Tetraaqua(4,4'-dimethyl-2,2'-bipyridine- $\kappa^{2} N, N^{\prime}$)nickel(II) sulfate monohydrate: a simple molecule with an extremely complex hydrogen-bonding scheme

Sebastián Suarez, Fabio Doctorovich, Miguel Angel Harvey and Ricardo Baggio

Acta Cryst. (2013). C69, 351-355

Copyright © International Union of Crystallography
Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Tetraaqua(4,4'-dimethyl-2,2'-bipyri-dine- $\kappa^{2} N, N^{\prime}$)nickel(II) sulfate monohydrate: a simple molecule with an extremely complex hydrogen-bonding scheme

Sebastián Suarez, ${ }^{\text {a }}$ Fabio Doctorovich, ${ }^{\text {a }}$ Miguel Angel Harvey ${ }^{\text {b, } c_{*}}$ and Ricardo Baggio ${ }^{\text {d }}$

${ }^{\text {a }}$ Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAECONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, ${ }^{\text {b }}$ Universidad Nacional de la Patagonia SJB, Sede Trelew, 9100 Trelew, Chubut, Argentina, ${ }^{\text {c CenPat, CONICET, } 9120 \text { Puerto Madryn, Chubut, }}$ Argentina, and departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: lauaye@gmail.com, baggio@cnea.gov.ar
Received 20 February 2013
Accepted 21 February 2013
Online 6 March 2013
The title ionic compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, is composed of an $\mathrm{Ni}^{\mathrm{II}}$ cation coordinated by a chelating 4,4'-dimethyl-2,2'-bipyridine ligand via its two N atoms [mean $\mathrm{Ni}-\mathrm{N}=2.056(2) \AA$] and by four aqua ligands [mean $\mathrm{Ni}-\mathrm{O}=$ 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogenbonded two-dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic $4,4^{\prime}$-dimethyl-2, 2^{\prime} bipyridine ligands which interact laterally with their neighbours via $\pi-\pi$ interactions. The structure is compared with closely related analogues in the literature.

Comment

The combination in the same crystal structure of a large number of water molecules (as potentially active hydrogenbonding donors) in conjunction with highly charged inorganic anions (as eventual acceptors for these hydrogen bonds) has always been an almost certain path to the generation of complex hydrogen-bonding networks. Among these systems, highly hydrated sulfate complexes have shown rich interconnectivity and have thus become extremely appealing systems for those interested in the morphology and architecture of supramolecular structures. The title compound, $\left[\mathrm{Ni}(\mathrm{dmbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, (II $\left.a\right)$ (where dmbpy $=4,4^{\prime}$-di-methyl-2,2'-bipyridine $=L 3$), is a member of a larger family
having the general formula $\left[\operatorname{Tr} L x\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$, where Tr is a transition metal, $L x$ is an N, N^{\prime}-chelating neutral aromatic base and n represents the hydration state. In a search of the Cambridge Structural Database (CSD, Version 5.33; Allen, 2002), we identified several of these closely related analogues, and the results are briefly presented in Fig. 1 and Table 1. It

$\mathrm{SO}_{4}{ }^{2-}$
(Ia)

(Ic)

$\mathrm{SO}_{4}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(IIIb)

$\mathrm{SO}_{4}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(IIId)

(IIIf)

$\mathrm{SO}_{4}{ }^{2-}$
(Ib)

(III a)

$\mathrm{SO}_{4}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(IIIC)

(IIIe)

(IIIg)

Figure 1
The $\left[\operatorname{Tr} L x\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ family, as found in the Cambridge Structural Database (CSD, Version 5.33; Allen, 2002). The members shown are: (Ia) (CSD refcode XECQAZ; Boonlue et al., 2012), (Ib) (BEQRUK; Harvey et al., 1999), (Ic) (POWTEB; Zhao \& Bai, 2009), (IIIa) (BONWAC; Zhang et al., 1999), (IIIb) (AFOLIQ04; Wu et al., 2004), (IIIc) (DURXEU; Zhang et al., 2010), (III d) (WUQMEA; Zhu et al., 2004), (IIIe) (NERYEP; Wang, Sun et al., 2006), (IIIf) (CUPJEC; Healy et al., 1984) and (IIIg) (VIWYEG; Wang, Liu et al., 2006).

metal-organic compounds

can be seen therein that examples with $n=0$ [codes (I a)-(I $c)$] and $n=2[\operatorname{codes}(\mathrm{III} a)-(\mathrm{III} g)]$ have already been reported, but the present case seems to be the first reported with $n=1$. These compounds present a wide diversity of crystal structures [there is only one isostructural/isomorphic family present, made up of compounds ($\mathrm{III} a$) $-(\mathrm{III} d)$, with $\mathrm{Tr}=\mathrm{Zn}, \mathrm{Mn}, \mathrm{Cd}$ and Co, respectively]. On the other hand, in most of the structures in Fig. 1, a rather similar packing trend can be observed, viz. a central hydrogen-bonded hydrophilic nucleus made up of the cation, the sulfate anion and the four aqua and solvent water molecules, with pendant hydrophobic $L x$ ligands which interact laterally with their neighbours via $\pi-\pi$ interactions. However, the similarities end at this point, since comparison of the structures shows that the hydrogen-bonding networks generated at the hydrophilic nuclei are quite different, as are the ways in which the pendant hydrophobic ligands interact with each other in order to link the hydrophilic networks. This fact will be further addressed below during a discussion of the packing of the title $\mathrm{Ni}^{\mathrm{II}}$ compound, (II a).

(II a)
Selected coordination parameters for ($\mathrm{II} a$) are presented in Table 2, while a view of the very simple asymmetric unit can be seen in Fig. 2. It consists of an $\mathrm{Ni}^{\mathrm{II}}$ cation coordinated by a

Figure 2
The asymmetric unit of (II a), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate the alternative orientations of the disordered methyl groups.

Figure 3
A packing view of (II a), projected down [010], showing the alternation of hydrophilic (narrow profiles in heavy lines) and hydrophobic (broader profiles in weak lines) planes running parallel to (10 $\overline{1})$. Dashed lines indicate intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions.
chelating dmbpy ligand via its two N atoms [mean $\mathrm{Ni}-\mathrm{N}=$ 2.056 (2) \AA]] and by four aqua ligands [mean $\mathrm{Ni}-\mathrm{O}=$ 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule.

