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Abstract 19 

Environmental stressors such as low water activity and temperature extremes impose severe 20 

limitations on the productivity of soils in hyperarid deserts. In such ecosystems, macroscopic 21 

communities are often restricted to cryptic niche habitats, such as hypoliths (microbial 22 

communities found beneath translucent rocks), which are widely distributed in hyperarid 23 

desert environments. While hypolithic communities are considered to play a major role in the 24 

productivity of hyperarid habitats, the functional guilds implicated in these processes remain 25 

unclear. Here, we describe the Illumina-based metagenomic sequencing (± 30 Gb), assembly 26 

and analysis of hypolithic microbial communities from the south-west African Namib Desert. 27 

Taxonomic analyses using Small Subunit (SSU) phylogenetic markers showed that bacterial 28 

phylotypes (93%) dominated the communities, with relatively small proportions of archaea 29 

(0.43%) and fungi (5.6%). BlastX analysis against the refseq-viral database showed the 30 

presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales 31 

(59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria 32 

were primarily responsible for photosynthesis with the presence of multiple copies of genes 33 

for both photosystems I and II, with a smaller but significant fraction of proteobacterial 34 

anoxic photosystem II genes. Hypolithic community members demonstrated an extensive 35 

genetic capacity for the degradation of phosphonates and mineralization of organic sulfur. 36 

Our data suggest that Proteobacterial guilds may be more significant in desert niches than 37 

previously recognized, as they showed widespread genetic capacity for mediating key stages 38 

in all biogeochemical cycles. Surprisingly, we were unable to show the presence of genes 39 

representative of complete nitrogen cycles. The diversity of nif genes was low, and the 40 

metagenome showed no evidence of other key N-cycling genes. Taken together, our analyses 41 

suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited 42 

nitrogen biogeochemistry.  43 

44 
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Introduction 45 

The mechanisms controlling primary productivity in soil systems, particularly in hyperarid 46 

deserts, remain poorly understood (1).  Arid soil ecosystems cover over 40% of terrestrial 47 

surfaces and therefore contribute a significant fraction of the global soil carbon budget (2). In 48 

hyperarid deserts, where the extreme stochasticity of rainfall events generally results in very 49 

low plant primary productivity, it is generally accepted that microbial communities are major 50 

contributors to the key processes of ecosystem services (1). Hypoliths, cryptic assemblages 51 

found on the ventral surfaces of translucent rocks, are a prominent feature of both hot and 52 

cold deserts (3, 4). The cryptic hypolithic habitat is known to modulate some of the extreme 53 

environmental stressors associated with hyper-aridity, including temperature extremes, high 54 

incidences of UVA/B and low water availability (5-8). These communities provide a model 55 

system for understanding the factors that control microbial primary productivity (4).  56 

 57 

The majority of published studies on hypoliths have focused on understanding the microbial 58 

diversity and ecology of these communities (6, 9-12). Environmental DNA sequence-based 59 

analyses have demonstrated that hypolithic microbial communities in hot deserts are 60 

dominated by cyanobacterial lineages of the order Pleurocapsales, predominantly members of 61 

the genus Chroococcidiopsis (10, 12-14). In contrast, hypoliths in cold and polar deserts are 62 

dominated by Oscillatorian cyanobacterial morphotypes (3). Hypolithic communities also 63 

contain diverse groups of heterotrophic bacteria from the phyla Actinobacteria, 64 

Acidobacteria, Proteobacteria and Bacteroidetes, many of which belong to the „so-called‟ 65 

category of microbial “dark matter” (3, 6, 10, 15). It has been shown that hot desert hypoliths 66 

selectively recruit microbial taxa from surrounding soils, and that these cyanobacterial-67 

dominated communities may drive community interactions and system functionality in 68 

hyperarid deserts where plant biomass is limited and transitory (12).  69 
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 70 

