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a  b  s  t  r  a  c  t

Due  to  the  complexity  of metabolic  regulation,  first-principles  models  of  bioreactor  dynamics  typically
have  built-in  errors  (structural  and  parametric  uncertainty)  which  give  rise  to the  need  for  obtaining  rel-
evant data  through  experimental  design  in  modeling  for  optimization. A  run-to-run  optimization  strategy
which  integrates  imperfect  models  with  Bayesian  active  learning  is  proposed.  Parameter  distributions  in a
probabilistic  model  of bioreactor  performance  are  re-estimated  using  data  from  experiments  designed  for
maximizing information  and  performance.  The  proposed  Bayesian  decision-theoretic  approach  resorts
to probabilistic  tendency  models  that explicitly  characterize  their  levels  of  confidence.  Bootstrapping  of
parameter distributions  is used  to  represent  parametric  uncertainty  as  histograms.  The  Bajpai  & Reuss
bioreactor  model  for  penicillin  production  validated  with  industrial  data  is  used  as  a  representative  case
study. Run-to-run  convergence  to an  improved  policy  is  fast despite  significant  modeling  errors  as  long
as data  are  used  to revise  iteratively  posterior  distributions  of  the  most  influencing  model  parameters.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most bioprocess optimization techniques are model-based (De
Tremblay, Perrier, Chavarie, & Archambault, 1993; Frahm, Lane,
Märk, & Pörtner, 2003; Guthke & Knorre, 1981; Lim, Tayeb, Modak,
& Bonte, 1986; Riascos & Pinto, 2004), and since accurate mod-
els are rarely available, experimental optimization of the operating
policy is a difficult problem to be addressed for a successful scale-
up. The best use of an imperfect first-principles model through
proper handling of its inherent uncertainty is a challenging issue
for fast productivity improvement of innovative fed-batch fermen-
tations using data sampled from a small number of production runs.
Bioreactors are engineered systems in which the activity of living
cells is harnessed to produce an antibiotic, antibody, protein, a tis-
sue or a host of other products of considerable impact on human
life (Anesiadis, Cluett, & Mahadevan, 2008; Jain & Kumar, 2008;
Ramkrishna, 2003). For maximum productivity, cells in a bioreac-
tor must be maintained in an appropriate state of metabolic activity
by tightly controlling conditions in the abiotic phase. The main
problem in bioreactor modeling for optimization is that biolog-
ical activity occurs in metabolic pathways which are controlled
by switches through built-in regulatory networks (Geng & Yuan,
2010). Due to the complexity of metabolic regulation and limited
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measurements, first-principles models of bioreactor dynamics can
only capture the qualitative tendency of sampled state variables
such as biomass, substrate and product concentrations (Martínez,
Cristaldi, & Grau, 2009; Tsobanakis, 1994). Hence, without bias-
ing data gathering by increasingly improving the operating policy,
bioreactor performance predictions are too uncertain and unreli-
able in quantitative terms to be useful for productivity optimization
(Bonvin, 1998; Martínez & Wilson, 2003; Schenker & Agarwal,
1995). As a result, migration from laboratory conditions to pro-
duction runs is often made with high levels of uncertainty about
the degree of optimality of an operating policy (Terwiesch, 1995;
Terwiesch & Agarwal, 1995). Consequently, a very conservative
and sub-optimal operating policy is repeatedly applied to indus-
trial bioreactors seeking reproducibility rather than improvement
(Martínez & Wilson, 2003).

Run-to-run optimization of the operating policy for a fed-
batch bioreactor using data gathered in production runs can be
approached using two  alternatives: (i) a systematic model-based
iteration strategy, or (ii) a heuristic procedure using somehow past
operating experience for modifying the policy directly. The heuris-
tic optimization approach based on intuitively tweaking input
profiles is very inefficient, often leads to sub-optimal solutions, and
it cannot guarantee neither systematic performance improvement
nor convergence to a near optimal policy. An interesting step in this
direction has been proposed in Smets, Claes, November, Bastin, and
Van Impe (2004) by starting from a model-derived operating pol-
icy and optimal profiles of the key state variables. Then, the optimal
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Nomenclature

Fin Inlet flow rate (L h−1)
Fevap outlet flow rate due evaporation (L h−1)
J performance index
m(t)  time-dependent control variables.
p(�i) prior distribution of the ith model parameter.
p(�|x) posterior probability distribution for parameters.
P penicillin concentration (as potassium salt) (g

PenGK L−1)
Q global sensitivity matrix
S substrate concentration (g L−1)
t time (h)
tf final time of an experimental run (h)
tsp vector of sampling times in an evaluation experi-

ment
V culture broth volume (L)
x(t) vector of state variables
x(ti) bioreactor sampled state vector at a given time.
X biomass concentration (g-DW L−1)
Xd death biomass concentration (g-DW L−1)
Xv viable biomass concentration (g-DW L−1)
u utility function
w time-invariant control variables

Parameters
A feeding profile parameter (L h−2)
B feeding profile parameter (h−1)
C feeding profile parameter (h−2)
Tfeed initial time for fed-batch operation (h)

Greek symbols
� feasible set of model parameters

 ̌ set of parameters describing time-varying inputs
ϕ vector of operating policy parameters
� specific biomass growth rate (h−1)

solution is implemented in the form of a model-independent sub-
optimal strategy by using a modified (semi-empirical) control
function, which includes reduced terms based on heuristic obser-
vations. More effective, though, is designing dynamic experiments
to extract useful information from policy evaluation runs. In this
way, the operating policy is improved by introducing relevant data
for optimization in an imperfect model. This approach does not
rely on expert knowledge, but requires to model available data
carefully. For model-based policy optimization to be successful it
is mandatory to re-estimate selectively the more sensitive model
parameters using optimal experimental design techniques in data
gathering (Martínez et al., 2009).

