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Spinodal-assisted nucleation during symmetry-breaking phase transitions
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The kinetics of spinodal-assisted crystallization in a region of the phase diagram where the dynamics is
controlled by the critical slow down was studied by means of a Cahn-Hilliard model. The length-scale selec-
tivity conducted by the spinodal process led to the formation of a filamentary network of density fluctuations
that resemble the scarred states found in quantum-chaos systems. The present work reveals that the early
structure of density fluctuations acts such as a precursor for crystallization and deeply affects the orientational
and translational correlation between growing crystals. At deep quenches the network of fluctuations is deeply
modified and the classical picture of spinodal decomposition is recovered.

DOI: 10.1103/PhysRevE.79.051607

I. INTRODUCTION

The processes of structure out of a homogeneous system
undergoing a symmetry-breaking phase transition is an im-
portant phenomenon encountered in a large number of quite
dissimilar areas such as condensed matter [1], particle phys-
ics, and cosmology [2]. One of the main mechanisms leading
to phase separation in different systems is spinodal decom-
position (SD). This process has been investigated in a wide
number of systems such as inorganic glasses, polymers,
metal alloys, liquid metal films, or colloidal systems. Differ-
ently from the nucleation and growth process, SD does not
require large fluctuations to initiate the phase separation and
it is characterized by the exponential growth of density fluc-
tuations of a dominating wavelength entirely determined by
the thermodynamic properties of the system [3], [4].

In the classical view of SD, at early times the wavelength
selectivity gives rise to the well-known ring in the pattern of
scattered radiation. In real space, the wavelength selectivity
is visualized as a labyrinthic pattern of density fluctuations.
As time proceeds, an array of domains with short-ranged
order develops. The last stage kinetics of the SD process
involves a coarsening toward the equilibrium of the coexist-
ing phases [5-7].

Since most of the experimental approaches to study the
process of SD are based in x-ray scattering techniques, the
kinetics of ordering is naturally analyzed in the reciprocal
Fourier space. Theoretically, most of the studies on SD have
been focused in binary systems where the kinetics of phase
separation can be well described through the classical Cahn-
Hilliard approach.

Figure 1 illustrates the typical scattering functions associ-
ated to early and late stages of SD. When a binary blend is
suddenly quenched into the unstable region of the phase dia-
gram, at early times there is a strong length-scale selectivity
that leads to the disordered pattern shown in Fig. 1. During
this stage there an exponential amplification of the unstable
modes. As time proceeds, the kinetic pathway toward equi-
librium involves a coarsening process. During this process
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the main peak position of the scattering functions shifts to-
ward the low-k region. Figure 1 also shows the typical scat-
tering function of SD in off-critical systems with competing
interactions. Although in this case there is sharper length-
scale selectivity, the patterns are quite similar to those found
in binary systems. As time proceeds the competing interac-
tions lead to a pattern with a liquid-like order. In this case,
long-range order can be achieved by the slow annihilation of
topological defects.

Differently from the standard pictures of nucleation and
growth or SD, experimental data on different systems also
suggest an alternative pathway toward equilibrium involving
a combination of both mechanisms [8—17].

Experimental and theoretical results on different poly-
meric systems clearly indicate spinodal kinetics before the
emergence of the crystalline structure [8—11]. During the
early stage of phase separation there is an induction time
where density fluctuations of a given wavelength are con-
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FIG. 1. (Color online) Circularly averaged scattering function
S(k) and patterns of the order parameter at short (line) and long
times (symbols) for two different off-critical systems. The late-time
behavior corresponds to binary (open symbols) and competing in-
teractions systems (filled symbols). Although at short times there is
strong length-scale selectivity in both systems, in the classical view
of SD the late-time configuration involves the formation of growing
domains via a coarsening process.
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tinuously amplified. Although most of the studies have been
focused in the crystallization process of polymers and pro-
teins [12], similar findings in systems where the nature of the
interactions is completely different such as self-organized
nanocrystalline alloys [13], Rayleigh-Bénard convection
patterns [14,15], or thin-film dewetting [16,17], suggest the
existence of an universal phenomenon where SD enhance the
nucleation of the equilibrium structure. Another signature of
universality is provided by experimental data on polymer
crystallization and dewetting indicating the existence of cor-
relations between growing domains [11], [16]. At present,
neither the link between the density fluctuations and the pre-
cursors for crystallization nor the origin of such correlations
has been clearly established.