Acetylene reduction assays have been used to show that hypolithic communities in cold 71 

deserts are a vital input source of nitrogen (16). A more recent study by Chan and colleagues 72 

applied microarray analysis of functional genes involved in autotrophy, nitrogen metabolism 73 

and stress responses in Antarctic Dry Valley soils (17) and showed, for the first time, that 74 

hypoliths harbor high metabolic potential for biogeochemical cycling. However, little is 75 

currently known of the breadth of functional capacity in hot desert hypolithic communities 76 

and their role in edaphic biogeochemical cycles (4).  77 

 78 

Here we report a metagenomic analysis of the functional potential of hot desert (Namib) 79 

hypolithic communities. The central Namib Desert, on the south-west coast of continental 80 

Africa, is designated as a hyper-arid zone with a mean annual rainfall of approximately 25 81 

mm (18). The northern Namib gravel desert zone is rich in quartz reefs, resulting in extensive 82 

contributions of quartz pebbles to the desert pavement (4). In this study, we explore the 83 

metagenome-derived community structure, assess the genetic capacity for primary 84 

productivity and nutrient cycling (including N, C, and P metabolism) and demonstrate the 85 

diversity of genes and pathways which may represent adaptations of taxa in the hypolithic 86 

niche to environmental stressors in this hot desert environment. 87 

 88 

Results and Discussion 89 

Sequence data 90 

Illumina Hiseq-2000 sequencing of bulked metagenomic DNA from multiple (n = 40) Namib 91 

Desert hypolithic biomass samples generated 19.5 billion bp of sequencing data 92 

(Supplementary Materials Table S1). Primary assembly using Velvet resulted in 2,188,786 93 

contigs with a total assembly size of approximately 634 million bp (Supplementary 94 
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Materials Table S2). All contigs shorter than 500 bases were culled, and the average size of 95 

the remaining contigs was 787 bp (Supplementary Materials Table S2). 96 

 97 

Phylogenetic analysis  98 

We first explored the microbial community composition by analyzing the reads using two 99 

approaches; the ribosomal small subunit (SSU) using Metaxa2 (19) and unique clade-specific 100 

marker genes using MetaPhlAn (20). SSU analysis suggested that the Namib hypolithic niche 101 

contains very high Bacterial diversity (93% of total phylotypic signals) with a significantly 102 

lower proportion of Fungi (5.6%) and Archaea (0.43%). The low archaeal and eukaryotic 103 

diversity in the hypolith metagenome is consistent with previous phylogenetic surveys, which 104 

indicated that these groups are poorly represented in such microenvironments (5, 6, 9, 21, 105 

22).  106 

 107 

The taxonomic analysis of SSUs of the bacterial fraction revealed that the phyla 108 

Actinobacteria, Proteobacteria and Cyanobacteria were highly represented in the 109 

metagenome, while other phyla such as Firmicutes, Chloroflexi, Acidobacteria, Bacteroidetes 110 

and Planctomycetes were present as relatively minor contributors to total bacterial diversity 111 

(Fig. 1). MetaPhlAn analysis of the taxonomic prediction using reads also showed a high 112 

abundance of Actinobacteria, Proteobacteria, Chloroflexi and Cyanobacteria, although this 113 

method yielded slightly different proportions of the taxonomic groups compared to the 114 

Metaxa2 (Fig. 1).  115 

 116 

These results are in agreement with earlier studies, based on PCR amplification of 16S rRNA 117 

genes, which found that hypolithic communities in hot deserts were dominated by the 118 

Chroococcidiopsis lineages (order Pleurocapsales) followed by phyla Actinobacteria and 119 
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Proteobacteria (6, 12, 23, 24). The results of the taxonomic analysis of reads from the Namib 120 

Desert metagenome are generally consistent with the range and relative proportions of phyla 121 

present in hypoliths, albeit with slight differences in the relative proportions. The minor 122 

inconsistencies between 16S rRNA gene sequence-based diversity from previous studies and 123 

the results from the metagenomic analysis are perhaps unsurprising, given the accepted 124 

potential for PCR amplification bias (25).  125 

 126 

Binning of assembled contigs and functional analysis 127 

Assembled contigs were used to predict ORFs, binned and assigned to taxonomic groups 128 

using MyTaxa software which uses the ORF identity in each contig to assign it to the most 129 

probable taxon (27). Following contig classification, ORFs were assigned to the following 130 

bacterial phyla: Actinobacteria (122362), Proteobacteria (77810), Cyanobacteria (77810), 131 

