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ABSTRACT: An integrated approach that solves the cutting stock problem and scheduling is considered in this article. The
main challenging characteristics of this problem are given by its combinatorial nature, as well as the nonconvexities appearing in
the formulation. Scheduling decisions are directly affected by cutting patterns and present changeover times that are sequence-
dependent. Given the problem complexity, in general, cutting stock optimization has been considered independently from the
scheduling problem. However, a cutting plan that defines the sequence in which patterns are processed is essential in order to
obtain a solution in the context of corrugated board boxes industry. In order to obtain a global solution, the approach that has
been developed uses a disjunctive technique to transform the original nonconvex formulation into a mixed-integer linear
programming (MILP) model; whereas a continuous time representation is assumed to model sequencing decisions by applying
general and immediate precedence constraints. Both scheduling models are presented and compared in three examples, showing
efficient solutions for the integrated problem.

1. INTRODUCTION

Cutting stock problems (CSPs) have been intensively studied
over the past decade, and the number of publications has
increased considerably during this period. Generally speaking, a
CSP consists of cutting large pieces of material into smaller
ones; this process is executed by means of patterns where the
same cut is repeated several times. It has many industrial applica-
tions, such as the processing of wood, metal, paper, glasses,
leather, etc.; a complete characterization of this problem can be
found in the work of Wascher et al.1 According to this typology,
the problem is a two-dimensional one, with input minimization,
since all small items must be assigned to large items. In addition,
there are many items of relatively few different shapes (width,
length, and board type) and there are also several large different
objects (raw paper rolls). In conclusion, this problem can be
classified as a multiple stock size of cutting stock problem.
CSP complexity is given by its combinatorial nature and the

presence of nonconvex constraints having terms with the pro-
duct of two variables (bilinear terms). Several objective func-
tions can be applied in order to obtain an optimal solution. For
those reasons, the research work is focused on the proposition
of new models and algorithms2 to reach an optimal solution in
a reasonable execution time.
The very first relevant works were developed by Gilmore and

Gomory,3−5 where patterns are pregenerated and considered as
known vectors in a mixed-integer programming (MIP) optimiza-
tion model that decides the number of them to produce. Given
the NP-hard nature of the problem, many articles have proposed
heuristic procedures to solve the CSPs.6−9 However, some works
also present optimization models to solve the problem in dif-
ferent industrial applications, such as cutting pieces of wood,10

stainless steel,11 paper rolls12 and glass industry.13 Erjavec et al.14

considered the CSP to define raw material stock size.
Given the problem complexity, in general, cutting stock opti-

mization is considered independently from the scheduling problem.

The short-term scheduling of a cutting process consists of
deciding the order in which cutting patterns must be processed
to guarantee compromised due dates, among other constraints.
However, cutting decisions could greatly affect schedule feasi-
bility, so an integrated approach is crucial to offer an optimal
result.
In the case of wood cutting application, Yanasse15 proposed a

pattern sequencing method. The main challenge is given by a
limited storage space around the saw machine. During the pro-
cess, stacks of panels being cut can be removed only after their
orders are completed. The problem consists of sequencing the
patterns in order to minimize the number of stacks opened. One
assumption of this approach is that patterns are already defined
and the main focus is given by the sequencing problem. Examples
of four and six patterns are considered to test the approach, which
are solved with a branched-and-bound algorithm.
Westerlund and Isaksson16 considered the problem of produc-

ing paper reels from larger ones, such that certain specifications
are satisfied. Cutting patterns are calculated in advance, so the
optimization model selects the patterns to cut. Although patterns
are not sequenced in the time horizon, they include a constraint
that guarantees that the total time consumed to produce the
pattern is lower than the time to deliver minus the occupation
time for cutting machine. Changeover times are not sequence-
dependent. An example with eight orders is used to illustrate the
approach proposed.
Giannelos and Georgiadis17 also presented the scheduling of

cutting-stock processes assuming that feasible patterns are deter-
mined a priori. They use a relax-and-fix heuristic to solve the
problem where multiple identical parallel machines are considered.
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An example with eight product types, three cutting machines,
three raw material types, and four time slots for each machine is
presented. They also present an integrated optimization approach
in the cutting stock problem of paper rolls considering due dates
in customer orders,18 analyzing three industrial cases studies.
Johnston and Sadinlija19 integrated the optimal cutting plan

and sequencing decisions, assuming that the order of the pat-
tern also corresponded to the position of the pattern in the
manufacturing sequence. This idea shows some correspond-
ence with the time slot representation of traditional scheduling
problems, because the jth pattern is processed right before the
jth + 1 pattern. There is no limitation regarding the possible
combinations between orders or in the type of raw material to
use in each pattern. With the proposed approach, they solve
several examples disregarding sequencing constraints and one
example of seven orders in which due dates are taken into
account.
In the work presented by Yanasse,20 an integer linear pro-

gramming formulation is presented for the integrated problem,
and they proposed a solution procedure based on Lagrangian
relaxation to decompose the problem into two subproblems.
They used a discrete time representation to address the schedul-
ing problem. They also proposed a heuristic procedure to pro-
vide feasible solutions to the integrated problem.
In order to ensure regularity of downstream material flow,

choosing patterns and run lengths is not enough.21 A cutting
plan that defines the sequence in which patterns are processed
is essential in this sense. The problem that was presented by
Arbib, Mairnelli, and Pezzella21 included finding a pattern sequence
that fulfilled demand and reduced trim-loss and the number of
stacks maintained open during the process. They proposed a
heuristic procedure based on tabu search to define a set of feasible
cutting patterns and schedule.
Haessler and Talbot22 developed a 0−1 model to solve the

corrugators trim problem. The complexity of the cutting stock
and trim-loss problem in the context of the corrugated board
boxes industry is described in detail, showing the several trade-
offs involved. A limited number of patterns are pregenerated by
applying a set of economical rules. The most convenient pat-
terns are selected by the optimization model. Only some types
of patterns are allowed to restrict the problem combinatory;
sequencing decisions or due dates are not included in the model.
Also, it is assumed that raw materials of different sizes (widths)
are available but no consideration regarding different paper types is
taken into account. These authors point out that the industrial
context of this cutting stock and trim-loss problem present particular
characteristics that deserve special attention and study in order to
reach an optimal solution.
In our approach, the integration of the optimal cutting plan

and scheduling through a mathematical optimization is con-
sidered. In general, most articles assume that cutting patterns
are already defined when scheduling or sequencing decisions
are analyzed or apply heuristic techniques at some point of the
execution process to come up with a result. In the proposed
work, the CSP and scheduling are considered simultaneously in
one optimization model, avoiding the use of heuristic strategies
and taking into account the special characteristics of the pro-
duction process under analysis.
The production of board boxes is even more complex than

cutting large raw material into smaller pieces, since additional
considerations must be taken into account. In order to solve the
problem to global optimality in one step, cutting patterns are
not known a priori, because they become part of the decision