Here we investigate the process of spinodal-assisted
nucleation by means of a Cahn-Hilliard model [3], [7]. This
is one of the simplest theoretical pictures to describe the
process of symmetry-breaking phase transitions. Although
this model does not contemplate any detailed information
about the free energy, it has the great advantage of allowing
to describe the universal mean-field response of a number of
systems [18]. As compared with previous studies, here we
focus our attention in the spinodal zone in the region close to
the metastability limit, where both length-scale selectivity
and critical slowing down allow us to identify the main fea-
tures of the precursors for crystallization.

II. DYNAMICAL MODEL

In the neighborhood of the critical temperature, the free
energy of a wide variety of systems with strong wavelength
selectivity such as Langmuir films, block copolymers, mag-
netic garnets, or ferrofluids can be phenomenologically de-
scribed by an order parameter free-energy functional of the
form [18]:

F=fdr3[U(¢)+lz—)(V¢)2]

+gffdr3dr’3G(r—r’)¢(r)¢(r’) (1)

where i(r) is the order parameter (OP) (e.g., local density or
magnetization in block copolymers, or magnetic systems, re-
spectively), G(r) is a solution of V>G(r)=—8(r) and U(t)
=—1mf?+ v+ Ky, The parameters B, v, k, and D are
phenomenological constants which can be computed from
microscopic models [18] and 7 provides a measurement of
the depth of quench. In the spinodal region, U(y) favors
periodic profiles of well-defined wavelength and symmetry.
The last term in Eq. (1) takes into account the long-range
free-energy contribution [7], [18].

For a conserved order parameter, the relaxational dynam-
ics can be described by the following Cahn-Hilliard equa-

tion:
Iy ol OF
P =MV {5¢} (2)

where M is a mobility coefficient. Eq. (2) leads to SD for
7> 7,=2\BD being 7, the spinodal temperature.
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FIG. 2. (Color online) (a) Circularly averaged scattering func-
tion at different time scales S(k) for 7,=1073 at early [\(kq)t=5
X 1072 continuous line], intermediate [\ (ky)t=2 % 107" dotted line;
N(ko)t=8.5 X 107! dashed line] and long [A(ky)t=1 symbols] times.
The arrows highlight the positions of the main and higher-order
reflections associated with the crystalline structure. The inset shows
the induction period vy as a function of 7, (symbols) and power-law
fit (line).

Equation (2) was numerically solved with a random initial
condition, in the hexagonal region (7= 7, and v#0) for a
two-dimensional system containing ~2.5X 10* disks. The
mobility coefficient was set at M =1 and the phenomenologi-
cal parameters in the free energy were fixed at v=0.023, «
=0.38, B=0.03, and D=0.3. The noise term was ignored
except to include it as providing initial randomness in the
system. We have also conducted studies that include thermal
fluctuations and have confirmed that fluctuations renormalize
the depth of quench increasing the pseudonucleation rate.
For more details about the scheme of resolution of Eq. (2)
see Ref. [7].

III. PRETRANSITIONAL STATE

Shortly after the quench the order parameter is small (¢
~0) and the stability of the system can be analyzed by con-
sidering the order parameter as a linear superposition of
functions with the form: ¢, (r,)=exp[ik-r+\(k)z], where
N(k)=—Dk*+ 7k*— B [3]. Then, there is only a bounded range
of high temperature unstable modes that can grow (A(k)
>0). From the narrow range of these growing modes, there
is one which propagates faster (k3=17/D) and rapidly selects
a length scale in the system. The strong k selectivity can be
clearly observed through the circularly averaged scattering
function S(k) shown in Fig. 2, where the main peak position
defines a dominating length-scale a: a~ 1/k,. Here S(k) was

determined as S(k):(zZ(k) @(k)*), where zZ(k) represents the
Fourier transform of the order parameter.