Bacteroidetes (10444), Acidobacteria (6911), Firmicutes (6893), Gemmatimonadetes (3363) 132 

and Chloroflexi (3625) (Fig 2A). 36940 ORFs of the most dominant phylum, Actinobacteria, 133 

were assigned as unclassified (i.e., no lower order phylogenetic identity) (Fig 2B) and 29805 134 

ORFs of the Proteobacteria were assigned only up to phylum level (Fig 2C). Cyanobacterial 135 

ORFs were dominated by the order Oscillatoriales (5722 ORFs), with other phyla identified 136 

as Nostocales (4808 ORFs), Chroococcales (4360 ORFs), Pleurocapsales (1843 ORFs) and 137 

Gloeobacterales (347 ORFs) (Fig 2D). A high proportion of the cyanobacterial-assigned 138 

contigs (22662: 66%) could not be attributed to specific taxonomic groups. Fewer ORFs 139 

(1936) were assigned to archaea (Fig 2A), and most archaeal sequences were attributed to the 140 

phyla Euryarchaeota (1171 ORFs/648 contigs), Thaumarchaeota (612 ORFs/390 contigs) and 141 

Crenarchaeota (146 ORFs/89 contigs). These results were consistent with the results obtained 142 

from the classification of reads using Metaxa2. A substantial portion of the total assigned 143 

ORFs (80532: 20%) were classified as unknown and were not linked to any known phylum. 144 
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 145 

Although viruses and bacteriophages are likely to play a major role in microbial diversity and 146 

functionality in soil systems (28), very little is known about phage-host associations and 147 

processes in desert soils (29, 30). 21,666 contigs (8.5%) matched (blastx) to the RefSeq virus 148 

database and most of the sequences were assigned to dsDNA viruses (Supplementary 149 

Materials Fig S1). Caudovirales, followed by Phycodnaviridae and Mimiviridae, 150 

respectively, were the most abundant orders. This result is consistent with findings from a 151 

recent hot desert hypolith metavirome sequence analysis (31) and supports the conclusion 152 

that these members of the Caudovirales are widespread in hot deserts. Notably, the proportion 153 

of the three families (Myoviridae, Siphoviridae and Podoviridae) in the Caudovirales have 154 

only slightly different values from those reported by Adriaenssens and coworkers (31) 155 

(Supplementary Materials Table S3), perhaps a surprising result given the known biases of 156 

the multiple displacement amplification protocol (32) underlying this metaviromics study. 157 

 158 

In order to better understand the functional potential of the microorganisms represented in 159 

this metagenome, we used MEGAN to assign functions to the predicted ORFs (33). Our 160 

analysis showed that of a total of 396,495 genes, an estimated 118,983 (~30%) were 161 

successfully assigned to the KEGG orthology (KO numbers) (Fig. 3A). A further 57,365 162 

(~14%) were annotated to biological SEED subsystem proteins using the refseq protein 163 

database (Fig. 3B). For comparison, in a study of the human gut microbiome metagenome, 164 

47% of the genes were assigned to the KEGG orthology (34).  165 

 166 

The most abundant phyla (Actinobacteria, Proteobacteria and Cyanobacteria) were selected 167 

for an analysis of shared KEGG pathway modules. From a total of 580 KEGG pathway 168 

modules, 358 were incomplete in all three phyla. Interestingly, 83 modules were shared 169 
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among these phyla, which suggest that these modules represent core metabolic pathways and 170 

are essential for organismal survival. Forty-five pathway modules, shared by the phyla 171 

Actinobacteria and Proteobacteria, were mainly involved in heterotrophic metabolism and 172 

stress response regulatory systems (Supplementary Materials Fig S2 & Table S4). 173 