The only noticeable distortion from octahedral symmetry in the cationic group is seen in the small dmbpy chelate angle $\left[\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2=79.34(5)^{\circ}\right]$. The anion is very regular as well, with a tight span of $\mathrm{S}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles [1.4717 (11)-1.4928 (10) \AA and 108.38 (6) $-111.23(6)^{\circ}$, respectively], suggesting an almost complete delocalization of the double bonds. This rather predictable geometry of the individual building blocks arising from the strongest forces (covalent and coordination) contrasts with the complex way in which these same units interact with each other via much weaker nonbonding interactions (hydrogen bonds, $\pi-\pi$ contacts etc.) in order to define the three-dimensional crystal structure.

The dicationic $\left[\mathrm{Ni}(\mathrm{dmbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ subunit is naturally divided into two quite different parts: (i) the planar organic ligand chelating atom Ni1 on one side, and (ii) the bulky highly hydrophilic counterpart including the cation and the four aqua ligands on the other side. The hydrogen-bonding interactions in which the latter 'hemipolyhedron' takes part, in conjunction with the sulfate counter-anion and the additional solvent water molecule, give rise to a formidable two-dimensional hydrogen-bonding network evolving parallel to (10 $\overline{1}$) (shown sideways in Fig. 3, in heavy lines). All ten water H atoms take part in these fairly strong interactions (Table 3, entries 1 to 10), with $\mathrm{H} \cdots \mathrm{O}$ distances up to $2 \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles wider than 160°. Fig. 4 shows a very detailed view of this carbon-free structure, where the general behaviour of each water unit can be appreciated. Thus, coordinated water molecules $\mathrm{O} 1 W, \mathrm{O} 2 W$ and $\mathrm{O} 4 W$ fulfil similar roles, bridging opposite sulfates on both sides of the metal atom. In contrast, water molecule O3W links the O5W solvent molecule through

Figure 4
A packing view of the carbon-free hydrophilic structure in (II a), shown in a slanted projection down [100] in order to minimize overlap, and where all the interactions presented in Table 3 and the loops described in Tables S4 and S5 (see Supplementary materials) are clearly visible (dashed lines). [Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2}$, $-z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z$; (iv) $-x+2,-y+1,-z+1$.]
atom H3WA, thus disrupting an eventual 'twofold' topological symmetry with the introduction of further interconnection paths. The final result is a tight mesh of hydrogen-bonded structures of different kinds and complexity, starting with the ten elemental D hydrogen-bonding motifs, combining into 20 different chain motifs (linking symmetry-equivalent points in the structure) and ending up with 16 independent third-level rings formed through the intricate combination of the first two types. [For an introduction to graph-set analysis and notation, see Etter et al. (1990) and Bernstein et al. (1995).]

Tables S4 and S5 in the Supplementary materials disclose through their graph-set descriptors the chains and rings generated in the hydrogen-bonded structure of (II a) up to the third level, viz. involving up to three different D hydrogenbonding types. The resulting two-dimensional hydrophilic structure (Fig. 3, heavy lines) is a broad sheet ca $3.5 \AA$ thick, decorated by pendant hydrophobic dmbpy groups evolving outwards on both sides and which interdigitate neighbouring counterparts at a graphitic distance from each other (see details below). This defines a still thicker hydrophobic region, also in the form of a broad sheet, this time ca $7.1 \AA$ Aide (Fig. 3, weak lines), leading to a 'sharing' of the (10 $\overline{1}$) space in an approximate $2: 1$ ratio.

As stated above, this type of packing has analogues in the literature, albeit with differences based mainly on the characteristics of the organic ligand $(L x)$ and the variable hydration state $\left(n \mathrm{H}_{2} \mathrm{O}\right)$. When the $L x$ organic ligand has
conventional hydrogen-bonding active sites present, as in (IIIe) (O atom) and (IIIg) (N atom and $\mathrm{N}-\mathrm{H}$ group), there is no net separation between the hydrophilic and hydrophobic sections and all centres are involved in hydrogen bonding, rendering the supramolecular organization essentially threedimensional; the much weaker $\pi-\pi$ interactions between aromatic rings simply complement the latter hydrogenbonding interactions and have little impact on the overall construction. When the $L x$ ligand lacks these active sites (e.g. all remaining cases in Fig. 1), the structures adopt instead the already described packing organizations with a central twodimensional hydrogen-bonded hydrophilic nucleus decorated by pendant $L x$ groups, although the finer details depend on $L x$ and n. We shall give a comparative discussion of (II a) and (IIIf) ($L 1$ is $2,2^{\prime}$-bipyridine and $n=2$) as a representative case to show which main differences are usually found. In particular, the two-dimensional hydrophilic core is ca 40% thicker in (IIIf) than in (II a), as a consequence of the higher hydration state. The result is that the hydrophobic zone is ca 10% narrower due to the fact that the pendant bipyridine molecules in (III f) lack the 'bumping' terminal methyl groups, distinctive of dmbpy in ($\mathrm{II} a$).

There is an additional consequence derived from this absence in (IIIf) and it is the interactive character of the 'front line' pyridine H atoms [those equivalent to atoms H 4 and H 7 in (II $a)$] which, being free of methyl steric hindrance, take part in rather strong hydrogen bonds to neighbouring sulfate O atoms. This can be seen in the $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ values [2.35 (1) \AA and $155(1)^{\circ}$, and 2.45 (1) \AA and $136(1)^{\circ}$, respectively] for these contacts in (IIIf), compared with the much weaker methyl contacts in (II a), shown in Table 3 (final two entries), which are not even capable of clamping the (rotationally disordered) methyl ends into a stable structure (see Refinement). These nonconventional hydrogen bonds might add some additional interplanar cohesion in (IIIf) to that already provided by the graphitic $\pi-\pi$ interactions which are common (and comparable) in both structures. In fact, both (II a) and (III f) present their adjacent pyridine rings at extremely similar intercentroid/interplanar distances, viz. 3.685 (1)/3.45 (2) and 3.662 (2)/3.35 (2) \AA for (II a) and (IIIf), respectively.

Experimental

A 0.10 M methanol solution (2 ml) of 4,4'-dimethyl-2,2'-bipyridine was added to a similar volume of a 0.10 M aqueous solution of $\mathrm{NiSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. The initially colourless solutions immediately turned pale red after mixing. The resulting solution was left to stand at 313 K for a couple of days, after which time well developed light-blue crystals of (II a) suitable for X-ray data collection were obtained.