model. Their definition needs the assignment of papers of speci-
fic width and type to the different layers of the board, which
becomes an important part of the model. As usual, several custo-
mer orders are assigned to cutting patterns where sheets of board
of different sizes must be cut. On the other hand, scheduling must
consider that processing times are variables that are dependent on
the determination of the cutting patterns. Excessively long pat-
terns, for instance, might violate due date commitments with custo-
mers. Different changeover times are involved in this problem;
some of them are fixed, while others are influenced by the
sequence. Only an integrated approach can guarantee an opti-
mal, and even feasible, solution to the problem.
Since the original formulation is nonlinear due to bilinear

terms from the cutting pattern decisions, we propose a disjunc-
tive technique to obtain a linear formulation. In addition, schedul-
ing decisions are modeled applying binary precedence variables
over a continuous time representation. Three examples will be
analyzed in order to test the efficiency of the model.
This article is organized as follows: in section 2, the cutting

process in the context of corrugated board boxes is presented;
section 3 introduces some modeling issues to take into account in
order to formulate the optimization model; the next part (section 4)
shows the formulation of the problem as a mixed-integer non-linear
program (MINLP), which is then transformed into a linear disjunc-
tive problem and finally relaxed as a mixed-integer linear program-
ming (MILP) formulation; results are presented in section 5,
which is finally followed by a discussion and conclusion section.

2. CUTTING PROCESS CHARACTERIZATION
It is a general practice that the manufacturing of corrugated
board boxes is implemented as a pull process: board boxes are
produced as customers’ orders are received. In this scheme, the
production process is planned in order to fulfill customer require-
ments in terms of boxes dimensions, board type, amount of units,
and due dates. This characteristic supports the idea that cutting
plan and scheduling decisions should be considered in an inte-
grated approach, such that the optimal cutting plan does not com-
promise scheduling feasibility.
In order to satisfy customer orders, the company handles a

stock of paper reels provided by paper converting mills. These
reels are differentiated according to paper type (gramage or
color) and reel width. The use of different sizes (widths) allows
an efficient use of the raw material, because the width can be
selected in order to minimize the trim loss in the cutting pro-
cess. Different paper widths can be assigned to produce the
board and also multiple pattern configurations can be used to
cut board sheets, leading a huge number of combinations to
define cutting patterns and satisfy customer orders.
The corrugated board is produced using several paper layers.

There are two main types of layers: liner and fluted. The board
structure is mainly defined by the number of layers assigned
and the paper type in each layer. The single wall is a typical
board used in the industry which is a rigid structure, with two
external liner layers and one fluted in the middle of the board,
as it is shown in Figure 1. According to the box dimensions, the
size of the board sheet to cut is determined (see Figure 2),
which is produced in a special machine that forms board and
cuts the sheets (this is called a corrugator).
The production of corrugated sheets is a continuous process.

All activities are performed simultaneously in the same cor-
rugator machine, and the order in which these activities must
be performed is fixed. The initial step is to place the paper reels
in the machine. Since all paper reels are liner, the fluted layer is
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obtained in the first stage of the corrugation and cutting
process. Adhesive is then added to glue the liner layers to the

fluted one. Once corrugated board is formed, it goes through
the cutting section of the same machine, where board sheets are
finally obtained.
The cutting machine has longitudinal slitters and transversal

guillotines to cut the boards. The board is first cut into strips
and then chopped to sheets according to the lengths required.
The number of longitudinal slitters limits the number of sheets
to cut across the width of the pattern, while the guillotines deter-
mine the number of orders of different lengths. For example,
if the corrugator has five knives, seven pieces of board can be
obtained in the pattern width. However, the two external ones
are discarded because the layers are not perfectly glued which repre-
sents a lower bound to the trim-loss. In general, the corrugator has
two guillotines, allowing two different lengths to cut. Figure 3 shows
an example of the cutting pattern process.
During the cutting process, some trim-loss is produced since

the widths of the papers assigned to form the board are wider
than the width used to cut the sheets. This is a very flexible
process, since different paper widths can be assigned to define
the board and also multiple sheets (of the same board type but

Figure 2. Box and sheet dimensions.

Figure 3. Production process stages.

Figure 1. Corrugated board sheet.
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different sizes) can be used to form a pattern. So one main
objective is to find a set of cutting patterns that minimizes the
cost of raw material lost during the cutting process.
Finally, whenever a pattern is finished, some additional activi-

ties are required before the following pattern starts the produc-
tion process. These activities determine the changeover times that
must be considered in the scheduling decisions. They include:

• changing the position of knives due to the quantity, loca-
tion, and dimensions of the sheets;

• changing the paper width in some layer(s) of the board;
and

• changing the paper type in some layer(s) of the board.

The first activity requires 1 min, whereas the last two activi-
ties can take 15−45 min in some cases, depending on the num-
ber of layers to implement the change. As a result, there is a
minimum setup time, determined by the positioning of the
guillotines and slitters, which is fixed and an additional change-
over time, depending on pattern configuration and sequence
(changing paper width and type). Since all these activities are
performed simultaneously, only the greatest time must be con-
sidered. All these considerations must be included when model-
ing scheduling decisions in order to also satisfy the due dates of
customers.

3. MODELING ISSUES
Even though the flexibility of the cutting process is a positive
characteristic that makes it possible to minimize trim-loss, it
also requires an efficient modeling approach to solve the pro-
blem. As a result, the assignment of paper width to cut patterns
according to the paper stock available and the highly combina-
tory nature of the problem are the main challenges to finding
an optimal solution in practical terms.
Nevertheless, cutting decisions also affect model convexity.

Bilinear terms appear in the assignment constraints and in the
product of length and width of a cutting pattern in order to
calculate the number of units produced with it. For that reason,
transformation techniques must be applied to reformulate the
bilinear terms. In addition, this problem is highly combinatory,
since there are many possible cutting patterns that can be used
to satisfy customer orders.
Bilinear terms appear in the formulation in paper assign-

ment and pattern area calculation, as well as stock and demand
constraints.
There are several methods to transform bilinear terms into

linear ones; different alternatives have been studied by Li and
Lu,23 Li et al.,24 and Rodriguez and Vecchietti.25 In order to
obtain a linear reformulation, Rodriguez and Vecchietti26 ana-
lyzed two different approaches. In the first place, pattern pre-
generation is considered in order to define all feasible patterns.
Then, a MILP formulation is developed to select the optimal cut-
ting pattern and length to produce in order to satisfy demand
requirements and minimize the trim-loss costs. A second strategy
that reformulates the entire problem as MILP and solves it in one
step is also considered and compared. This approach was pre-
viously applied by Harjunkoski et al.27 to the trim-loss problem in
the paper mill. The comparison carried out shows that the one-
step strategy is much more inefficient than the first one, because
of both a relaxation of the original problem and an increased
number of variables and constraints. In this article, a disjunctive
reformulation is used to reformulate cutting bilinearities, which has
been successfully proposed for several applications by Rodriguez
and Vecchietti.25

