This company produces
corrugated board boxes handling several paper families as main
raw materials. Each family is formed by several paper types with
similar characteristics. For instance, white papers with different
grammages are grouped into a family called “white”. According to
historical data,meandemand and its standard deviation are obtained
for each product, regular and average costs are calculated, and con-
tract characteristics are provided by the potential suppliers. To
preserve confidential data, numbers presented in the following
tables are modified from the original values.
A three-period planning horizon is assumed in this case study,

where four potential suppliers offer raw materials to the com-
pany. The selection of suppliers allows the supply channel to be
reconfigured in each period and for each material family. As
mentioned in the previous section, the providers offer different
contracts or purchase terms that the company can choose for
each material and period.
Table 1 presents the materials corresponding to each family,

their average costs in the planning horizon, and the initial stock
considered. Note that there are four families comprising a total of
13 materials. Materials belonging to a given family can be used
indistinctly to satisfy the families’ demand presenting different
costs, as shown in Table 2.
Tables 3 and 4 list the central characteristics of the contracts

considered such as payment terms, minimum quantities, and
discount or interest rate required. Table 5 lists the maximum
supply capacity of each supplier for each material offered. In this
case, it is assumed that this capacity is not modified in each time

Table 1. Material Families

average costs (COSTavgft)

family material t1 t2 t3 initial stock (ISf)

f1 k1, k2, k3 0.599 0.659 0.725 40

f2 k4, k5, k6, k7 0.615 0.677 0.744 45

f3 k8, k9, k10 0.735 0.808 0.889 40

f4 k11, k12, k13 0.600 0.660 0.726 40

Table 2. Material Regular Costs (PCjkt)

j1 j2 j3 j4

material t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

k1 0.50 0.55 0.61 0.52 0.57 0.63 0.51 0.56 0.62 0.55 0.61 0.67

k2 0.47 0.52 0.57 0.49 0.54 0.59 0.48 0.53 0.58 0.45 0.50 0.55

k3 0.80 0.88 0.97 0.81 0.89 0.98 0.79 0.87 0.96 0.82 0.90 0.99

k4 0.71 0.78 0.86 0.78 0.86 0.94 0.69 0.76 0.84 0.70 0.77 0.85

k5 0.75 0.83 0.91 0.72 0.79 0.87 0.73 0.80 0.88 0.77 0.85 0.93

k6 0.51 0.56 0.62 0.52 0.57 0.63 0.53 0.58 0.64 0.54 0.59 0.65

k7 0.49 0.54 0.59 0.45 0.50 0.55 0.48 0.53 0.58 0.47 0.52 0.57

k8 0.78 0.86 0.94 0.68 0.75 0.82 0.72 0.79 0.87 0.70 0.77 0.85

k9 0.72 0.79 0.87 0.81 0.89 0.98 0.71 0.78 0.86 0.70 0.77 0.85

k10 0.75 0.83 0.91 0.74 0.81 0.90 0.72 0.79 0.87 0.79 0.87 0.96

k11 0.45 0.50 0.55 0.55 0.61 0.67 0.52 0.57 0.63 0.51 0.56 0.62

k12 0.46 0.51 0.56 0.48 0.53 0.58 0.47 0.52 0.57 0.48 0.53 0.58

k13 0.78 0.86 0.94 0.81 0.89 0.98 0.88 0.97 1.07 0.81 0.89 0.98

Table 3. Minimum and Maximum Quantities Requireda

Qmincj Qmaxcj

c1 c2 c3 c4 c1 c2 c3 c4

j1 0 30 55 70 � 60 155 160

j2 0 40 60 75 � 63 150 155

j3 0 32 52 77 � 55 100 122

j4 0 38 55 80 � 60 140 150
a Payment terms ("j): c1, t = t0; c2, t = t0; c3, t = t0; c4, t + 2 = t0.