Proteobacteria and Cyanobacteria shared nine pathway modules, including carbon fixation 174 

and nitrogen fixation, while Actinobacteria and Cyanobacteria also shared nine pathway 175 

modules, assigned to metal transport (Supplementary Materials Fig S1 & Table S4). Desert 176 

microbial communities have previously been shown to possess multiple genes involved in 177 

metal acquisition and the maintenance of metal homeostasis (35). The presence of a high 178 

number of common pathway modules implicated in metal homeostasis suggests that these 179 

may be essential for survival in hot desert edaphic environments.  180 

 181 

Primary productivity: photosynthesis and carbon metabolism 182 

Photosynthetic microorganisms are keystone taxa in hypolithic systems (12), and may be the 183 

dominant primary producers for long periods in hyper-arid environments (6, 13, 15, 23). We 184 

used the MAPLE server, which evaluates KEGG pathway modules based on KAAS 185 

assignment of KEGG orthology terms to specific genes/proteins and calculates the module 186 

completion ratios (MCR) for each pathway. Results from MAPLE-MCR analysis suggested 187 

that photosystem-I and II modules were complete for the phylum Cyanobacteria, with 188 

potentially photosynthetically functional members of the orders Oscillatoriales, Chroccocales, 189 

Nostocales and Pleurocapsales (Fig 2D). In addition, anoxygenic photosytem-II genes were 190 

present in Proteobacteria, including members of the Deltaproteobacteria, Rhizobiales and 191 

unclassified Proteobacteria, although no evidence of the anoxigenic photosystem-I pathway 192 

could be found for these taxa (Fig. 4). SEED subsystem and KEGG pathway analyses failed 193 

to identify any photosynthesis genes belonging to any other non-cyanobacterial or non-194 
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proteobacterial phototrophs, such as Chloroflexi, despite the identification of 220 contigs 195 

belonging to the genus Chloroflexus (known for its phototrophic metabolism). 196 

 197 

KEGG pathway analyses of the key photosynthetic enzymes chlorophyll synthase (chlG) and 198 

bacteriochlorophyll synthase (bchG) showed sequences with homology to unclassified 199 

Cyanobacteria and Proteobacteria (genera Methylobacterium, Rhodopseudomonas and 200 

Brevundimonas). Interestingly, Methylobacteria have been previously identified as 201 

widespread colonists of hypolithons in both the Atacama and Namib Deserts (15, 23). MCR 202 

data and analysis of functional genes showed the presence of the complete Calvin-Benson 203 

cycle attributed to the phyla Cyanobacteria and Proteobacteria (Fig. 4 and Fig.5).  204 

 205 

We identified subunits of the gene acl (one copy of aclA and two copies of aclB), which 206 

encode the key enzyme (ATP citrate lyase), required for the reductive TCA cycle (rTCA 207 

cycle) were all assigned to phylum Aquificae (Fig 5). We could not identify the other two key 208 

genes (oxoglutarate synthase and fumarate reductase) involved in this cycle. However, these 209 

acl genes have only been reported from prokaryotes (using the rTCA cycle) and can thus be 210 

considered as „indicator genes‟ for this pathway (36, 37). We suggest that the Namib Desert 211 

hypolithic community may harbor novel taxa affiliated to the phylum Aquificae which may 212 

have the capacity to drive anaerobic carbon fixation (FIG 5).  The proposed capacity for both 213 

aerobic and anaerobic carbon fixation in hot desert soil communities may be a consequence 214 

of the limited C in these systems (38).  215 

 216 

ORFs with homology to genes encoding formyltetrahydrofolate synthetase (FTHFS), a key 217 

enzyme in the Wood-Ljungdahl anaerobic acetogenesis pathway (17), were related to those of 218 

Actinobacteria, Proteobacteria, Gemmatimonadetes and Firmicutes. The key enzyme 219 
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responsible for methanogenesis (methyl-coenzyme M reductase (mcrA)) was not detected in 220 

any of the archaeal contigs, possibly due to the low abundance of methanogens in the largely 221 

aerobic desert soils (4, 39).  222 

 223 

The extent of carbon fixation by members of the Proteobacteria, which are ubiquitous soil 224 

colonists, may have previously been underestimated in hypoliths. Proteobacteria possess the 225 

capacity for anoxigenic photosynthesis, but this contribution to C fixation is often largely 226 

ignored in comparison to cyanobacterial oxygenic photosynthesis (17). In cold desert 227 

systems, Cyanobacteria and Proteobacteria both appear to drive carbon fixation (17), and the 228 

identification of the relevant genes in the Namib Desert hypoliths metagenome suggest that 229 

similar processes may occur in hot deserts soils. 230 

 231 

Genes for the heterotrophic utilization of complex carbohydrates (such as starch, cellulose, 232 

pectin and xylan) were largely associated with Actinobacteria (Rubrobacterales) 233 