The scheduling consists of defining the order in which cut-
ting patterns must be produced. Since, in this formulation,
patterns are decision variables, then their processing times are
variables that are dependent on pattern length (decision vari-
able of the cutting plan) and the machine velocity (parameter).
Furthermore, the width of papers assigned to each layer of the
patterns affects setup times. Suppose that all patterns are of the
same width, the setup time between two consecutive patterns
will be given by the change in knife positions and paper types.
These relationships between cutting and sequencing problems
show the importance of an integrated approach.
Customer orders, considered as board sheets in the cutting

and corrugation process, are not sequenced directly because
they are assigned to patterns. They can be satisfied using more
than one cutting pattern so the ending time of an order must
take into account the patterns in which it is assigned. For that
reason, the order is finished when the last pattern that includes
this order ends.
Since processing times are not known a priori, a continuous

time representation is more appropriate for the scheduling
problem. In this case, general and immediate precedence strat-
egies are used and compared. Castro and Grossmann28 pro-
posed a disjunctive approach to better understand and derive
general precedence constraints in a scheduling problem. Imme-
diate precedence variables allow handling changeover in a direct
manner while general precedence includes a lesser number of
binary variables.29 One limiting characteristic of the general pre-
cedence approach is that it might overestimate the final time of
the patterns when setup times are involved. We show in section
4.2 that there is a minimum pattern processing time that allows
the use and comparison of both models.

4. PROBLEM FORMULATION

4.1. The Original MINLP Model. 4.1.1. Cutting Stock
Problem (CSP).

∑ ∑ ∑+ ·cp CY yrMin
p k

pk
p

p
(1)

As previously mentioned, when the board is cut into smaller
pieces to produce the sheets, some waste of material always
occurs, because of the differences between the pattern widths
and the paper widths. Since raw material cost represents a
relevant part of product cost, the objective function is to mini-
mize the cost of paper trim loss in the cutting process. Variable
cppk represents the trim loss cost of pattern p in each layer k,
which is dependent on the widths of papers assigned to each
layer, the dimensions of the orders assigned, the pattern length
and paper cost of each layer. In addition, the changeover cost
CY is included whenever a new pattern p is produced. This
equation is shown in eq 1.

∑ ≤ − ∀ ∈n Nlong p P1
i

ip
(2)

Equation 2 defines that the maximum number of sheets to cut
per pattern width must be lower than or equal to the number of
longitudinal knives Nlong minus one, where nip is an integer vari-
able that indicates the number of units of the order i assigned to
pattern p.

∑ ≤ ∀ ∈y Ntrans p P
i

ip
(3)
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Equation 3 defines that the number of different orders assigned
to each pattern could be, at most, Ntrans, which represents the
number of transversal guillotines in the cutting stage and yip is a
binary variable that indicates the assignment of order i to
pattern p.

∑≥ · · ∀ ∈ ∀ ∈ta w AP x p P k K,pk
ap

ap kp ap p
(4)

Equation 4 determines the total area of pattern p in layer k, tapk,
where wap k p is a binary variable indicating the selection of
certain paper width ap for layer k of pattern p, while APap is a
parameter corresponding to the paper width, and xp is a posi-
tive variable that indicates the pattern length. Note that this
inequality presents bilinear terms in which variable xp is multi-
plied by binary variable wap k p.

∑≥ · · ∀ ∈ ∀ ∈ua n WI x p P k K,pk
i

ip i p
(5)

Equation 5 calculates the area of pattern p, uapk, considering the
number of order sheets i included in pattern p (nip), the width
of each sheet i (Wii), and the length of the pattern (xp). In this
case, there is a product of the integer variable nip multiplied by
the continuous variable xp.

≥ · − ∀ ∈ ∀ ∈cp CO ta ua p P k K( ) ,pk pk pk pk (6)

Equation 6 defines the pattern trim-loss cost for each layer k,
given by the continuous variable cppk, where COpk is a param-
eter that indicates the paper cost in layer k of pattern p. The
trim-loss area in each layer k of pattern p is calculated as the
difference between variables tapk and uapk, which are defined in
eqs 4 and 5, respectively.

_+ ≤ ∀ ∈ ∀ ≠ ′ ∈′ ′y y p P i i Not comb1 ,ip i p i i (7)

Equation 7 establishes that orders i and i′ cannot be combined
in the same pattern if they have different type of board. This
relationship is given by set Not_combi i′.

∑ ∑· − · ≥ · ∀ ∈w AP n WI Minloss yr p P
ap

ap k p ap
i

ip i p

(8)

∑ ∑· − · ≤ · ∀ ∈w AP n WI Maxloss yr p P
ap

ap k p ap
i

ip i p

(9)

Constraints (8) and (9) define a minimum and maximum trim-
loss per width of pattern p, respectively. This loss is calculated
on the left-hand side of these equations, considering the width
APap assigned to each layer of pattern p, according to binary
variable wap k p minus the number of orders nip assigned multi-
plied by the order widths WIi. Note that only one width ap can
be selected for each layer k of pattern p, so ∑apwap k p is, at
most, 1. In fact, if no width ap is assigned to pattern p, it means
that the pattern p is not used and consequently, the width will
be also 0.

∑ ≤ ∀ ∈w p P1
ap

ap k p
(10)

Equation 10 constrains that only one paper width ap can be
assigned to each layer k of pattern p.

∑ ≥ ∀ ∈w yr p P
ap

ap k p p
(11)

Equation 11 establishes that if pattern p exists (yrp = 1), then at
least one paper width ap must be assigned to each layer k of the
pattern p. Note that even yrp is not a binary variable, it only
takes the values of 0 or 1, because of eqs 20−22.

∑ ∑ α· · ≤ ∀ ∈ ∀ ∈
∈

x w S ap AP tp TP,
p k Rel

p k ap k p tp ap
pktp

(12)

Equation 12 establishes that paper consumption cannot be
greater than the amount in stock, where parameter Stp ap
corresponds to the amount of raw material in stock, while
wap k p is a binary variable that selects a paper width ap of layer k
in pattern p. If the width ap is assigned to layer k of pattern p,
the length used in all layers of all patterns can be, at most, Stp ap.
It should be noted that αk is a parameter representing the paper
consumption of layer k (fluted layers consumes more than one
meter to produce one meter length of board). The set Relp k tp
determines the paper type tp associated to each layer k of
pattern p.
Another bilinear term also appears in eq 12. In this in-

equality, the bilinear product is formed by the continuous
variable xp and the binary variable wap k p.