Crystal data

[^1]Table 1
Comparison of reported compounds with the general formula $\left[\operatorname{Tr}(L x)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}(\operatorname{Tr}$ is a transition metal).
Ligand codes: $L 1$ is $2,2^{\prime}$-bipyridine; $L 2$ is $5,5^{\prime}$-dimethyl-2,2'-bipyridine; $L 3$ is $4,4^{\prime}$-dimethyl-2,2'-bipyridine; $L 4$ is 1,10 -phenanthroline; $L 5$ is 1,10 -phenanthroline-5,6dione; $L 6$ is $1 H$-imidazo[4,5- $f][1,10]$ phenanthroline.

Compound	Tr	Lx	n	Space group	Z	$a(\AA)$	b (${ }_{\text {A }}$)	$c(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$V\left(\AA^{3}\right)$
(Ia)	Ni	L1	0	Pbca	8	12.3035 (7)	11.6560 (7)	20.7112 (10)	90	90	90	2970.2 (3)
(Ib)	Cd	L1	0	$P 2_{1} / \mathrm{c}$	4	10.262 (2)	12.073 (2)	12.357 (3)	90	92.47 (3)	90	1529.5 (10)
(Ic)	Zn	L2	0	$P 2{ }_{1} / \mathrm{c}$	4	9.565 (2)	9.605 (2)	18.477 (3)	90	102.45 (9)	90	1657.5 (14)
(II a)	Ni	L3	1	$P 2_{1} / n$	4	11.8007 (3)	11.7095 (3)	13.6967 (3)	90	113.531 (12)	90	1735.24 (17)
(IIIa)	Zn	L4	2	Pbca	8	8.906 (1)	18.295 (2)	21.855 (3)	90	90	90	3560.9 (15)
(IIIb)	Mn	L4	2	Pbca	8	8.877 (1)	18.508 (3)	22.098 (3)	90	90	90	3630.602 (14)
(IIIc)	Cd	L4	2	Pbca	8	8.8398 (9)	18.700 (2)	22.349 (2)	90	90	90	3694.3 (11)
(IIId)	Co	L4	2	Pbca	8	8.856 (1)	18.318 (3)	21.918 (5)	90	90	90	3555.6 (17)
(IIIe)	Mn	L5	2	C2/m	4	9.6237 (4)	13.9117 (6)	13.8744 (6)	90	97.32 (2)	90	1842.4 (2)
(IIIf)	Ni	L1	2	$P \overline{1}$	2	7.793 (3)	9.351 (3)	11.476 (4)	87.40 (2)	96.50 (2)	102.37 (2)	811.4 (19)
(IIIg)	Ni	L6	2	$P \overline{1}$	2	7.266 (2)	11.112 (3)	12.913 (4)	75.676 (4)	77.393 (5)	71.423 (5)	946.4 (15)

Table 2
Selected bond lengths (\AA).

Ni1-N1	$2.0545(12)$	Ni1-O3W	$2.0694(11)$
Ni1-N2	$2.0587(12)$	Ni1-O4W	$2.0719(11)$
Ni1-O2W	$2.0673(11)$	Ni1-O1W	$2.0847(12)$

Table 3
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.83 (1)	2.00 (1)	2.7959 (15)	160 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 4^{\text {ii }}$	0.84 (1)	1.87 (1)	2.6913 (15)	164 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2$	0.83 (1)	1.96 (1)	2.7895 (15)	171 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 3^{\text {iii }}$	0.84 (1)	1.86 (1)	2.6985 (15)	172 (2)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 5 W$	0.84 (1)	1.94 (1)	2.7800 (16)	176 (2)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 4^{\mathrm{i}}$	0.84 (1)	1.91 (1)	2.7329 (14)	165 (2)
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O}{ }^{\text {iii }}$	0.83 (1)	2.01 (1)	2.8082 (15)	162 (2)
$\mathrm{O} 4 W-\mathrm{H} 4 W B \cdots \mathrm{O} 2^{\text {ii }}$	0.85 (1)	1.98 (1)	2.8253 (15)	176 (2)
$\mathrm{O} 5 W-\mathrm{H} 5 W A \cdots \mathrm{O}{ }^{\text {iii }}$	0.84 (1)	2.00 (1)	2.8397 (16)	172 (2)
$\mathrm{O} 5 W-\mathrm{H} 5 W B \cdots \mathrm{O}$	0.85 (1)	1.96 (1)	2.7963 (15)	171 (2)
C11-H11E..OO2 ${ }^{\text {iv }}$	0.98	2.58	3.393 (2)	140
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\text {v }}$	0.98	2.52	3.453 (2)	158

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+1,-y+1$, $-z$; (iv) $-x+2,-y+1,-z ;$ (v) $x+1, y, z$.

Data collection

Oxford Gemini CCD S Ultra
\quad diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min }=0.76, T_{\max }=0.84$

14064 measured reflections 3811 independent reflections 3599 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$
$T_{\text {min }}=0.76, T_{\text {max }}=0.84$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.075$
$S=1.07$
3811 reflections
258 parameters
15 restraints

All H atoms were visible in difference maps but were treated differently in the refinement. Those attached to C atoms were placed in geometrically idealized positions and allowed to ride on their
parent atoms, with aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$ and methyl $\mathrm{C}-\mathrm{H}=$ $0.98 \AA$. These latter groups appear disordered around the $\mathrm{C}-\mathrm{C}$ bond and they were modelled with six H atoms of half occupancy, at 60° from each other, which were allowed to rotate around their $\mathrm{C}-\mathrm{C}$ bond, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Water H atoms were refined with restrained $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances of 0.85 (1) and 1.35 (1) \AA, respectively. $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups and at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ otherwise.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97, RPLUTO (CCDC, 2007) and PLATON (Spek, 2009).

The authors acknowledge ANPCyT (project No. PME 2006-01113) for the purchase of the Oxford Gemini CCD diffractometer and the Spanish Research Council (CSIC) for providing us with a free-of-charge license to the CSD system (Allen, 2002).

[^2]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Boonlue, S., Theppitak, C. \& Chainok, K. (2012). Acta Cryst. E68, m908.
CCDC (2007). RPLUTO. Cambridge Crystallographic Data Centre, Union Road, Cambridge, England.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Harvey, M., Baggio, S., Baggio, R. \& Mombrú, A. (1999). Acta Cryst. C55, 1457-1460.
Healy, P. C., Patrick, J. M. \& White, A. H. (1984). Aust. J. Chem. 37, 921-927.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, H., Liu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Wen, G.-L., Guo, C.-Y. \& Shi, Q.-Z. (2006). Chem. Commun. 11, 129-133.