Table 4. Discount and Interest Rate (δjc) for Each Supplier
and Contract

contract

supplier c1 c2 c3 c4

j1 0 0.120 0.150 �0.130

j2 0 0.060 0.120 �0.090

j3 0 0.095 0.150 �0.125

j4 0 0.055 0.121 �0.078
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period. As regards provision uncertainty, Table 6 reports the
discrete probability function for suppliers’ failures.
Table 7 presents mean demand and its standard deviation for

each product and period considered.
Table 8 establishes the possible values for the standard

uncertain variable z, which estimates the value of the demand
objective in eq 30.
These zh values are associated with the loss values shown in

Table 9, which are used to calculate the expected value of lost
sales in eq 31.
To solve this problem, successive runs were executed with

different values assigned to the parameter εpt, which limits the
second objective of minimizing the unmet demand. With the
purpose of giving the same weight to lost sales of all products, it
was decided to quantify this value (εpt) as a percentage of the
average demand. First, this ensures that equal importance is given
to each produc,t and second, it guarantees that the areas under

the curve of probability density are the same. However, it is clear
that if one decided to give different weights to various products, it
would also be possible to define a particular value to each of
them. Then, parameter εpt is determined by

εpt ¼ δμpt " p ∈ P, " t ∈ T ð32Þ
Parameter δ represents the rate being varied in each “Pareto”
instance considered. The values used to build the curve points are
presented in Table 10.
Characteristics and performance of the proposed model

(linear transformation) are reported in Table 11. Every instance
considered was executed in less than 1 min.
Table 12 presents the main results of the case study. For each

value of δ allowed, the table lists the corresponding value of total

Table 5. Provision Maximum Capacities (Qmaxjkt)

supplier

material j1 j2 j3 j4

k1 150 160 150 160

k2 50 70 55 20

k3 50 65 45 64

k4 145 180 165 175

k5 60 80 65 60

k6 50 80 40 77

k7 60 50 53 52

k8 158 160 159 142

k9 60 45 50 40

k10 65 60 66 70

k11 45 80 42 70

k12 148 150 140 160

k13 50 50 60 22

Table 6. Suppliers’ Failure Probabilities

failure (r)

supplier 0�10% 10�40% 40�70% 70�100%

j1 57% 30% 10% 3%

j2 50% 30% 13% 7%

j3 50% 25% 15% 10%

j4 53% 28% 15% 4%

Table 7. Mean Demand and Standard Deviation for Each
Product and during Each Period

μpt σpt

product t1 t2 t3 t1 t2 t3

p1 52.5 85.0 80.0 26.0 42.5 40.0

p2 50.0 55.0 60.0 25.0 27.0 30.0

p3 60.7 58.3 60.0 30.3 29.0 30.0

p4 27.5 30 32.5 13.8 15 8.8

Table 9. Expected Values of Discrete Standard Losses

Lh

h1 4

h2 3.5001

h3 3.0004

h4 2.5020

h5 2.0085

h6 1.5293

h7 1.0833

h8 0.6978

h9 0.3989

h10 0.1978

h11 0.0833

h12 0.0293

h13 0.0085

h14 0.002

h15 0.0004

h16 0.0001

h17 0

Table 8. Discrete Values for Variable za

Zh

h1 �4

h2 �3.5

h3 �3

h4 �2.5

h5 �2

h6 �1.5

h7 �1

h8 �0.5

h9 0

h10 0.5

h11 1

h12 1.5

h13 2

h14 2.5

h15 3

h16 3.5

h17 4
a Parameter in the model.
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costs (major objective function, OF). In the third column is
presented the improvement in the OF with respect to the first
solution (with δ = 0%). Even though the utopia point method
can be used to define a compromise solution,8 by simple inspec-
tion of Table 12, it can be concluded that, for a relatively low value of
expected lost sales (2.5%), the OF reaches a 44% improvement
over the first point. In the following solutions, demand satisfac-
tion gets worse without a significant change in costs. By applying
simple inspection, it is assumed that this solution achieves the
best balance between the two objectives. These values are also
reflected in Figure 8.
Results shown below correspond to the compromise solution

adopted. Table 13 presents the amounts of each material ordered

and the provider in the planning horizon. Supplier j1 was chosen
for most materials, whereas supplier j3 was not selected. Note
that the convenience of one or another provider is associated
with both an economic/financial component and a risk compo-
nent given the uncertainty in the material supply.
Table 14 reports the selection of purchase alternatives. Be-

cause the amounts ordered (Table 13) were not high, in general,
contract c2 was mostly chosen. Contract c4, in turn, was selected
as a second option. Although it requires the payment of interest,
the possibility of paying in future periods reduces current costs
through the application of the return rate (IR) in the objective
function.
The expected amounts of each family and period are shown in