∑ · ≥ ∀ ∈n
x

L
D i I

p
ip

p

i
i

(13)

∑ δ· ≤ + ∀ ∈n
x

L
D i I(1 )

p
ip

p

i
i i

(14)

Equations 13 and 14 are the demand constraints. Equation 13
defines that the number of sheets produced for one order i in
all patterns p must satisfy the demand Di. Equation 14 esta-
blishes an overproduction upper bound δi, which gives flexi-
bility to the cutting plan.

≥ · ∀ ∈x CRmin yr p Pp p p (15)

≤ · ∀ ∈x CRmax yr p Pp p p (16)

Equations 15 and 16 give a minimum and maximum run length
for pattern p given by parameters CRminp and CRmaxp, res-
pectively. Both constraints are related to the production time
limits. The minimum run length is especially important for
scheduling constraints, because it guarantees that processing
times are greater than the setup times and general precedence
decisions can be applied.

∑ ≥ ∀ ∈y i I1
p

ip
(17)

Equation 17 determines that every order i must be assigned to
some pattern p.

− ≤ ∀ ∈ ∀ ∈y n i I p P0 ,ip ip (18)

− · ≤ ∀ ∈ ∀ ∈n Nlong y i I p P0 ,ip ip (19)

Equations 18 and 19 are logical constraints relating variables nip
and yip. The first one determines that if nip = 0, then yip = 0. The
second one defines that if nip > 0, yip must be 1.

≥ ∀ ∈ ∀ ∈yr y i I p P,p ip (20)

≤ ∀ ∈yr p P1p (21)
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∑≤ ∀ ∈yr y p Pp
i

ip
(22)

Equations 20−22 represents lower and upper bounds to the
variable yrp, ensuring that it would take values of 0 or 1, even if
it is declared as a positive variable. Equation 20 is a lower
bound and establishes that if some order i is assigned to pattern
p, then yrp must be at least 1. The upper bound in eq 21 limits
yrp to 1. Finally, eq 22 establishes that yrp must be 0 if no order i
is assigned to pattern p.
4.1.2. Scheduling. The cutting problem is integrated into the

scheduling model in order to obtain a global optimal solution.
Scheduling constraints are given as follows:

= ∀ ∈pt
x

VEL
p Pp

p

(23)

Equation 23 calculates the processing time of pattern p, accord-
ing to the pattern length xp and the cutting machine velocity.
This is one of the most important relationships between the
cutting and scheduling problems.

≥ + − ∀ ∈ ∀ ′ ∈ ≠ ′ ∀

′ ∈ ≠ ′

′ ′ ′wk w w k K ap ap APap ap

p p Pp p

1 , ( , ) ,

( , )

p p ap kp ap kp

(24)

As it was mentioned, whenever a paper width is changed,
some time is required between pattern executions. This time
depends on the selection of width for each pattern, which is a
decision of the cutting process (wap k p). So eq 24 considers that
a change in the paper width will occur in any layer k of patterns
p and p′, given by binary variable wkp p′, if two different widths
are assigned to the same layer k of patterns p and p′.

≤ − + ∀ ′ ∈ ≠ ′′ ′wk w w p p P p p2 ( ) ( , ) ,p p ap kp ap kp

(25)

Equation 25 determines that, if the same width ap is assigned to
layer k of patterns p and p′, then no width change is considered.

≥ · ∀ ′ ∈ ≠ ′′ ′ct CW wk p p P p p( , ) ,p p p p (26)

≥ ∀ ′ ∈ ≠ ′′ ′ct CB p p P p p( , ) ,p p p p (27)

≥ ∀ ′ ∈ ≠ ′′ct CN p p P p p( , ) ,p p (28)

Equations 26−28 define lower bounds for variable ctp p′
modeling the changeover time between patterns p and p′.
Equation 26 considers the setup time due to changes in the
widths of the patterns, while eq 27 determines the minimum
time due to board change. In addition, eq 28 calculates the time
required for changing the position of knifes in the cutting
machine whenever a new pattern is produced, which is
independent of the sequence. Equation 26 applies if there is
a change of widths between pattern p and p′. If this is the case,
the changeover time is CW and the binary variable wkp p′ is 1.
Parameter CBp p′ can be determined a priori, since the board
type is considered to be known for each pattern. Therefore, if
two patterns have the same paper widths but different paper
types in some layers, a paper change must be considered. If, in
contrast, both patterns are of the same board type but their
widths are different, a changeover time is also required. The
minimum time to change knives is not dependent on the pat-
terns definition or sequencing decisions; this is a fixed time
given by parameter CN in eq 28. Since all these activities are
performed simultaneously, only the longest time determines
the total setup time.

≥ ∀ ∈ft pt p Pp p (29)

Equation 29 determines that the final time for pattern p must
be at least equal to its processing time. This inequality will be
active in the case of the first scheduled pattern.

≥ + · − ∀ ∈ ∀ ∈to ft M y i I p P(1 ) ,i p ip (30)

≤ ∀ ∈to DD i Ii i (31)

Equations 30 and 31 constrain variable toi, which is the final
time of order i. First, eq 30 defines that the final time of an
order must be greater than or equal to the final time of pattern
p if that order has been assigned to this pattern (yip). On the
other hand, by eq 31, the final time of order i cannot be greater
than the due date compromised, given by parameter DDi.

4.1.3. Immediate and General Precedence. Considering the
advantages and drawbacks of immediate and general prece-
dence, both formulations are presented in this section and
computational results are compared.
Immediate precedence is given by eqs 32−35, while general

precedence constraints are presented in eqs 36 and 37.

≥ + + − · −

∀ ′ ∈ ≠ ′

′ ′ ′ft pt ft ct M y

p p P p p

(1 )

( , ) ,

p p p p p p p
pred

(32)

Equation 32 is a big-M constraint to determine a lower bound
for the final time for a pattern. The ending time of pattern p
must be greater than or equal to the processing time of the
pattern plus the ending time of pattern p′ and the changeover
time from pattern p to pattern p if pattern p′ is a predecessor of
pattern p. Note that variable yp′ p

pred is 1 if pattern p′ is sequenced
before pattern p, and is 0 otherwise.
Some additional constraints are required in order to guaran-

tee the correct sequencing process when immediate precedence
is considered.

∑ ≤ ∀ ∈
′

≠ ′

′y yr p P
p

p p

p p
pred

p

(33)

∑ ≤ ∀ ′ ∈
≠ ′

′ ′y yr p P
p

p p

p p
pred

p

(34)

∑ ∑ ∑≥ −
≠ ′ ′

′y yr 1
p

p p p
p p
pred

p
p

(35)

Equation 33 determines that pattern p can be a predecessor of
only one pattern if this pattern is active (yrp = 1). Similarly, eq
34 defines that pattern p′ can be an immediate successor of
only one pattern if p′ is selected (yrp′ = 1). Finally, eq 35 deter-
mines the lower bound for the number of active sequencing
variables.
If general precedence is chosen, eqs 36 and 37 are required

instead of eq 32.