Wang, X.-X., Sun, F., Zhan, Q.-G. \& Wu, J.-Z. (2006). Acta Cryst. E62, m3380m3382.

metal-organic compounds

Wu, H., Zhou, J., Yu, H., Lu, L., Xu, Z., Wan, Y. \& Shi, D. (2004). Acta Cryst. E60, m822-m824
Zhang, Y.-Y., Jin, Q.-H., Yang, W. \& Zhang, C.-L. (2010). Acta Cryst. E66, m970.

Zhang, C., Yu, K., Wu, D. \& Zhao, C. (1999). Acta Cryst. C55, 1815-1817. Zhao, Q.-L. \& Bai, H.-F. (2009). Acta Cryst. E65, m866.
Zhu, H.-L., Pan, Y.-J., Wang, X.-J. \& Yu, K.-B. (2004). J. Chem. Crystallogr. 34, 199-202.

supplementary materials

Acta Cryst. (2013). C69, 351-355 [doi:10.1107/S0108270113005088]

Tetraaqua(4,4'-dimethyl-2,2'-bipyridine- $\kappa^{2} N, N^{\prime}$)nickel(II) sulfate monohydrate: a simple molecule with an extremely complex hydrogen-bonding scheme

Sebastián Suarez, Fabio Doctorovich, Miguel Angel Harvey and Ricardo Baggio

Tetraaqua(4,4'-dimethyl-2,2'-bipyridine- $\kappa^{2} N, N^{\prime}$ ')nickel(II) sulfate monohydrate

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=429.09$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=11.8007$ (3) \AA
$b=11.7095$ (3) \AA
$c=13.6967(3) \AA$
$\beta=113.530(12)^{\circ}$
$V=1735.24(17) \AA^{3}$
$Z=4$

Data collection

Oxford Gemini CCD S Ultra
diffractometer
ω scans, thick slices
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\text {min }}=0.76, T_{\text {max }}=0.84$
14064 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.075$
$S=1.07$
3811 reflections
258 parameters
15 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=896$
$D_{\mathrm{x}}=1.642 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3870 reflections
$\theta=2.7-25.2^{\circ}$
$\mu=1.29 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, light blue
$0.48 \times 0.18 \times 0.14 \mathrm{~mm}$

3811 independent reflections
3599 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.8^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 14$
$l=-17 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0462 P)^{2}+0.8214 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.008$
$\Delta \rho_{\text {max }}=0.54$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}_{\AA^{-3}}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ni1	0.881378 (16)	0.496228 (14)	0.221537 (14)	0.01282 (8)	
N1	0.99139 (11)	0.59788 (11)	0.17338 (10)	0.0155 (2)	
N2	0.97379 (11)	0.37435 (11)	0.17329 (9)	0.0143 (2)	
C1	0.99794 (15)	0.71205 (13)	0.17923 (12)	0.0191 (3)	
H1	0.9413	0.7519	0.2003	0.023*	
C2	1.08334 (15)	0.77449 (13)	0.15595 (13)	0.0212 (3)	
H2	1.0854	0.8554	0.1621	0.025*	
C3	1.16645 (14)	0.71816 (13)	0.12344 (12)	0.0197 (3)	
C4	1.15978 (14)	0.59903 (13)	0.11793 (12)	0.0185 (3)	
H4	1.2151	0.5573	0.0966	0.022*	
C5	1.07257 (13)	0.54165 (13)	0.14363 (11)	0.0159 (3)	
C6	1.06101 (13)	0.41472 (13)	0.14155 (11)	0.0151 (3)	
C7	1.13319 (14)	0.34198 (13)	0.10983 (12)	0.0180 (3)	
H7	1.1941	0.3725	0.0882	0.022*	
C8	1.11601 (14)	0.22372 (13)	0.10986 (12)	0.0187 (3)	
C9	1.02545 (15)	0.18412 (13)	0.14215 (12)	0.0200 (3)	
H9	1.0105	0.1045	0.1432	0.024*	
C10	0.95702 (14)	0.26143 (13)	0.17279 (12)	0.0176 (3)	
H10	0.8953	0.2329	0.1945	0.021*	
C11	1.25956 (16)	0.78285 (14)	0.09601 (14)	0.0250 (3)	
H11A	1.3185	0.7291	0.0872	0.037*	0.50
H11B	1.3039	0.8366	0.1534	0.037*	0.50
H11C	1.2171	0.8250	0.0295	0.037*	0.50
H11D	1.2412	0.8647	0.0929	0.037*	0.50
H11E	1.2558	0.7572	0.0267	0.037*	0.50
H11F	1.3426	0.7689	0.1506	0.037*	0.50
C12	1.19356 (16)	0.14301 (14)	0.07717 (14)	0.0260 (3)	
H12A	1.2466	0.1868	0.0511	0.039*	0.50
H12B	1.1396	0.0927	0.0205	0.039*	0.50
H12C	1.2451	0.0969	0.1386	0.039*	0.50
H12D	1.1742	0.0642	0.0890	0.039*	0.50
H12E	1.2813	0.1582	0.1196	0.039*	0.50
H12F	1.1758	0.1540	0.0015	0.039*	0.50
S1	0.46711 (3)	0.28090 (3)	-0.00349 (3)	0.01434 (10)	
O1	0.44429 (10)	0.33060 (9)	-0.10842 (8)	0.0192 (2)	
O2	0.59885 (10)	0.28740 (9)	0.06801 (8)	0.0191 (2)	
O3	0.39200 (10)	0.34164 (9)	0.04476 (8)	0.0193 (2)	
O4	0.42903 (10)	0.15839 (9)	-0.01878 (8)	0.0183 (2)	
O1W	1.02352 (11)	0.49105 (9)	0.37309 (9)	0.0167 (2)	
H1WA	1.0124 (17)	0.4397 (10)	0.4106 (12)	0.020*	