Table 15. If we analyze Table 13, the total quantity of family f1
ordered in the period t1 is given by the amounts of materials k1
and k2 ordered from supplier j1, so the total amount of this family
is 198 units. In turn, the expected quantity for this family and

Table 12. Solution Comparison

expected lost sales,

δ (% of mean demand) OF (total cost) OF difference (%)

0.00 2641.79

1.25 1713.58 35

2.50 1481.87 44

5.00 1270.83 52

7.50 1261.26 52

10.00 1048.67 60

12.50 1040.38 61

Table 11. Solution Performance

number of equations 3906

total number of variables 3777

number of discrete variables 1708

CPU s (t) 30 < t < 55

Figure 8. Pareto solutions.

Table 13. Amounts Ordered from Each Supplier

period

material t1 t2 t3

Supplier j1

k1 148 150 150

k2 50 50 50

k4 30

k6 50 50 50

k7 60 60 60

k9 58

k11 39 45

k12 148 148 148

Supplier j2

k1 150

k6 80 80 80

k7 50 50 50

Supplier j4

k1 148

k6 73 77 76

k7 52 52 52

k8 121 133

k12 123

Table 14. Contracts Selected

j1 j2 j3

material t1 t2 t3 t1 t2 t3 t1 t2 t3

k1 c4 c3 c3 c4 c4
k2 c2 c2 c2
k4 c2
k6 c2 c2 c2 c4 c4 c4 c2 c2 c2
k7 c2 c2 c2 c2 c2 c2 c2 c2 c2
k8 c4 c4
k9 c2
k11 c2 c2
k12 c4 c3 c3 c4

Table 10. Parameter δ Used to Calculate εpt

δ (%) δ (%)

0.00 7.50

1.25 10.00

2.50 12.50

5.00
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period is 162 units. We can then conclude that, according to the
failure distribution function of this provider (Table 6), it is
expected that 36 units will not be delivered.
Regarding delivery decisions, Table 16 presents the delivery

sizes selected, given by eoqjft, and variable njft is presented in
Table 17. Comparing the information presented in these two
tables and again the quantities ordered (Table 13), one can see

that the 198 units of materials k1 and k2 from supplier j1 will be
sent in two shipments of 99 units each.
According to eq 30, the demand level that the company aims

to satisfy is a decision variable (Demandpt) determined by binary
variable yzhpt, which selects the value of z (Zh). Table 18 shows
that the parameters Z11 and Z12 were chosen to replace z according
to the product and the period. From Table 8, Z11 = 1 and Z12 =
1.5, and for those values, the corresponding expected loss of the
standard variable z, Lh, are L11 = 0.0833 and L12 = 0.0293,
respectively, obtained from Table 9.
Consistent with this result, the estimated unmet demand

values are listed in Table 19. In all cases, the upper bound for
this value was calculated as εpt = 0.025μpt, and its calculation is
given by the equation

Lpt ¼ σpt ∑
"h ∈ H

yzhpt Lh " p ∈ P, " t ∈ T ð33Þ

In turn, Table 20 presents the demand to be satisfied, given by

Demandpt ¼ ∑
"h ∈ H

zyh Zhσpt þ μpt " p ∈ P, " t ∈ T

ð34Þ

As mentioned above, because we considered the same param-
eter value δ for all products p and periods t, the area under the
curve from a certain demand level is the same for all products.
Thus, if we take the demand of product p1 in period t1 from the
tradeoff solution (δ = 2.5%), its density function and expected