(Supplementary Materials Table 5). Aromatic compound degradation genes were also 234 

identified: genes encoding the ortho- and meta-catechol ring cleavage enzymes (catechol-1, 235 

2-dioxygenase and catechol-2, 3-dioxygenase) with similarity to those of the order 236 

Actinomycetales, unclassified Actinobacteria and unclassified Proteobacteria were identified 237 

(Fig. 4). This suggests that Actinomycetales in the hypolithic consortia may play a key role in 238 

detoxification of naturally occurring aromatic organics (40).  239 

 240 

Nitrogen fixation and metabolism 241 

Hyperarid desert environments are typically nitrogen limited (1), thereby enhancing the 242 

importance of diazotrophic microorganisms. Surprisingly, the hypolith metagenome sequence 243 

dataset showed very few nifH genes, encoding the first and rate-limiting step in the nitrogen 244 
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cycle (41). MAPLE server analysis yielded no nifH genes, while only one nifH gene variant, 245 

belonging to the phylum Cyanobacteria, was identified via MEGAN analysis. However a 246 

hmmer search performed against the pre-aligned nifH gene database (42) yielded at least five 247 

copies of the nifH gene, belonging to the phyla Cyanobacteria and Proteobacteria 248 

(Alphaproteobacteria and unclassified Proteobacteria) (FIG 5B and Supplementary 249 

Materials Table S6). This finding is congruent to previous studies, which have shown that 250 

heterocystous cyanobacteria were largely responsible for nitrogen fixation in depauperate 251 

edaphic systems (43). 252 

 253 

A recent study reported the presence of ammonia-oxidizing bacteria in semi-arid soils (44). 254 

However, genes implicated in nitrification (ammonia monooxygenase (amo)) could not be 255 

detected in our metagenomic contigs. It has been suggested that the relative abundance of 256 

these genes may be related to „rain events‟ (45).  Our samples were collected during the late 257 

summer, following a period of months with zero precipitation, which may explain the 258 

absence of these genes from our metagenome and suggests that nitrification processes may be 259 

severely constrained for extended periods in hyper-arid soils. Genes for nitrate reduction and 260 

nitrite oxidation (narGH/nxrAB) were identified and showed homology to those previously 261 

identified from Actinomycetales and unclassified Actinobacteria (FIG 5B). We also found 262 

signatures for genes implicated in denitrification (norB), primarily affiliated to members of 263 

the phylum Actinobacteria (FIG 5B). Nitrate reduction (napA) and ammonification (nrfA) 264 

genes were mostly affiliated to Actinomycetales and unclassified Proteobacteria, respectively 265 

(FIG 5B). We also identified the capacity for nitrogen (and ammonia) assimilation, based on 266 

the presence of marker genes such as glutamate synthase (gltA and gltB), assimilatory nitrate 267 

reductase (nasB) and glutamine synthase (glnA)). These genes were linked to a wide range of 268 

taxa, including members of the Actinomycetales, Rubrobacterales, Cyanobacteria, 269 
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unclassified Actinobacteria, Caulobacterales, Deltaproteobacteria, Acidobacteria, and 270 

Firmicutes (FIG 5B). However, genes for the anaerobic ammonium oxidation (Anammox) 271 

pathway, which converts ammonia directly into free nitrogen, were not identified. This 272 

finding is in contrast to other terrestrial systems (46, 47), particularly nutrient rich 273 

agricultural soils. AmoA-containing microorganisms are more common in aquatic or marine 274 

habitats, but the amoA gene also been identified in hypersaline microbial mats associated 275 

with desert springs (48). Genes for anammox have also been detected in the Antarctic 276 

hypolith microbial communities (17), which are known to have higher water contents than the 277 

largely aerobic „Dry Valley‟ desert soils (49). The absence of anammox genes in the Namib 278 

hypolith metagenome may also reflect the limited capacity for anaerobic niches in hot desert 279 

soils. It has also been shown that anammox rates in biological soil crusts (BSCs) from the 280 