IV. RANDOM SUPERPOSITION OF MODES

At early times i(r,f) can be expressed as: ¥Ar,r)
~ [dQip Py (r,1) where iy is the initial amplitude of the k
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FIG. 3. (a) Pattern corresponding to the absolute value of a
function obtained as a random superposition of 5000 sinusoidal
waves of fixed k. (b) |y(r)| at early times [A(ky)t=5X1072, 7,
=107%]. Regions where the order parameter is larger appear lighter
than the average. Note the similarities between both patterns.

mode, that is, ¢(r,r) can be represented as a random super-
position of sinusoidal modes.

Figure 3(a) shows a typical pattern obtained as a random
superposition of sinusoidal waves of constant k. Contrary to
physical intuition, a superposition of modes with nearly con-
stant k and random amplitudes, phases, and directions does
not result in a distribution of amplitudes that resembles an
unstructured speckle-like pattern, but exhibits a filamentary
network of quasilinear density fluctuations [19]. These
ridged structures, dubbed scarlets by Eric Heller [20], are a
general wave phenomenon and are present in systems where
the dynamics is represented as a random superposition of
modes such as quantum billiards [20], [21] or surface-wave
patterns [22].

Although quite common in the jargon of quantum chaos,
the influences of these ridged structures have been never
taken into account in the process of phase separation. As we
show below, this pretransition ridged state in the density
fluctuations not only controls the formation of well-ordered
domains during SD but also introduce long-range correla-
tions between the precursors.

Even though the filamentary structure of density fluctua-
tions is completely “hidden” in the ring of scattered radia-
tion, they can be clearly identified in real space. Figure 3(b)
shows the pattern of |¢(r)| at the initial stage of SD
[t<\(ky)~']. Note the similarities with the pattern obtained
via the random superposition of sinusoidal waves (Fig. 3(a)).

The real-space two-point correlation function defined as
C(r)=[dr' {r')y(r+r’) for an order parameter given by a
random superposition of modes of constant k becomes C(r)
~ Jo(kor), where J; is the Bessel function of zero order [19],
[23].

Figure 4 shows C(r) for the early process of SD at two
different temperatures. At temperatures nearly close to the
spinodal S(k) is sharply peaked around k, and C(r) behaves
such as a Bessel function decaying asymptotically as C(r)
~ 1/+kor. However, as the temperature is reduced the width
of the ring of unstable modes becomes thicker (see inset of
Fig. 4) and asymptotically C(r) behaves such as C(r)
~exp(-r/&c), defining in this way a characteristic length
scale &q for the decaying of the density correlations. The
inset of Fig. 4 clearly shows the profound effect that the
mode selectivity has on the network of density fluctuations.
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FIG. 4. (Color online) Two points correlation function C(r) as a
function of the distance r at two different reduced temperatures
(continuous lines) and asymptotic behavior (dashed lines). The in-
sets indicate the real (J¢/(r)|) and Fourier-space (S(k)) representa-
tion of for 7,=107> (a) and 7,=1072 (b). Note the influence of the
temperature in the early network of density fluctuations.

V. SPINODAL-ASSISTED NUCLEATION

As a consequence of the continuous amplification of the
order parameter, as time proceeds, the nonquadratic terms in
U(y) acquires a larger relative importance and nonlinear dy-
namics comes into play. However, due to the presence of the
ridged structure, the effect of nonlinearities is not homoge-
neous. Although there is a continuous amplification of i(r)
everywhere, it amplifies faster at regions with initially larger
fluctuations, i.e., ridges. Because the nonlinearities define the
crystalline symmetry, preferentially amplified ridges trigger
the nucleation of well-ordered domains that rapidly propa-
gates throughout the system.