Table 15. Expected Material Quantities

period

family t1 t2 t3

f1 162 279 280

f2 288 291 315

f3 48 96 105

f4 153 218 157

Table 16. Delivery Sizes (eoqjft)

period

family t1 t2 t3

Supplier j1

f1 99 100 100

f2 110 110 140

f3 58

f4 93 148 97

Supplier j2

f1 150

f2 130 130 130

Supplier j4

f1 148

f2 125 129 128

f3 121 133

f4 123

Table 17. Number of Shipments (njft)

period

family t1 t2 t3

Supplier j1

f1 2 2 2

f2 1 1 1

f3 1

f4 2 1 2

Supplier j2

f1 1

f2 1 1 1

Supplier j4

f1 1

f2 1 1 1

f3 1 1

f4 1

Table 18. Selection of Parameter Zh

period

product t1 t2 t3

p1 Z12 Z12 Z12
p2 Z12 Z12 Z12
p3 Z12 Z12 Z12
p4 Z12 Z12 Z11

Table 19. Expected Unsatisfied Demand (Lpt)

period

product t1 t2 t3

p1 0.7618 1.2453 1.1720

p2 0.7325 0.7911 0.8790

p3 0.8888 0.8497 0.8790

p4 0.4029 0.4395 0.7289

Table 20. Target Demand Level (Demandpt)

period

product t1 t2 t3

p1 91.5 148.8 140.0

p2 87.5 95.5 105.0

p3 106.2 101.8 105.0

p4 48.1 52.5 41.3
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loss is representative of the other products' behavior. Assuming a
continuous representation, the uncertain demand distribution
for the product p1 in t1 is shown in Figure 9.
FromFigure 9, it is clear that the objective demand (Demandp1t1)

is at 91.5 units to ensure that the expected unmet demand is
lower than 2.5% of the average level (52.5 units). Actually, the
expected loss, Lpt, is 0.7618 which is less than 0.025 � 52.5.
Finally, if we had considered a deterministic context, the demand
parameter would have probably been μp1t1, in which case much of
the potential demand would have been ignored and the risk of
stock-out would have been increased. The same conclusions can
be applied to the other products of this problem, and therefore,
the impact on costs due to lost sales would have been significant.

5. DISCUSSION AND CONCLUSIONS

This article proposes a general model that successfully inte-
grates various decision levels concerning the provision process.
This approach allows a company to define an optimal provision plan
considering raw material purchasing, supplier selection, contract
alternatives, inventory levels, and delivery decisions under demand
and provision uncertainty.

The wide decision ranges of the problem have led to various
optimization objectives that can be generalized as minimizing
purchasing, inventory, and transportation costs, as well as
customer dissatisfaction. Given the difficulty of combining these
goals in a single expression, the ε-constraintmethodwas considered
to solve the multicriteria problem. The main advantage of this
technique is the possibility of maintaining the objectives as separate
goals, thereby avoiding a subjective evaluation. Additionally, each
objective can then be expressed in its natural units. Then, it is
possible to obtain various Pareto-optimal solutions and select the
one that best satisfies the objectives involved.

Both delivery decisions and demand uncertainty introduce
nonlinearities into the formulation that lead to a nonconvex
problem. To overcome this difficulty, two different linearization
strategies were applied. Bilinear constraints given by delivery deci-
sions were transformed using a disjunctive technique. Regarding
demand uncertainty, the probability distribution was discretized
by adding new binary variables to the formulation to choose the
level of met demand, the second objective of the problem. This
approach avoided the integral calculus of an exponential function
and facilitated a linear formula to calculate expected lost sales.

Finally, the case study presented shows an efficient resolution.
The main results that can be obtained by this approach are the
following:
• a rawmaterials purchase plan in amedium-term is determined;

• the most advantageous contracts are selected given their
requisites and benefits, as well as the specific requirements
of target demand to meet;

• suppliers are selected in each period and for each material,
so that it is possible to restructure purchase relationships in
each period; and

• multiple shipments to meet the quantities purchased are
also determined.