≥ + + − · −

∀ ′ ∈ < ′

′ ′ ′ft pt ft ct M y

p p P p p

(1 )

( , ) ,

p p p p p p p
pred

(36)

≥ + + − ·

∀ ′ ∈ < ′

′ ′ ′ ′ft pt ft ct M y

p p P p p( , ) ,

p p p p p p p
pred

(37)
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It is worth mentioning that, for both approaches, parameter M
can be determined as follows:

= + ′M DD CW CN CBmax{ } max{ ; ; }
i

i p p

Note that, in the case of eq 37, the only change in the value of
M is given by using CBp′ p instead of CBp p′.
One clear advantage of the general precedence method is

that it requires half binary variables. If pattern p′ is a global
predecessor of pattern p, then eq 36 is applied. In contrast, if p
is a global predecessor of pattern p′, meaning that yp′ p

pred = 0,
eq 37 is activated. However, using this approach, setup times
are not considered directly, so the ending time can be overesti-
mated. This situation occurs if the changeover time between
two patterns that are not immediately sequenced is greater than
the processing time of the patterns assigned between them.
Figure 4 shows an example of this situation.

Let consider an example with three patternsp1, p2, and p3
to be sequenced, having the following symmetric setup times:

=

=

=

ct

ct

ct

3

15

2

p p

p p

p p

1 2

1 3

2 3

and the following processing times:

=

=

=

pt

pt

pt

10

5

13

p

p

p

1

2

3

For this case, the optimal sequence is given by p1 → p2 → p3;
then, the precedence variables are

=

=

=

y

y

y

1

1

1

p p
pred

p p
pred

p p
pred

1 2

1 3

2 3

The optimal completion time fpp of each pattern is given by

= =fp pt 10p p1 1

= + +

= + +
=

fp pt ct pt

10 3 5
18

p p p p p2 1 1 2 2

= + + + +

= + + + +
=

fp pt ct pt ct pt

10 3 5 2 13
33

p p p p p p p p3 1 1 2 2 2 3 3

Then, the optimal final completion time for all patterns is 33,
which also is shown in Figure 4.
However, since yp1 p3

pred = 1 in the general precedence model,
eq 36 applies when precedence between p1 and p3 is con-
sidered:

≥ + +

= + +
=

fp fp ct pt

10 15 13
38

p p p p p3 1 1 3 3

Figure 5 shows that the ending time for pattern p3 will be
calculated as 38, according to eq 36, meaning that the total
completion time is overestimated.

The previous example shows that when setup times are
involved, general precedence might overestimate the final time
of tasks. This limitation is overcome by the immediate or direct
precedence variables, where setup times are considered in a
direct manner. In order to guarantee that immediate and general
precedence models are equivalent, the following condition must
hold:30

≤ + + ∀ ′ ″ ∈′ ″ ″ ″ ′ct ct pt ct p p p P( , , )p p p p p p p (38)

In order to analyze this statement, suppose that, in the worst
case:

=″ct 0p p

=″ ′ct 0p p

Then, condition (38) is transformed to (39):

≤ ∀ ′ ″ ∈′ ″ct pt p p p P( , , )p p p (39)

In our case, setup times vary from 1 min to 45 min, according
to the activities involved (changing knifes positions or changing
paper reels in 1−3 layers of the board). In addition, the pro-
cessing time ptp″ is a variable that is dependent on the pattern
length xp″, as shown in eq 23. However, given the minimum run
length condition in eq 15, the company wants to prevent the
use of short patterns such that the setup times are never greater
than the processing times. This condition is given as follows:

≤ ∀ ′ ″ ∈′
″ct

CRmin

VEL
p p p P( , , )p p

p

(40)

Then, general and direct precedence models are equivalent
and comparable.

4.2. Disjunctive Reformulation. As mentioned, some
bilinear terms appear in the formulation, because of cutting
constraints. The first bilinear term obtained in eqs 4 and 12 is
used to calculate the total area of a cutting pattern in the first
case and the material stock consumption in the second case.
This is a product of a binary multiplied by a continuous
variable. The other bilinear term is formed by a discrete variable

Figure 4. Example of completion time with sequence-dependent change-
over time.

Figure 5. Example of general precedence with sequence-dependent
changeover time.
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and a continuous one, which appears in eq 5, to determine the
area in each pattern and in eqs 13 and 14, to satisfy demand
constraints. Both types of bilinear terms can be transformed to
a linear formulation applying a disjunctive approach, which takes
advantage of the discrete nature of one of the variable involved.
This alternative was proposed by Rodriguez and Vecchietti.25

The reformulation of the first bilinear term given by wap k p·xp
is straightforward. The existent binary variable wap k p is now
redefined as a Boolean variable, ωap k p. A new slack variable,
lap k p, is used in eq 41 to represent the nonlinear term
presented in eqs 4 and 12.

ω
∨

=
∀ ∈ ∀ ∈

∈

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥l x

p P k K,
ap AP

ap k p

ap k p p (41)

Variable lap k p can now replace the bilinear term in the model.
Note that if Boolean variable ωap k p is true, then lap k p is equal
to xp, otherwise it takes a value of zero.
For the second term, the disjunctive procedure applies a

2-based formulation given in eq 42. New variables are again
introduced to redefine bilinear terms. Now, the discrete variable
nip is calculated outside the disjunctions as the summation of
J terms, defined by the positive variable njipj, given in each
disjunction (i,p,j). In this case, if the Boolean variable βipj is
true, a positive value is assigned to njipj; otherwise, njipj = 0. This
new formulation is given by eqs 42 and 43.

β β
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2

0

0

, ,

ipj

ipj
j

p

ipj
j

ipj

ipj
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1

1

(42)

Variables njipj and nxjipj are added to the original model to
represent the integer variable njipj and the bilinear term, res-
pectively. The definition of nip is now written as shown in
eq 43.

∑= ∀ ∈ ∀ ∈n nj i I p P,ip
j

ipj
(43)

Given these transformations, eqs 4, 5, and 12−14 are replaced
by eqs 44−48, respectively.

∑≥ · ∀ ∈ ∀ ∈ta l AP p P k K,pk
ap

apkp ap
(44)

∑ ∑≥ · ∀ ∈ ∀ ∈ua nxj Wi p P k K,pk
i j

ipj i
(45)

∑ ∑ α · ≤ ∀ ∈ ∀ ∈
∈

l S ap AP tp TP,
p k Rel

k ap k p tp ap
pktp

(46)

∑ ∑ ≥ ∀ ∈
nxj

L
D i I

p j

ipj

i
i

(47)

∑ ∑ δ≤ + ∀ ∈
nxj

L
D i I(1 )

p j

ipj

i
i i

(48)

4.3. Model Relaxation. In order to implement this model
as a MILP, this disjunctive representation is reformulated using
convex hull relaxation.
In the case of disjunction (41), the convex hull relaxation is

given by eqs 49−53.