Colorado Plateau were below detection rates (50).  281 

 282 

The combined results from this analysis suggest that N cycling processes may be severely 283 

truncated in Namib Desert hyperarid soil niche communities. Denitrification rates in 284 

biological soil crusts have also been found to be low, despite the availability of NO3
-
 in desert 285 

soils (51). Based on the genetic capacity for diazotrophy, we speculate that hypolithons may 286 

have a similar role in hyperarid desert systems. In low nitrogen availability environments 287 

such as deserts, nitrification is probably restricted to a limited number of low abundance taxa 288 

(52). A limited number of contigs assigned to nitrifying taxa such as Nitrosomonas (56 289 

contigs/44702 bases), Nitrobacter (65 contigs/49915 bases) and Nitrospira (80 contigs/66667 290 

bases) were identified, but the low number of sequences implicated in nitrification processes 291 

supports a view that these communities harbor a low genetic capacity for both nitrification 292 

and denitrification. 293 

 294 
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Phosphorus and sulfur metabolism 295 

Biologically available phosphorus (P) in soils is mainly derived from rock weathering or 296 

from the decomposition of organic matter (53). In deserts, phosphorus-solubilizing bacteria 297 

(PSBs) release phosphorus from soil as orthophosphate anions (54). Gluconic acid and 2-298 

ketogluconic acid biosynthesis in the periplasm of Gram-negative bacteria is known to be 299 

important for phosphate solubilization activity in soils (55). Gluconic acid biosynthesis is 300 

mainly carried out by the enzyme glucose dehydrogenase (GCD) in the presence of the 301 

cofactor pyrroloquinoline quinone (PQQ) (56). We identified copies of the gcd gene, with 302 

homology to members of the orders Rhizobiales, Solibacteriales and Xanthomonadales, and 303 

Proteobacteria and Bacteroidetes phyla, respectively, and suggest that these bacteria might be 304 

involved in phosphate solubilization in Namib Desert soil communities. 305 

 306 

Phosphonates are an alternate source of phosphorus for microorganisms in desert 307 

environments, and are produced by protozoa, flagellates, coelenterates, mollusks, fungi and 308 

some bacteria (including Actinobacteria, Pseudomonas and Bacillus) (57). Although 309 

phosphonates are widely available in the environment, only microorganisms have the ability 310 

to degrade these compounds (58). We identified phn genes in the hypolith metagenome which 311 

may be implicated in the utilization of alkylphosphonate and phosphonates, ascribed to a 312 

wide range of taxa including Alphaproteobacteria (order Rhizobiales, Sphingomonadales and 313 

unclassified Alphaproteobacteria), Betaproteobacteria, Gammaproteobacteria and unknown 314 

Proteobacteria, Firmicutes, Chloroflexi, Planctomycetes, Cyanobacteria and Actinobacteria 315 

(Rubrobacterales, Actinomycetales and unclassified Actinobacteria). We suggest that the 316 

presence of diverse phn genes in the hypolithon indicates that bacterial utilization of 317 

phosphate from phosphonates and alkylphosphonates may be a key factor in „P‟ turnover.  318 

 319 
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Another important and very common enzyme in phosphate metabolism is alkaline 320 

phosphatase (“Alp”), involved in the release of inorganic phosphate (Pi) from the both small 321 

and polymeric organic substrates including DNA and proteins (59). „Alp‟ genes in this 322 

metagenome were associated with Rhizobiales, Caulobacterales, Sphingomonadales, 323 

Cyanobacteria, Chloroflexi and Firmicutes, all of which are known to play a role in plant P 324 

nutrition (60). 325 

 326 

Genes for assimilatory sulfate reduction (cysC, cysN and cysD) were found in the 327 

Rhizobiales, Sphingomonadales, unclassified Proteobacteria and unclassified Actinobacteria. 328 