H1WB	$1.0407(17)$	$0.5513(9)$	$0.4098(12)$	0.020^{*}
O2W	$0.73828(10)$	$0.48140(9)$	$0.07310(9)$	$0.0165(2)$
H2WA	$0.6904(13)$	$0.4267(10)$	$0.0664(14)$	0.020^{*}
H2WB	$0.6956(14)$	$0.5380(10)$	$0.0415(14)$	0.020^{*}
O3W	$0.77982(9)$	$0.38622(9)$	$0.27347(8)$	$0.0163(2)$
H3WA	$0.7084(10)$	$0.4105(15)$	$0.2607(12)$	0.020^{*}
H3WB	$0.8139(13)$	$0.3730(15)$	$0.3392(8)$	0.020^{*}
O4W	$0.79553(10)$	$0.63138(9)$	$0.26225(9)$	$0.0197(2)$
H4WA	$0.7307(12)$	$0.6573(14)$	$0.2157(10)$	0.024^{*}
H4WB	$0.8260(15)$	$0.6806(13)$	$0.3111(10)$	0.024^{*}
O5W	$0.54228(11)$	$0.46991(10)$	$0.22121(9)$	$0.0217(2)$
H5WA	$0.5423(17)$	$0.5323(9)$	$0.1903(13)$	0.026^{*}
H5WB	$0.4957(15)$	$0.4261(11)$	$0.1729(11)$	0.026^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.01226(12)$	$0.01313(12)$	$0.01317(12)$	$0.00039(6)$	$0.00518(9)$	$-0.00047(6)$
N1	$0.0149(6)$	$0.0167(6)$	$0.0149(6)$	$-0.0005(5)$	$0.0060(5)$	$0.0010(5)$
N2	$0.0129(6)$	$0.0166(6)$	$0.0124(5)$	$0.0015(5)$	$0.0038(4)$	$-0.0006(5)$
C1	$0.0204(7)$	$0.0171(7)$	$0.0209(7)$	$0.0007(6)$	$0.0093(6)$	$-0.0004(6)$
C2	$0.0250(8)$	$0.0159(7)$	$0.0229(8)$	$-0.0025(6)$	$0.0097(6)$	$-0.0002(6)$
C3	$0.0200(7)$	$0.0233(8)$	$0.0148(7)$	$-0.0048(6)$	$0.0059(6)$	$-0.0009(6)$
C4	$0.0167(7)$	$0.0220(7)$	$0.0181(7)$	$-0.0016(6)$	$0.0083(6)$	$-0.0020(6)$
C5	$0.0156(7)$	$0.0181(7)$	$0.0125(6)$	$-0.0001(6)$	$0.0039(5)$	$-0.0014(5)$
C6	$0.0137(6)$	$0.0175(7)$	$0.0129(6)$	$0.0001(5)$	$0.0041(5)$	$0.0006(5)$
C7	$0.0161(7)$	$0.0205(7)$	$0.0183(7)$	$-0.0002(6)$	$0.0079(6)$	$-0.0004(6)$
C8	$0.0189(7)$	$0.0200(8)$	$0.0174(7)$	$0.0040(6)$	$0.0074(6)$	$-0.0007(6)$
C9	$0.0240(8)$	$0.0151(7)$	$0.0212(7)$	$0.0009(6)$	$0.0094(6)$	$0.0009(6)$
C10	$0.0185(7)$	$0.0186(7)$	$0.0167(7)$	$-0.0009(6)$	$0.0083(6)$	$0.0003(6)$
C11	$0.0250(8)$	$0.0263(8)$	$0.0256(8)$	$-0.0085(6)$	$0.0122(7)$	$-0.0008(6)$
C12	$0.0275(8)$	$0.0225(8)$	$0.0332(9)$	$0.0055(7)$	$0.0177(7)$	$-0.0018(7)$
S1	$0.01558(18)$	$0.01209(17)$	$0.01343(18)$	$0.00009(13)$	$0.00376(13)$	$0.00039(12)$
O1	$0.0211(5)$	$0.0182(5)$	$0.0167(5)$	$-0.0003(4)$	$0.0058(4)$	$0.0031(4)$
O2	$0.0156(5)$	$0.0190(5)$	$0.0190(5)$	$0.0003(4)$	$0.0030(4)$	$0.0006(4)$
O3	$0.0193(5)$	$0.0180(5)$	$0.0207(5)$	$0.0022(4)$	$0.0081(4)$	$-0.0003(4)$
O4	$0.0227(5)$	$0.0128(5)$	$0.0166(5)$	$-0.0018(4)$	$0.0050(4)$	$-0.0004(4)$
O1W	$0.0182(6)$	$0.0157(5)$	$0.0148(5)$	$-0.0010(4)$	$0.0052(4)$	$-0.0014(4)$
O2W	$0.0146(5)$	$0.0160(5)$	$0.0165(5)$	$0.0009(4)$	$0.0037(4)$	$0.0015(4)$
O3W	$0.0141(5)$	$0.0184(5)$	$0.0149(5)$	$0.0003(4)$	$0.0042(4)$	$0.0019(4)$
O4W	$0.0167(5)$	$0.0178(5)$	$0.0201(5)$	$0.0045(4)$	$0.0027(4)$	$-0.0048(4)$
O5W	$0.0248(6)$	$0.0186(5)$	$0.0203(5)$	$-0.0022(5)$	$0.0076(5)$	$-0.0011(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

Ni1—N1	$2.0545(12)$	C11—H11A	0.9800
Ni1—N2	$2.0587(12)$	C11—H11B	0.9800
Ni1—O2W	$2.0673(11)$	C11—H11C	0.9800
Ni1—O3W	$2.0694(11)$	C11—H11D	0.9800
Ni1—O4W	$2.0719(11)$	C11—H11E	0.9800