Figure 2 also includes the circularly averaged structure
factor at intermediate and long times. As time proceeds, there
is a regeneration of modes and the scattering function shows
an increase in the main peak intensity and well-defined
higher-order peaks at the positions expected for the crystal-
line structure [6]. Through S(k), it is possible also to note the
low k-mode regeneration mainly associated to the contribu-
tion of the form factor [1] of the growing domains.

In Fig. 5 we show the complete process of spinodal-
assisted nucleation as seen through the order parameter. At
early times it is observed that in the branching points of the
network of ridges trigger the nonlinear terms in the free-
energy functional (Fig. 5(a)). Then, a small seed of the equi-
librium phase is created at these points (Fig. 5(b)). While in
the interior of these seeds there is a continuous amplification
of the order parameter until saturation, the front of the grow-
ing grains propagates through the system at a constant
temperature-dependant velocity (Fig. 5(c)). Then, the colli-
sion between the different domains leads to a polycrystalline
structure (Fig. 5(d)) with an average domain size controlled
by the temperature.

Note that instead of a pattern with a short-ranged correla-
tion length, as expected for SD, here we observe the propa-
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FIG. 5. (Color online) Pseudonucleation of the hexagonal phase
triggered by the fast amplification of the branching points of the
early network of scars at short time [\(ko)z=2X107'] as seen
though #(r)? (panel a) and #(r) (panel b). Bottom: (c) Propagation
[N(kq)t=8.5%107"] and (d) collision of domains [\(ky)z=1]. Note
the excellent orientational and translational order inside each
domain.

gation and collision of coherent domains with an excellent
translational and orientational order. Then, even though the
process of phase separation is conducted in the spinodal re-
gion, the inhomogeneities produced by the random superpo-
sition of modes provide the seeds for crystallization. Since
the amplification factor \(ky) goes to zero at 7, [N(ko) ~ T
—7,], the induction period 7 prior to the emergence of or-
dered domains is controlled by the so-called critical slow
down (see the inset of Fig. 2), i.e., y~17,', where 7,=7/1,
-1.

In order to unveil the correlation between propagating
crystals and the underlying ridges, we use the Minkowski
measurement. As shown by Herminghaus et al., this method
is very sensitive to spatial correlations in the distribution of
the initial ensemble of pseudonucleation seeds [16]. In Fig.
6, we plotted one of the Minkowski measurements (normal-
ized total area A of the pattern) as a function of the disk
radius, r. In contrast with a random distribution, our data
show substantial deviations confirming that the domains are
not generated by a random process. The presence of the cor-
relations in the spatial distribution of the grain positions
demonstrate is inherited to the specific correlations imposed
by the spinodal process. The existence of the correlations can
be also observed in real space in the inset of Fig. 6 where the
ridges trigger the formation of hexagonally-ordered crystals
along a preferential direction.

Another quantitative analysis to detect the presence of
correlations can be made by comparing the average crystal
size and the length-scale &, associated to the asymptotic be-
havior of C(r). The average crystal size can be estimated
through the full width at half maximum of the main peak of
S(k): &~ 8Syw()™! [6,7]. In Fig. 7 we plot & and & as a
function of the reduced temperature 7,. We can observe that
both correlation lengths scale with 7, according to a power-
law consistent with &~ &-~ T;I/ 3 indicating the existence of
a strong correlation between early and late structures.

In addition to the positional correlation between growing
crystals observed in Fig. 6, the early network of density fluc-
tuations also induce orientational correlations between the
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FIG. 6. (Color online) Minkowski measurement A as a function
of the disk radius r. Continuous line and squares represent theoret-
ical and simulated data for a random distribution of nuclei, respec-
tively. Circles correspond to the spinodal-assisted nucleation
mechanism studied here. The inset clearly shows the formation of
correlated-hexagonal crystals.

crystals. Since different precursors for crystallization can be
located along a given ridge, a preferential direction for the
orientation of the crystals is clearly defined during the induc-
tion period [t<\(ky)™']. To emphasize the differences be-
tween translational and the orientational correlations, in Fig.
7 we also shows the orientational correlation length & mea-
sured at long times.