Genes for the mineralization of organic sulfur compounds were detected (Supplementary 329 

Materials Fig S3), with high homology to those of Actinobacteria (Actinomycetales, 330 

Rubrobacterales) and Sphinogomonadales (Fig. 5C). Although Namib Desert soils are SO4
2-

 331 

rich (64), genes for the anaerobic process of dissimilatory sulfate reduction and sulfide 332 

oxidation (aprA, aprB and dsrA) were not detected in the metagenomic contigs. However, 333 

using a conserved domain search (CDD), we identified one partial soxB gene assigned to 334 

Deltaproteobacteria and soxYZ genes in a contig assigned to Alphaproteobacteria (genus 335 

Methylobacterium). The Sox enzyme system has four principal complexes (soxXA, soxYZ, 336 

soxB and soxCD) encoding enzymes which catalyze the oxidation of hydrogen sulfite, 337 

thiosulfate, elemental sulfur and sulfite to sulfur intermediates or sulfate (61). The soxB gene 338 

is typically used as a marker gene for the sox system in the environmental bacteria (62). Sox 339 

enzymes are commonly associated with the facultative chemolithotrophic 340 

Alphaproteobacteria and the soxB gene has been found in the chemolithotrophic 341 

Thiobacillus-like Betaproteobacteria in agriculture soil (63). In the Namib Desert soils, high 342 

sulphate concentrations (3242.5 mg/kg) (64) and the presence of SOX system in the hypolith 343 

metagenome is suggestive of the presence of chemolithoautotrophic metabolism. 344 
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 345 

Conclusion 346 

Metagenome sequence data can be validly used to assess the functional capacity of 347 

microorganisms in poorly studied environments (67). The analysis of metagenome sequence 348 

data from Namib desert hypolithic extracts has provided an expanded overview of the 349 

taxonomic and functional diversity of hypolithic microbial communities. Our analysis has 350 

shown that these communities are predominantly bacterial, but provides evidence of the 351 

presence of archaea and eukaryotes, albeit in much lower proportions. While we identified 352 

viral sequences affiliated to Caudovirales, Phycodnaviridae and Mimiviridae, the influence of 353 

viruses on the diversity of hypolithic systems remains unknown and complementary studies 354 

focused on this particular group are urgently required. Our data analyses also provide 355 

evidence of novel and unclassified taxa predominantly affiliated to Actinobacteria, 356 

Proteobacteria and Cyanobacteria. The analysis of functional gene diversity has implicated a 357 

large diversity of genes affiliated with these taxa in primary productivity, with members of 358 

the Proteobacteria and Actinobacteria potentially implicated in chemolithotrophic metabolism 359 

(P and S) in the desert environment. Overall, our data support the concept that Actinobacteria 360 

may be significant in driving productivity in soils, as indicated by the presence of numerous 361 

genes and modules implicated in heterotrophic carbon utilization, aromatic compound 362 

degradation and (to a much lesser extent) N cycling.  363 

 364 

Edaphic ecosystems are key elements of climate-feedback models, due to their extensive 365 

capacity for the release and absorption of greenhouse gases (65). Cryptic niches, such as 366 

hypoliths, constitute substantial components of desert edaphic ecosystems (1, 30) and may be 367 

important drivers of gas exchange and geochemical cycling processes in desert soil 368 

ecosystems. Our data suggest that hypolithic communities have a high capacity for C 369 
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fixation, as evidenced by the substantial presence of key photosynthetic genes. In contrast, 370 

our metagenome sequence analyses suggest a severely limited capacity for N cycling. Given 371 

the known interplay between the C and N cycle (66), it is uncertain what the potential 372 

imbalance between C and N turnover processes in hypolithic communities means in terms of 373 