∑ ≤ ∀ ∈w p P1
ap

ap k p
(49)

= * ∀ ∈ ∀ ∈ ∀ ∈l x p P ap AP k K, ,ap k p ap k p (50)

∑= * ∀ ∈ ∀ ∈x x p P k K,p
ap

ap k p
(51)

≤ · ∀ ∈ ∀ ∈ ∀ ∈l CRmax w p P ap AP k K, ,ap k p p ap k p

(52)

* ≤ ·

∀ ∈ ∀ ∈ ∀ ∈

x CR w

p P ap AP k K

max

, ,

ap k p p ap k p

(53)

Note that xap k p* can be eliminated from the previous formula-
tion and is replaced by lap k p, and eq 49 is already considered in
eq 10. Then, eqs 49−53 can be rewritten as eqs 10, 52, and 54.

∑= ∀ ∈ ∀ ∈x l p P k K,p
ap

ap k p
(54)

Regarding the second disjunction (eq 42), the convex hull relaxa-
tion is given in eqs 55−59.

β= · ∀ ∈ ∀ ∈ ∀ ∈−nj i I p P j J2 , ,ipj
j

ipj
1

(55)

= · ∀ ∈ ∀ ∈ ∀ ∈−nxj x i I p P j J2 , ,ipj
j

ipj
1 1

(56)

= + ∀ ∈ ∀ ∈ ∀ ∈x x x i I p P j J, ,p ipj ipj
1 2

(57)

β≤ · ∀ ∈ ∀ ∈ ∀ ∈x CRmax i I p P j J, ,ipj p ipj
1

(58)

β≤ · − ∀ ∈ ∀ ∈ ∀ ∈x CRmax i I p P j J(1 ) , ,ipj p ipj
2

(59)

Finally, two MILP formulations are obtained, which integrate
the cutting process and the scheduling decision. The first one is
given by eqs 1−3, 6−11, 15−35, 43−48, 52, and 54−59, and it
considers immediate precedence relationships for sequencing
decisions. The second one is formulated by eqs 1−3, 6−11,
15−31, 36−37, 43−48, 52, and 54−59, considering general
precedence variables in scheduling constraints. Both models are
applied in the following section to solve three examples and
compare results.

5. RESULTS
The mathematical formulation presented in the previous sec-
tion was implemented in GAMS 23.7 and solved using CPLEX
12.3. In this section, both MILP models are compared in terms
of the number of variables, constraints, and execution time.
Even though the examples are not of industrial size, they allow
analyzing model performance as well as comparison of the
impact of considering scheduling and cutting decisions in an
integrated approach.

5.1. Example 1. This example presents nine orders from
customers. The number of boxes of each order, as well as the
sheets size required from the corrugating process, are given in
the Supporting Information.
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Solution performance is presented in Table 1 for both
models. In this example, the difference in the formulations is

also noticed in the execution times. Although general prece-
dence strategy uses 1.5% less constraints than immediate
precedence formulation and there is a difference of <1% in
the number of positive and binary variables, the impact in the
execution time is more than 27%, showing that even small
improvements in the formulations can greatly affect solution
results.
Models results are also different in terms of variable values.

Table 2 shows the patterns information for immediate pre-
cedence strategy, while Table 3 presents the same for the
second sequencing method. Note that even though the only
difference between both models is given in the precedence
variables and sequencing constraints, pattern definition also
changes from one model to the other. This is mainly because
there are alternative solutions that give the same final solution
in the objective function.

Order assignment to patterns and the number of sheets pro-
duced are shown in Tables 4 and 5. Note that overproduction is
required to minimize trim-loss costs in the objective function
only in one case.
Regarding sequencing decisions, Tables 6 and 7 show the

ending and processing time for each pattern. The sequence is
again different, depending on the strategy used, but the final
time is the same in both cases. Note that even when setup times
are the same (which is not necessarily the case), the final time
for all orders could be different, since processing times are deci-
sion variables that are dependent on pattern length.
From a production management perspective, if different se-

quences are obtained satisfying due date constraints and obtain-
ing the same Objective Function value, there are some addi-
tional considerations that can help the planner to select the best
cutting and scheduling alternative, including:

• the shortest final time for processing all patterns,
• a lesser number of patterns,
• lowest overproduction,
• average earliness of all orders, and
• delivery considerations such as producing first orders that

are sent together in one shipment

In order to show the importance of solving the cutting and
scheduling problems in an integrated approach, due dates are
changed in this example. Instead of the due dates presented
in Table A.1 in the Supporting Information, tighter due dates
are considered for orders i1 and i6, assuming 26 and 35 h,

Table 1. Models Performance for Example 1 with Nine
Orders

constraints
positive
variables

binary
variables CPUs

objective
function

immediate
precedence model

13062 1582 648 36.65 317.44

general precedence
model

12870 1573 603 26.82 317.44

Table 2. Pattern Characteristics for Example 1 Using Immediate Precedence

Patterns

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

pattern length, xp (m) 1050 845 1895 555 1048 1309 200 563 1050
pattern width (mm) 1350 1050 950 1140 1160 1244 1250 1350 1180
paper type

external layer O1 O1 B1 K1 K1 O2 B2 B2 B1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 T1
internal layer O1 O1 K1 O2 O2 O2 O2 O2 K1

Table 4. Orders Assigned to Patterns in Example 1 with Nine Orders and Immediate Precedence

orders assigned p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 production (units) overproduction (%)

i1 1 1 1000 0
i2 1 1500 0
i3 2 1800 0
i4 1 1000 0
i5 4 2500 0
i6 3 1 1000 0
i7 1 3 1662 11
i8 1 1000 0
i9 1 1500 0

Table 3. Pattern Characteristics for Example 1 Using General Precedence

Patterns

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

pattern length, xp (m) 845 1050 1050 1048 555 1309 200 563 1895
pattern width (mm) 1050 1350 1180 1160 1140 1244 1250 1350 950
paper type

external layer O1 O1 B1 K1 K1 O2 B2 B2 B1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 T1
internal layer O1 O1 K1 O2 O2 O2 O2 O2 K1
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respectively. One important result is given by the execu-
tion times. While the general precedence model is solved in
37.2 s, the immediate precedence approach reaches the
integer optimal solution in 200 s with a gap of 24.30%, with
respect to the relaxed solution. After 1000 s, the gap is still
20.49%.