Ni1-O1W	2.0847 (12)
N1-C1	1.3397 (19)
N1-C5	1.3524 (19)
N2-C10	1.3366 (19)
N2-C6	1.3524 (18)
C1-C2	1.381 (2)
C1-H1	0.9500
C2-C3	1.394 (2)
C2-H2	0.9500
C3-C4	1.397 (2)
C3-C11	1.501 (2)
C4-C5	1.387 (2)
C4-H4	0.9500
C5-C6	1.492 (2)
C6-C7	1.391 (2)
C7-C8	1.400 (2)
C7-H7	0.9500
C8-C9	1.389 (2)
C8-C12	1.503 (2)
C9-C10	1.385 (2)
C9-H9	0.9500
C10-H10	0.9500
N1—Ni1-N2	79.34 (5)
N1-Ni1-O2W	96.07 (5)
N2-Ni1-O2W	87.45 (5)
N1-Ni1-O3W	176.28 (4)
N2-Ni1-O3W	97.61 (5)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Ni} 11-\mathrm{O} 3 \mathrm{~W}$	85.87 (4)
N1-Ni1-O4W	94.78 (5)
N2-Ni1-O4W	173.98 (5)
O2W-Ni1-O4W	91.93 (4)
O3W-Ni1-O4W	88.31 (5)
N1-Ni1-O1W	88.63 (5)
N2-Ni1-O1W	88.89 (4)
O2W-Ni1-O1W	173.41 (4)
O3W-Ni1-O1W	89.19 (4)
O4W-Ni1-O1W	92.28 (4)
C1-N1-C5	118.22 (13)
C1-N1-Ni1	126.00 (10)
C5-N1-Ni1	115.41 (10)
C10-N2-C6	118.31 (13)
C10-N2-Ni1	126.23 (10)
C6-N2-Ni1	115.44 (10)
N1-C1-C2	122.98 (14)
N1-C1-H1	118.5
C2-C1-H1	118.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.62 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2

C11-H11F	0.9800
C12-H12A	0.9800
C12-H12B	0.9800
C12-H12C	0.9800
C12-H12D	0.9800
C12-H12E	0.9800
C12-H12F	0.9800
S1-O2	1.4717 (11)
S1-O1	1.4724 (11)
S1-O3	1.4819 (11)
S1-O4	1.4928 (10)
O1W-H1WA	0.834 (9)
O1W-H1WB	0.842 (9)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}$	0.834 (9)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB}$	0.841 (9)
O3W-H3WA	0.839 (9)
O3W-H3WB	0.841 (9)
O4W-H4WA	0.833 (9)
O4W-H4WB	0.847 (9)
O5W-H5WA	0.844 (9)
O5W—-H5WB	0.845 (9)

H11B-C11-H11C	109.5
C3-C11-H11D	109.5
H11A-C11-H11D	141.1
H11B-C11-H11D	56.3
H11C-C11-H11D	56.3
C3-C11-H11E	109.5
H11A-C11-H11E	56.3
H11B-C11-H11E	141.1
H11C-C11-H11E	56.3
H11D-C11-H11E	109.5
C3-C11-H11F	109.5
H11A-C11-H11F	56.3
H11B-C11-H11F	56.3
H11C-C11-H11F	141.1
H11D-C11-H11F	109.5
H11E-C11-H11F	109.5
C8-C12-H12A	109.5
C8-C12-H12B	109.5
H12A-C12-H12B	109.5
C8-C12-H12C	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5
C8-C12-H12D	109.5
H12A-C12-H12D	141.1
H12B-C12-H12D	56.3
H12C-C12-H12D	56.3

C3-C2-H2	120.2	C8-C12-H12E	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	117.25 (14)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{E}$	56.3
C2-C3-C11	121.33 (14)	H12B-C12-H12E	141.1
C4-C3-C11	121.43 (14)	H12C-C12-H12E	56.3
C5-C4-C3	120.09 (14)	H12D-C12-H12E	109.5
C5-C4-H4	120.0	C8-C12-H12F	109.5
C3-C4-H4	120.0	H12A-C12-H12F	56.3
N1-C5-C4	121.82 (14)	$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~F}$	56.3
N1-C5-C6	114.86 (12)	H12C-C12-H12F	141.1
C4-C5-C6	123.32 (13)	H12D-C12-H12F	109.5
N2-C6-C7	121.72 (13)	H12E-C12-H12F	109.5
N2-C6-C5	114.69 (12)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	111.23 (6)
C7-C6-C5	123.59 (13)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	109.84 (6)
C6-C7-C8	119.92 (14)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	109.68 (6)
C6-C7-H7	120.0	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4$	108.78 (6)
C8-C7-H7	120.0	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 4$	108.38 (6)
C9-C8-C7	117.41 (13)	O3-S1-O4	108.88 (6)
C9-C8-C12	121.48 (14)	Ni1-O1W-H1WA	111.9 (12)
C7-C8-C12	121.11 (14)	Ni1-O1W-H1WB	118.4 (12)
C10-C9-C8	119.60 (14)	H1WA-O1W-H1WB	107.1 (13)
C10-C9-H9	120.2	$\mathrm{Ni} 1-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}$	115.1 (12)
C8-C9-H9	120.2	Ni1-O2W-H2WB	121.8 (12)
N2-C10-C9	123.03 (14)	H2WA-O2W-H2WB	107.9 (13)
N2-C10-H10	118.5	Ni1-O3W-H3WA	112.9 (12)
C9-C10- H 10	118.5	Ni1-O3W-H3WB	112.8 (12)
C3-C11-H11A	109.5	H3WA-O3W-H3WB	107.3 (12)
C3-C11-H11B	109.5	Ni1-O4W-H4WA	118.1 (12)
H11A-C11-H11B	109.5	Ni1-O4W-H4WB	129.3 (12)
C3-C11-H11C	109.5	H4WA-O4W-H4WB	109.1 (13)
H11A-C11-H11C	109.5	H5WA-O5W-H5WB	105.3 (13)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.83 (1)	2.00 (1)	2.7959 (15)	160 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 4{ }^{\text {ii }}$	0.84 (1)	1.87 (1)	2.6913 (15)	164 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2$	0.83 (1)	1.96 (1)	2.7895 (15)	171 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 3^{\text {iii }}$	0.84 (1)	1.86 (1)	2.6985 (15)	172 (2)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 5 W$	0.84 (1)	1.94 (1)	2.7800 (16)	176 (2)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 4^{\mathrm{i}}$	0.84 (1)	1.91 (1)	2.7329 (14)	165 (2)
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O} 1^{\text {iii }}$	0.83 (1)	2.01 (1)	2.8082 (15)	162 (2)
$\mathrm{O} 4 W-\mathrm{H} 4 W B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.85 (1)	1.98 (1)	2.8253 (15)	176 (2)
$\mathrm{O} 5 W-\mathrm{H} 5 W A \cdots \mathrm{O} 1^{\text {iii }}$	0.84 (1)	2.00 (1)	2.8397 (16)	172 (2)
$\mathrm{O} 5 W-\mathrm{H} 5 W B \cdots \mathrm{O}$	0.85 (1)	1.96 (1)	2.7963 (15)	171 (2)
$\mathrm{C} 11-\mathrm{H} 11 E^{\cdots} \mathrm{O}^{\text {iv }}$	0.98	2.58	3.393 (2)	140
C12-H12A $\cdots \mathrm{O}^{\text {v }}$	0.98	2.52	3.453 (2)	158

Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z+1 / 2$; (ii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+1,-y+1,-z$; (iv) $-x+2,-y+1,-z$; (v) $x+1, y, z$.