The proposed method also presents several positive notable
characteristics:
• Failure probabilities in the provision process are taken into

account in the selection of suppliers, and it is even possible
to calculate the amounts expected to be received from them.

• The use of disjunctions, logical relations, and Boolean
variables makes a more expressive formulation.

• Uncertainty in product demand is modeled using a normal
distribution that is then discretized from the original
formulation.

• The transformed model guarantees the global optimal
solution.

• To minimize unmet demand and cost objectives, a multi-
criteria problem is generated so that it clearly shows the
tradeoff between the objectives.

All of the results obtained from the model and its character-
istics summarize the main contributions of the approach pro-
posed in this article.
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’NOTATION

Sets
C = contracts
F = material families
H = discrete points of variable z
J = suppliers
K = materials
L = set introduced for disjunctive transformation
PFpf = set relating products p to material families f
R = failure range
T = periods
TPctt0 = set that determines that contract c signed in period tmust

be paid in period t0

Positive Variables
dft = quantinty of family f consumed to satisfy target demand in

period t
dcjft = fixed delivery cost to receive family f from supplier j in

period t
Demandpt = target demand of product p to be satisfied in period t
eoqjft = delivery size of family f from supplier j in period t
eqft = expected quantity provided of family f in period t

Figure 9. Uncertain demand for product p1 in period t1.
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L(zpt) = expected value of lost sales of product p in period t
according to zpt value

mjckt = amount paid to buy material k from supplier j with
contract c in period t

qjkt = quantity of material k ordered from supplier j in period t
qfjft = quantity of family f ordered from supplier j in period t
qrjrft = expected quantity of family f ordered from supplier j

according to failure range r in period t
sft = stock of family f at the beginning of period t
savgft = average stock of family f in period t
tdcjft = total delivery cost for family f from supplier j in period t
wjckt = purchase cost ofmaterial k from jwith contract c in period t
zpt = standard normal variable with an equivalent random

behavior of product p in period t

Boolean Variables
vift = selection of supplier to provide family f in period t
y1jft = selection of supplier j to buy family f in period t
y2jkt = selection of material k from supplier j in period t
y3jckt = selection of contract cwith supplier j to order material k in

period t
βjft
l = Boolean variable from disjunctive transformation

Binary Variables
Y1jft = selection of supplier j to buy family f in period t
Y2jkt = selection of material k from supplier j in period t
Y3jckt = selection of contract cwith supplier j to order material k in

period t
yzhpt = selection of one possible value for standard variable zpt

Integer Variable
njft = number of deliveries for family f from supplier j in period t

Parameters
COSTavgft = average cost of family f in period t
DC1 = fixed delivery cost when delivery size is not greater than

EOQ1

DC2 = fixed delivery cost when delivery size is not greater than
EOQ2

DC3 = fixed delivery cost when delivery size is not greater than
EOQ3

EOQ1 = maximum delivery size under cost DC1

EOQ2 = maximum delivery size under cost DC2

EOQ3 = maximum delivery size under cost DC3

FCjc = fixed cost of contract c from supplier j
ISf = initial stock for family f
Lh = expected loss values considered for a standard discretized

variable
MS = percentage of raw material costs assigned to inventory

holding costs
pjr = probability that supplier j fails in range r
PCjkt = regular price of material k ordered from supplier j in

period t
pricept = price of product p in period t
RR = return rate
Qmaxcj = maximum quantity according to contract c of supplier j
Qmaxjkt = maximum quantity of material k available from supplier

j in period t
Qmincj = minimum quantity required established for c according

to supplier j
SC = maximum quantity in stock at the beginning of each period
SSf = security stock for family f
Zh = discrete possible values for standard variable zpt

Rpf = consumption of family f to produce one unit of product p
δjc = discount or interest range of contract c and supplier j
εpt = parameter applied for the ε-constraint method
μpt = mean value of demand for product p in period t
σpt = standard deviation of demand for product p in period t

Function
gift(y

�
1) = determines the selection of suppliers according to

subindex i for family f in period t
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