The most important result of this study is that the cutting
plan is modified in order to satisfy the new due dates. New pat-
terns characteristics and orders assigned are shown in Tables 8
and 9 respectively. Scheduling decision are clearly different,
processing first patterns p1 and p8 in which orders i1 and i6 are
assigned, respectively (Table 10). The final objective function is

Table 5. Orders Assigned to Patterns in Example 1 with Nine Orders and General Precedence

orders assigned p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 production (units) overproduction (%)

i1 1 1 1000 0
i2 1 1500 0
i3 2 1800 0
i4 1 1000 0
i5 4 2500 0
i6 1 3 1000 0
i7 3 1 1662 11
i8 1 1000 0
i9 1 1500 0

Table 6. Pattern Sequence in Example 1 with Nine Orders and Immediate Precedence

Pattern Sequence

p2 p9 p1 p8 p3 p5 p10 p4 p7

final time (h) 11.27 20.03 34.86 38.78 65.29 80.52 95.77 104.42 140
processing time (h) 11.27 7.51 14 2.67 25.27 13.98 14 7.4 17.46

Table 7. Pattern Sequence in Example 1 with Nine Orders and General Precedence

Pattern Sequence

p8 p10 p9 p2 p1 p5 p3 p4 p6

final time (h) 2.67 29.18 37.94 52.78 66.54 75.19 90.44 106 140
processing time (h) 2.67 25.27 7.51 14 11.27 7.4 14 13.98 17.46

Table 8. Pattern Characteristics for Example 1 Using Tighter Due Dates

Pattern

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

pattern length, xp (m) 1895 263 1895 1048 555 1309 630 200 1050
pattern width (mm) 1050 1200 950 1160 1140 1244 1350 900 1180
paper type

external layer O1 O1 B1 K1 K1 O2 B2 B2 B1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 T1
internal layer O1 O1 K1 O2 O2 O2 O2 O2 K1

Table 9. Orders Assigned to Patterns in Example 1 with Nine Orders with Tighter Due Dates

orders assigned p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 production (units) overproduction (%)

i1 1 1000 0
i2 4 1500 0
i3 2 1800 0
i4 1 1000 0
i5 4 2500 0
i6 3 1000 0
i7 1 3 1757 17
i8 1 1000 0
i9 1 1500 0

Table 10. Pattern Sequence in Example 1 with Nine Orders with Tighter Due Dates

Pattern Sequence

p1 p8 p2 p9 p4 p3 p10 p5 p6

final time (h) 25.27 34.92 39.67 44.42 59.65 86.16 101.41 110.06 140
processing time (h) 25.27 8.4 3.5 2.67 13.98 25.27 14 7.4 17.46
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338.54, which is worse than in the previous case, since greater
trim-loss is required to satisfy customer dates. One important
conclusion is that if this example is considered without taking
into account due dates, the optimal cutting plan would be
infeasible in practical terms. In industrial practices, this means
that the due dates will be violated.
5.2. Example 2. Twelve (12) orders are presented in this

example. Table A.2 in the Supporting Information shows the
demand level for each order, as well as the sheet length and width.
Immediate and general precedence approaches are also

applied to this example. Again, the second one presents better
performance, as shown in Table 11, but the difference is 6%.

The cutting trim-loss cost plus the patterns cost, in both cases,
is $498.07.
Pattern characteristics, applying both strategies, are shown in

Tables 12 and 13.
Regarding scheduling decisions, the two strategies present

alternative solutions: both are feasible but have different final

times for all orders. As mentioned in the previous example, this
could occur not only due to setup times but also because the
processing time is calculated in the model according to the pat-
tern length. In this case, immediate precedence approach offers
a scheduling solution that can be executed in 200 h while the
other method, considering general precedence, requires a pro-
duction time of 220 h to execute all the patterns and satisfy
customer orders. These results are presented in Tables 14
and 15.

5.3. Example 3. The last example is composed of 15 cus-
tomer orders with the characteristics presented in Table A.3 in
the Supporting Information.
Performances and model sizes are presented in Table 16. In

this example, the difference in the execution time is even more

important than in the previous cases; the general precedence
model reaches the solution in half the time, compared to the
immediate precedence formulation.

Table 11. Models Performance for Example 2 with
12 Orders

constraints
positive
variables

binary
variables CPUs

objective
function

immediate
precedence model

19328 2370 956 49.86 498.07

general precedence
model

19050 2358 890 46.86 498.07

Table 12. Pattern Characteristics for Example 2 Using Immediate Precedence

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

pattern length, xp (m) 525 1895 1350 699 1710 800 1109 1050 420 1895 490 1440
pattern width (mm) 1400 950 1180 1140 940 1461 1244 970 1340 950 1200 1150
paper type

external layer O1 O1 B1 K1 K1 O2 O2 B2 B2 B1 T1 T1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 O1 T1 O1 O1
internal layer O1 O1 K1 O2 O2 O2 O2 K2 K2 K1 O2 O2

Table 13. Pattern Characteristics for Example 2 Using General Precedence

Pattern

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

pattern length, xp (m) 1895 525 1895 699 1710 800 1190 1490 200 1350 490 1440
pattern width (mm) 950 1400 950 1140 940 1244 1244 970 1340 1180 1200 1150
paper type

external layer O1 O1 B1 K1 K1 O2 O2 B2 B2 B1 T1 T1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 O1 T1 O1 O1
internal layer O1 O1 K1 O2 O2 O2 O2 O2 O2 K1 O2 O2

Table 14. Pattern Sequence in Example 2 with 12 Orders and Immediate Precedence

Pattern Sequence

p5 p11 p4 p8 p3 p1 p7 p6 p10 p12 p2 p9

final time (h) 22.8 30.58 41.15 56.40 75.65 83.9 99.95 111.86 138.38 158.83 193.15 200
processing time (h) 22.8 6.53 9.32 14 18 7 14.79 10.67 25.27 19.2 25.27 5.6

Table 15. Pattern Sequence in Example 2 with 12 Orders and General Precedence

Pattern Sequence

p6 p9 p7 p10 p12 p5 p11 p3 p8 p4 p2 p1

final time (h) 10.67 14.58 30.63 49.88 70.33 94.38 102.16 128.68 149.79 160.36 193.48 220
processing time (h) 10.67 2.67 14.79 18 19.2 22.8 6.53 25.27 19.87 9.32 7 25.27

Table 16. Models Performance for Example 3 with
15 Orders

constraints
positive
variables

binary
variables CPUs

objective
function

immediate
precedence model

30576 3604 1408 186.84 599.33

general precedence
model

30124 3587 1303 90.74 599.33

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie302109j | Ind. Eng. Chem. Res. 2013, 52, 847−860857



In this case, the immediate precedence model defines cutting
patterns shown in Table 17. Similar results are obtained in the
general precedence model shown in Table 18.
Finally, sequencing decision for both formulations are given

in Tables 19 and 20. Note that, in this case, even though the
sequence is not the same, final time for all orders obtained
applying the general precedence approach is again equal to the
one obtained when the immediate precedence assumption is
considered.