Compararison of reported compounds with the general formula $\operatorname{Tr}(\mathrm{Lx})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ (Tr is a transition metal)
Ligand codes: $L 1$ is 2,2'-bipyridine; $L 2$ is $5,5^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine; $L 3$ is $4,4^{\prime}$-dimethyl-2,2'-bipyridine; $L 4$ is 1,10 -phenanthroline; $L 5$ is $1,10-$ phenanthroline-5,6-dione; $L 6$ is $1 H$-imidazo[4,5-f][1,10]phenanthroline.

Compoun d	Tr	$L x$	$n_{\text {group }}^{\text {Space }} Z a(\AA)$	$b(\AA)$	$c(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$V\left(\AA^{3}\right)$
(Ia)	Ni	L1	0 Pbca 812.3035 (7))11.6560 (7)	20.7112 (10)	90	90	90	2970.2 (3)
(Ib)	Cd	L1	$0 P 21 / c 410.262$ (2)	12.073 (2)	12.357 (3)	90	92.47 (3)	90	1529.5 (10)
(Ic)	Zn	L2	$0 P 21 / c 49.565$ (2)	9.605 (2)	18.477 (3)	90	102.45 (9)	90	1657.5 (14)
(II a)	Ni	L3	$1 P 21 / n 411.8007$	1.7095	3.6967 (3)	90	113.531		1735.24 (17)
(III a)	Zn	L4	2 Pbca 88.906 (1)	18.295 (2)	21.855 (3)	90	90	90	3560.9 (15)
(IIIb)	Mn	L4	2 Pb ca 88.877 (1)	18.508 (3)	22.098 (3)	90	90	90	3630.602 (14)
(IIIC)	Cd	L4	2 Pb ca 88.8398 (9)	18.700 (2)	22.349 (2)	90	90	90	3694.3 (11)
(IIId)	Co	L4	2 Pbca 88.856 (1)	18.318 (3)	21.918 (5)	90	90	90	3555.6 (17)
(IIIe)	Mn	L5	2C2/m 49.6237 (4)	13.9117 (6)	13.8744 (6)	90	97.32 (2)	90	1842.4 (2)
(IIIf)	Ni	L1	$2 P \overline{1} \quad 27.793$ (3)	9.351 (3)	11.476 (4)	87.40 (2)	96.50 (2)	102.3	811.4 (19)
(IIIg)	Ni	L6	$2 P 1 \quad 27.266$ (2)	11.112 (3)	12.913 (4)	75.676 (4))77.393 (5)	71.42	946.4 (15)

Supplementary Table S4. Hydrogen-bonded chains in (IIa), involving up to three different primary hydrogen bonds between groups of atoms Gri
The interactions have the form of $\mathrm{Gr} 1 \cdots \mathrm{Gr} 2 \cdots \mathrm{Gr} 3 \cdots \mathrm{Gr} 1^{*}$ open chains, with $\mathrm{Gr} 1 *$ some symmetry equivalent of Gr 1 and where ${ }^{`} \cdots '$ denotes hydrogen bonding.

No.	Descriptor*	Gr1	Gr2	Gr3
1	C2,2(8)	(H1WA-O1W-Ni1-O2W-H2WA)	(O2-S1-O4)	
2	C2,2(8)	(H1WB-O1W-Ni1-O2W-H2WA)	(O2-S1-O4)	
3	C2,2(8)	(H2WA-O2W-Ni1-O3W-H3WB)	(O4-S1-O2) ${ }^{\text {i }}$	
4	C2,2(8)	(H2WB-O2W-Ni1-O3W-H3WB)	(O4-S1-O3) ${ }^{\text {i }}$	
5	C1,2(6)	(H2WA-O2W-Ni1-O4W-H4WB)	$\mathrm{O} 2{ }^{\text {ii }}$	
6	C2,2(8)	(H2WB-O2W-Ni1-O4W-H4WB)	$(\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3)^{\mathrm{ii}}$	
7	C2,2(8)	(H3WB-O3W-Ni1-O4W-H4WA)	(O1-S1-O4) ${ }^{\text {iii }}$	
8	C2,2(8)	(H1WA-O1W-Ni1-O4W-H4WA)	(O1-S1-O4) ${ }^{\text {iii }}$	
9	C2,2(8)	(H1WB-O1W-Ni1-O4W-H4WA)	(O1-S1-O4) ${ }^{\text {iii }}$	
10	C2,2(8)	(H1WA-O1W-Ni1- O2W-H2WB)	(O3-S1-O4) ${ }^{\text {iii }}$	
11	C2,2(8)	(H1WB-O1W-Ni1- O2W-H2WB)	(O3-S1-O4) ${ }^{\text {iii }}$	
12	C2,2(6)	(H4WB-O4W-H4WA)	(O1-S1-O2) ${ }^{\text {iii }}$	
13	C3,3(8)	(H3WB-O3W-H3WA)	(O5W-H5WB)	(O3-S1-O4)

14	C3,3(10)	(H1WA-O1W-Ni1-O3W-H3WA)	(O5W-H5WB)	(O3-S1-O4)
15	C3,3(10)	(H1WB-O1W-Ni1-O3W-H3WA)	(O5W-H5WB)	(O3-S1-O4)
16	C3,3(10)	(H4WB-O4W-Ni1-O3W-H3WA)	(O5W-H5WB)	(O3-S1-O2)
17	C3,3(10)	(H4WB-O4W-Ni1-O3W-H3WA)	(O5W-H5WA)	$(\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2)^{\text {iii }}$
18	C3,3(8)	(H3WB-O3W-H3WA)	(O5W-H5WA)	(O1-S1-O4) ${ }^{\text {iii }}$
19	C3,3(10)	(H1WA-O1W-Ni1-O3W-H3WA)	(O5W-H5WA)	(O1-S1-O4) ${ }^{\text {iii }}$
20	C3,3(10)	(H1WB-O1W-Ni1-O3W-H3WA)	(O5W-H5WA)	(O1-S1-O4) ${ }^{\text {iii }}$

Notes: $\left({ }^{*}\right)$ for an introduction to graph-set analysis and notation, see Bernstein et al. (1995) and Etter et al. (1990). For a graph-set code $X_{a}^{d}(n)$, X is the structure code ($C=$ chain and $R=$ ring), a is the total number of acceptors involved, d is the total number of donors involved and n is the total number of bonds involved. Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z+1 / 2$; (ii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+1,-y+1,-z$; (iv) $-x+2,-y+1,-z+1$.