„system stability‟ and ecosystem services.  374 

 375 

 376 

Materials and Methods 377 

Sequencing and assembly of the hypolith metagenome 378 

Hypolith samples (n=50) were collected from the Namib Desert (S 23°32.031‟, E 15°01.813‟) 379 

in April 2010 (11). Samples were first processed for the isolation of total DNA and purified 380 

metagenomic DNA samples pooled for sequencing. Sequencing of metagenomic DNA was 381 

carried out with Illumina Hiseq-2000 using paired-end technology (2 x 101 bases). The 382 

metagenomic DNA was sheared into fragments of 300 bases and recovered from agarose 383 

gels. Adapters were ligated to the ends of the DNA fragments for bridge amplification and 384 

sequencing. The short paired-end reads were used to assess the quality of sequencing data 385 

using an in-house custom python script. The reads having ambiguous base (N) and average 386 

quality score less than 25 were removed using a custom python script. Assembly of the 387 

contigs was performed by Velvet v1.2.10 at hash length (k) 51 (68). 388 

 389 

Bioinformatic analysis of metagenome 390 

Metagenomic data were used for all taxonomic and functional gene analyses. ORFs were 391 

predicted from the contigs using the program MetaGeneMark (69). First, high quality reads 392 

were used for the taxonomic assessment by screening for small subunit (SSU) rRNAs with 393 

Metaxa2 (19) and for phylogenetic marker genes with metagenomic phylogenetic analysis 394 
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(MetaPhAn) software (20). Metaxa2 software extracts the SSU sequences from larger 395 

sequence datasets and assigns them for archaeal, bacterial, nuclear eukaryote, mitochondrial 396 

or chloroplast origins while MetaPhlAn predefines unique clade-specific marker genes as 397 

species-specific name tags (20). Next, assembled contigs longer than 500 bases were further 398 

selected for the binning process using MyTaxa (27). Functional annotation of ORFs was 399 

based on KEGG pathways and SEED subsystems using a blastp search (E-value cutoff at 1e-400 

5) against the NCBI refseq protein database: results were further analysed using MEGAN 401 

v5.0.3 (70). KEGG modules were analysed by the Metabolic And Physiological Potential 402 

Evaluator (MAPLE) web server (33). The Module Completion Ratio (MCR) for each phylum 403 

was calculated using the bi-directional best hit (BBH) algorithm. Venn diagrams were 404 

computed by analysing the 100% complete KEGG pathway modules for the three most 405 

dominant phyla. Marker genes for the analysis of the Carbon, Nitrogen and Sulfur 406 

metabolism were selected and analysed as described by the Llorens-Mares (71). 407 

Nucleotide accession number: The high quality paired end short reads were deposited at the 408 

NCBI under the Bioproject ID: PRJNA290687 and SRA accession number is SRR2124832. 409 
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Figure 1. Taxonomic classification of metagenomic reads. Classification was performed by filtered high quality reads using MetaPhlAn and Metaxa2 at Phylum level. Bar graph is 634 
showing the percent abundance of the different bacterial phyla in hypoliths metagenome. 635 

 636 

 637 

 638 
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Fig 2. Predicted genes (ORF) and contigs in each taxa(A) Abundance of ORF belongs to different bacterial phya. Distribution of ORFs for the three most abundant bacterial phyla 639 
(B) Actinobacteria (C) Proteobacteria, and (D) Cyanobacteria. (Number of contigs for each taxa are written on the top of columns.) 640 
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Figure 3.  Classification of the genes by MEGAN. Bar graph is showing the number of genes assigned to the each phylum (A) KEGG pathway and (B) SEED subsystem 645 
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Figure 4. Heat map showing the percentage module completion ration (MCR) for the aromatic compound degradation, energy metabolism and Photosystem apparatus. 652 
Module completion ratio for the pathways was calculated by MAPLE server using KEGG database. 653 
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FIGURE 5. Schematic representation of the biogeochemical cycling pathways (based on the analysis of marker genes described by Llorens-Mares et al., 2015) (A) Carbon cycling; 656 
*Aquifacea potential anaerobic carbon fixation step based on the presence of key enzyme ATP citrate lyase in the phylum (B) Nitrogen cycling; **Potential nitrifying bacteria 657 
contigs were found in the metagenome but genes for the nitrification were not identified (C) Sulfur cycling; ***Deltaproteobacteria soxB marker gene for the sulfur oxidation. The 658 
dotted lines are representing the absence of the marker genes in the metagenome. 659 
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