6. DISCUSSION AND CONCLUSIONS

In this article, we present an integrated model that has been
developed to solve the cutting plan and scheduling decisions in
the production of corrugated board boxes. Although the cutting
process has been extensively studied, this particular problem has
not been addressed by the literature. The integrated approach of
cutting plan and scheduling decisions has been analyzed in some
articles for different industries, such as the production of paper
rolls, wood pieces and glass production, among others. In most
cases, heuristic techniques are applied to come up with an efficient
solution. Some articles also apply optimization models to define
the scheduling of the cutting process, where feasible patterns are
considered already known.
Since cutting decisions affect some scheduling variables, an

integrated approach is crucial to obtain a global solution. Such
decisions are mainly pattern processing and setup times, which

are traditionally treated as parameters when sequencing deci-
sions are taken into account.
The cutting process itself is also challenging due to the com-

binatory complexity, as well as the presence of bilinear terms. A
disjunctive approach is used in order to linearize the problem,
taking advantage of the discrete nature of one of the variables of
the bilinear terms.
Regarding the formulation of the scheduling problem, con-

tinuous time representation is considered more appropriate in
this context, because processing and setup times are not input
data in the model. In contrast, they are decision variables that
are defined according to the pattern definition. Precedence
decisions define the final time for pattern execution applying
big-M constraints. The final times of orders are calculated in
the same model, according to the patterns they are assigned.
In addition, two different methods are used to model schedul-

ing decisions. Considering the NP-hard nature of the problem,
which is highly combinatory, and the model sizes tested, results
show efficient solutions for the integrated problem, regardless of
whether the general or immediate precedence approach is used.
However, general precedence models offer a more-compact
formulation, which is, in all cases, related to a shorter execution
time.
Future work could include a parallel cutting machine, in order

to analyze orders and pattern assignment in a multiple machine
production context. In that case, the problem involves not only
pattern definition and sequence but also how to assign patterns

Table 17. Pattern Characteristics for Example 3 Using Immediate Precedence

Pattern

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

pattern length, xp (m) 525 1895 1895 1710 1149 1600 909 788 551 1050 417 1440 750 293 234
pattern width (mm) 1400 1150 950 1140 1160 1461 1244 1270 1340 1180 1200 1150 1300 1410 1000
paper type

external layer O1 O1 B1 K1 K1 O2 O2 B2 B2 B1 T1 T1 T2 T2 T1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 O1 T1 O1 O1 O1 O1 O1
internal layer O1 O1 K1 O2 O2 O2 O2 O2 O2 K1 O2 O2 O2 O2 O2

Table 18. Pattern Characteristics for Example 3 Using General Precedence

Pattern

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

pattern length, xp (m) 1895 525 1895 1149 1710 909 1600 200 1490 1050 1440 417 310 880 234
pattern width (mm) 1150 1400 950 1160 1140 1244 1461 1340 970 1180 1150 1200 1300 1120 1000
paper type

external layer O1 O1 B1 K1 K1 O2 O2 B2 B2 B1 T1 T1 T2 T2 T1
fluted layer O1 O1 T1 O2 O2 O1 O1 O1 O1 T1 O1 O1 O1 O1 O1
internal layer O1 O1 K1 O2 O2 O2 O2 O2 O2 K1 O2 O2 O2 O2 O2

Table 19. Pattern Sequence in Example 3 with 15 Orders and Immediate Precedence

Pattern Sequence

p15 p7 p2 p6 p11 p4 p10 p9 p13 p8 p14 p12 p3 p5 p1

final time (h) 3.12 16.49 43 65.59 72.40 96.45 111.7 120.30 131.13 142.88 148.04 168.49 210 240 260

processing time (h) 3.12 12.13 25.27 21.3 5.55 22.8 14 7.35 10 10.5 3.91 19.2 25.27 13.98 7

Table 20. Patterns Sequence in Example 3 with 15 Orders and General Precedence

Pattern Sequence

p15 p13 p8 p10 p12 p6 p7 p5 p1 p11 p14 p9 p3 p4 p2

final time (h) 3.12 8.5 12 27.25 34.05 46.60 69.18 93.23 119.75 139.78 151.93 173.05 210 240 260
processing time (h) 3.12 4.13 2.67 14 5.55 12.13 21.33 22.8 25.27 19.2 11.73 19.87 25.27 13.98 7
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to machines together with the sequencing decisions in each
machine.
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■ NOMENCLATURE

Sets
I = customer orders
P = cutting patterns
K = board layers
Ap = paper widths
Tp = paper types
Relp k tp = set that relates the paper type tp corresponding to
layer k of pattern p

Parameters
CY = cost of changing pattern
Nlong = number of longitudinal knifes in the cutting machine
Ntrans = number of transversal knifes in the cutting machine
APap = paper width of paper ap
WIi = width of order i
COp k = cost of the paper type assigned to layer k of pattern p
Minloss = minimum trim-loss in the pattern width
Maxloss = maximum trim-loss in the pattern width
αk = length factor of layer k (fluted layers consume more
than 1 meter per meter of board)
Stp ap = material stock available of paper type tp and width ap
Li = length of order i
Di = number of board sheets required by order i (demand of
order i)
δi = overproduction allowed of order i
CRminp = minimum length allowed for pattern p
CRmaxp = maximum length allowed for pattern p
VEL = cutting machine velocity
CW = change over time if paper width is changed from one
pattern to the next one
CBp p′ = changeover time between patterns p and p′ due to
the change in board type
CN = changeover time between patterns due to the
repositioning of knives in the corrugator
M = big-M parameter
DDi = due date of order i

Positive Variables
cppk = trim-loss cost of pattern p in layer k
yrp = indicates the use of pattern p in the cutting plan
tapk = total area assigned to layer k of pattern p
uapk = used area in layer k of pattern p
xp = length of pattern p
ptp = processing time of pattern p
ctp p′ = change over time between p and p′
f tp = final time of processing pattern p
toi = final time of processing order i

lap k p = auxiliary variable introduced to reformulate the
bilinear term wap k p·xp
nxjipj = auxiliary variable used to reformulate the bilinear
term nip·xp
njipj = auxiliary variable used to reformulate variable nip
xap k p* = auxiliary variable used in the convex hull relaxation
to replace bilinear term wap k p·xp
xipj
1 = auxiliary variable used in the convex hull relaxation to
replace bilinear term nip·xp
xipj
2 = auxiliary variable used in the convex hull relaxation to
replace bilinear term nip·xp

Integer Variable
nip = number of orders i assigned in the width of pattern p

Binary Variables
yip = has a value of 1 if order i is assigned to pattern p, 0
otherwise
wap k p = has a value of 1 if width ap is assigned to layer k of
pattern p, 0 otherwise
wkp p′ = has a value of 1 if there is a change of width in any
layer between pattern p and p′
yp p′
pred = has a value of 1 if p is processed before p′ (in the case
of eqs 31−34, it means immediate precedence, whereas in
eqs 35 and 36, it means general precedence)

Boolean Variables
ωap k p = auxiliary Boolean variable used to reformulate the
bilinear term wap k p·xp
βipj = auxiliary Boolean variable used to reformulate the
bilinear term nip·xp
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