To determine & at different temperatures the orientational
correlation  function gg(r) was obtained as  g4(r)
=(exp{6i[ 6(r)— 6(r')]}). Here O(r) is the local orientation at
position r. To determine gq4(r) a standard procedure was
implemented to identify the position of each disk in the hex-
agonal pattern [7]. The local interdisks bond orientation in
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FIG. 7. (Color online) Correlation lengths as a function of 7,
(symbols indicated in the figure). The inset shows the local orien-
tation of growing crystals at a shallow quench and intermediate
times [7,=1073, N(ky)r=8.5 X 107!]. The different colors (gray in-
tensity) indicate the local orientation of the hexagonal lattice and
also provide a measure of the average grain size. The strong orien-
tational correlation between growing domains is induced by the
early networks of density fluctuations. Color (gray) scale and lattice
orientation indicated on the right.
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the hexagonal phase was determined in real space by a De-
launay triangulation through the center of the disks. The
color (gray) key employed to identify the domains in Fig. 7
indicates the orientational field over the range [0,7/3], as
appropriate for a sixfold-symmetric structure. Then, & was
determined by approximating the circularly averaged orien-
tational correlation function g4(r) with a single exponential:
86(r) ~exp(=r/&).

We found that the dependence of & with 7, is also con-
sistent with a power-law behavior: &~ 7;2/ 3. As compared
with & and &, & is more strongly dependant on 7,, indicat-
ing the existence of orientational correlations between grow-
ing crystals. Such correlation can be observed in the inset of
Fig. 7, where the local orientation of the growing crystals has
been identified through the color (gray) map. Note that the
orientation of several near-neighbor propagating grains is
strongly correlated. As previously discussed these correla-
tions are provided by the early structure of density fluctua-
tions.

Although at shallow quenches the orientational correla-
tion length is about one order of magnitude larger that &;, by
increasing the depth of quench beyond 7,~ 1072, the domain
size becomes comparable to one-lattice constant (&~ &
~a). Below this temperature, nonlinearities are triggered
uniformly throughout the system, the formation of ordered
domains with long-range order is inhibited and the process of
SD reduces to the classical picture.

It is interesting to note that the experimental data of
Heeley et al. for polymer crystallization show a different
kinetic regime for shallow (7,=0.004) and deep quenches
(7,=0.05) [9]. Although in our case the wavelength selectiv-
ity could be stronger that in polymer crystallization, the simi-
larity in the values of 7, separating both regimes is quite
surprising. Finally, we may also note that the existence of
correlations may explain the departures from Avrami’s kinet-
ics found during polymer crystallization [9].

VI. CONCLUDING REMARKS

The frustration of the order parameter to reach equilib-
rium at the interfaces of colliding domains is often visible

PHYSICAL REVIEW E 79, 051607 (2009)

through topological defects, which mediate between different
degenerated ground states [6,7]. During the last years it has
been a great effort to elucidate the mechanisms leading to the
formation and features of topological defects and different
condensed matter systems such as liquid Helium *He or lig-
uid crystals have been employed to test theoretical scenarios
[2], [24-27]. Since here the domains propagate free of ori-
entational or translational distortions, the totality of the ori-
entational defects are condensed along domain boundaries
and its density is entirely controlled by the reduced tempera-
ture in qualitative agreement with Kibble’s picture for cos-
mological phase transitions [24], [26]. However, here the
early network of density fluctuations introduce a strong ori-
entational correlation between propagating domains, which
reduces the density of trapped topological defects predicted
by Kibble’s picture [24].

Finally, since the underlying mechanism of phase separa-
tion described here is general to a broad class of systems
where the early kinetics is controlled by a dominating length-
scale, this work provides unambiguous insight into the dy-
namics of symmetry-breaking phase transitions and shed
light on the early stage of ordering leading to crystallization.
Our work clearly shows that contrary to the current belief, it
is possible to obtain large and perfectly ordered crystals dur-
ing continuous symmetry-breaking phase transitions. It is
hoped that this work will stimulate experimental research to
study the process of spinodal-assisted nucleation.
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