Supplementary Table S5. Hydrogen-bonded rings in (IIa), involving up to three different primary hydrogen bonds between groups of atoms Gri
The interactions have the form of $\mathrm{Gr} 1 \cdots \mathrm{Gr} 2 \cdots \mathrm{Gr} 3 \cdots \mathrm{Gr} 1$ closed loops, where ${ }^{`}{ }^{\prime}$ ' denotes hydrogen bonding.

No.	Descriptor*	Gr1 Gr2	Gr3	Gr4	Gr5	Gr6
1	R1,2(6)	$\begin{aligned} & \text { (H1WA- } \\ & \text { O1W-Ni1- }(\mathrm{O} 4)^{\mathrm{i}} \\ & \text { O3W-H3WB) } \end{aligned}$				
2	R2,2(8)	$\begin{aligned} & \text { (H1WB- } \\ & \text { O1W-Ni1- } \quad(\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4)^{\mathrm{ii}} \\ & \mathrm{O} 4 \mathrm{~W}-\mathrm{H} 4 \mathrm{WB}) \end{aligned}$				
3	R2,2(8)	$\begin{aligned} & \text { (H2WB- } \\ & \text { O2W-Ni1- } \quad(\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3)^{\mathrm{iii}} \\ & \text { O4W-H4WA) } \end{aligned}$				
4	R3,3(8)	(H4WA- O4W-Ni1- (O5W- O3W-H3WA) H5WA)	(O1) ${ }^{\text {iii }}$			
5	R3,3(10)	(H2WB- O2W-Ni1- (O5W- O3W-H3WA) H5WA)	(O1-S1-O3) ${ }^{\text {iii }}$			
6	R3,3(10)	$\begin{array}{ll} (\mathrm{H} 2 \mathrm{WA}- & (\mathrm{O} 5 \mathrm{~W}- \\ \text { O2W-Ni1- } & \text { H5WB) } \\ \text { O3W-H3WA) } & \end{array}$	(O3-S1-O2)			
7	R2,4(8)	$\begin{aligned} & \text { (H1WB- } \\ & \text { O1W-H1WA) } \end{aligned}$	(H1WB-O1WH1WA) iv	(O4) ${ }^{\text {ii }}$		
8	R2,4(12)	$\begin{aligned} & \text { (H1WB- } \\ & \text { O1W-Ni1- (O4)i } \\ & \text { O3W-H3WB) } \end{aligned}$	(H1WB- O1W-Ni1- O3W- H3WB ${ }^{\text {iv }}$	(O4) ${ }^{\text {ii }}$		
9	R4,4(12)	$\begin{aligned} & (\mathrm{H} 2 \mathrm{WB}- \\ & \mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}) \end{aligned}(\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3)$	$\begin{aligned} & \text { (H2WB- } \\ & \text { O2W- } \\ & \text { H2WA) }{ }^{\mathrm{iii}} \end{aligned}$	(O2-S1-O3) ${ }^{\text {iii }}$		
10	R4,4(12)	$\begin{aligned} & \text { (H5WB- } \\ & \text { O5W-H5WA) } \end{aligned} \text { (O1-S1-O3) }{ }^{\text {iii }}$	$\begin{aligned} & \text { (H5WB- } \\ & \text { O5W- } \\ & \text { H5WA) }{ }^{\text {iii }} \end{aligned}$	(O1-S1-O3)		

11	R4,4(16)	(H2WA-O2W-Ni1-O4W-H4WA)	(O1-S1-O2) ${ }^{\text {iii }}$	(H2WA- O2W-Ni1- O4W- H4WA) ${ }^{\text {iii }}$	(O1-S1-O2)		
12	R4,4(16)	(H3WB-O3W-Ni1-O4W-H4WB)	(O2-S1-O4) ${ }^{\text {ii }}$	(H3WB- O3W-Ni1- O4W- H4WB) ${ }^{\text {iv }}$	(O2-S1-O4) ${ }^{\text {i }}$		
13	R4,4(16)	(H1WA-O1W-Ni1-O4W-H4WB)	$(\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4)^{\mathrm{ii}}$	(H1WA-O1W-Ni1-O4WH4WB) ${ }^{\text {iv }}$	(O2-S1-O4) ${ }^{\text {i }}$		
14	R4,6(16)	(H2WB-O2W-Ni1-O3W-H3WA)	(O5WH5WB)	(03)	(H2WB- O2W-Ni1- 03W- H3WA $)^{\text {iii }}$	$\begin{aligned} & \text { (O5W- } \\ & \text { H5WB) } \end{aligned}$	(O3) ${ }^{\text {iii }}$
15	R6,6(20)	(H2WA-O2W-Ni1-O3W-H3WA)	(O5WH5WA)	(O1-S1-O2) ${ }^{\text {iii }}$	(H2WA- O2W-Ni1- O3W- H3WA) ${ }^{\text {iii }}$	(O5WH5WA) ${ }^{\text {iii }}$	(O1-S1-O2)
16	R6,6(20)	(H4WA-O4W-Ni1-O3W-H3WA)	(O5WH5WB)	(O3-S1-O1)	(H4WA- O4W-Ni1- O3W- H3WA) ${ }^{\text {iii }}$	(O5WH5WB) ${ }^{\text {iii }}$	(O3-S1-O1) ${ }^{\text {iii }}$

Notes: $\left(^{*}\right)$ for an introduction to graph-set analysis and notation, see Bernstein et al. (1995) and Etter et al. (1990). For a graph-set code $X_{a}{ }^{d}(n)$, X is the structure code ($C=$ chain and $R=$ ring), a is the total number of acceptors involved, d is the total number of donors involved and n is the total number of bonds involved. Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z+1 / 2$; (ii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+1,-y+1,-z$.

[^0]: Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

[^1]: $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
 $M_{r}=429.09$
 Monoclinic, $P 2_{1} / n$
 $a=11.8007$ (3) A
 $b=11.7095$ (3) \AA
 $c=13.6967$ (3) A
 $\beta=113.530(12)^{\circ}$

[^2]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3478). Services for accessing these data are described at the back of the journal.