An approach for model-based heuristic optimization of oper-
ating policies has been proposed in Maria (2004, 2007) and
successfully applied to d-glucose oxidation. This author argues that,
by using reduced order (low complexity) bioreactor models and
through semi-empirical optimal control functions, it is possible to
lower computational costs and experimental efforts necessary to
identify and verify all model parameters and reaction steps under a
wide range of operating conditions and at different time scales. The
reduced order model is based on a simplified enzymatic kinetics,
requires a small number of on-line measurements for model update
and a few parameters are used to adjust the control function. The
solution found is implemented in the form of a model-independent
sub-optimal strategy based on a control function selected from
a library. However, the heuristic optimization approach is highly
problem-dependent (e.g., enzyme oxidation) since it mostly relies

on an intricate understanding of the characteristics of the biopro-
cess behavior and human judgment for defining an improved policy
while addressing the dilemma of knowledge exploitation versus
exploring untried operating conditions. This dilemma is at the very
heart of modeling for optimization with imperfect models. When
a reduced order model is used for policy improvement you cannot
improve its parametric precision comprehensively. Thus, the model
is only a means to find better policies at the cost of biasing data gath-
ering in the most profitable region of operating conditions. Lacking
a conceptual framework for policy optimization, generalization and
incorporation of uncertainty into the decision-making process, the
heuristic optimization approach is costly in terms of both time
and money. Expert knowledge can be difficult to obtain, expen-
sive, or is simply not available. Moreover, no systematic reduction
of model uncertainty is made as more experimental data is avail-
able which prevents guaranteeing steady policy improvement and
convergence toward a near-optimal solution.

In the attempt to compensate for a significant process-model
mismatch, optimal operation under uncertainty requires using
measurements from carefully designed experiments to improve
on a run-to-run basis from a cautious (sub-optimal) policy. This
model-based policy optimization approach consists of iteratively
using new measurements to increasingly reduce parametric uncer-
tainty in a tendency (imperfect) model and later resorting to the
updated model for policy improvement (Martínez et al., 2009).
A “tendency model” is a low order, nonlinear, dynamic model
that approximates the stoichiometry and kinetic relationships of
a bioprocess using the available plant data along with fundamen-
tal knowledge of the process characteristics (Bonvin & Rippin,
1990; Filippi, Bordet, Villermaux, Marchal-Brassey, & Georgakis,
1989; Fotopoulos, Georgakis, & Stenger, 1998; Georgakis, 1995;
Uhlemann, Cabassud, LeLann, Borredon, & Cassamatta, 1994). Oper-
ating policies based on over-confident first-principles models often
fail to yield productivity improvement due to a lack of parametric
precision and structural errors.

For Bayesian optimization with tendency models, not only a
bioreactor model for policy improvement is required, but it is also
important that the model faithfully describes its own accuracy
to treat uncertainties in a principled way. Humans do something
similar: as it is argued in (Körding & Wolpert, 2004, 2006), when-
ever humans have only little experience, they employ an internal
forward model for predictions and average over the uncertainty
when extrapolating and making decisions. The essential character-
istic of Bayesian methods is their explicit use of probability theory
for quantifying uncertainty in inferences based on statistical data
analysis. Without any notion of uncertainty, the model-optimized
policy would be too confident and claims exact knowledge, which it
actually does not have. Representation and incorporation of model
uncertainty in run-to-run optimization is particularly important in
the early stages of bioprocess scale-up when the available data set
is very sparse and has been obtained for a wide range of operating
conditions. For Bayesian optimization of bioreactors, the novel con-
cept of a probabilistic tendency model that integrates first-principles
and constitutive laws with probability distributions for describing
parametric uncertainty is proposed.

In this work, a general and fully Bayesian decision-theoretic
framework for policy optimization in innovative bioprocesses is
presented. In the case of only few production runs with a full-scale
bioreactor, the problem of dealing with fairly limited experience
to improve the policy is successfully addressed using Bayesian
active learning. In Bayesian inference, scarce experimental data are
used to learn a probabilistic model of a bioreactor dynamics by
updating parameter distributions. Probabilistic tendency models
are able to represent and to quantify their own uncertainty for safe
generalization of available experience to untried operating condi-
tions. Thus, uncertainty is explicitly accounted for in run-to-run
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optimization with imperfect models in a natural way. Model-based
Bayesian optimization does not rely on expert knowledge and can
readily be applied to innovative bioprocesses by simply assuming
initially wide intervals of uncertainty in model parameters. In a
probabilistic tendency model this uncertainty gives rise to proba-
bility distributions over plausible performance values for a given
operating policy and sample predictions are thus based on averag-
ing performance using these distributions. Posterior distributions
are selectively revised upon data using bootstrapping and a utility
function that trades off exploration and exploitation in biasing data
gathering toward the more profitable region of operating condi-
tions. The role of Bayesian optimal design of dynamic experiments
in modeling for optimization is highlighted in order to obtain the
most informative data for significant productivity improvement
using a minimum of policy evaluation runs.

2. Bayesian decision-theoretic framework

Experimental design for run-to-run optimization using an
imperfect model must be based on active learning with sampled
data. Bayesian active learning can be seen as a strategy for opti-
mal  data gathering so as to make run-to-run optimization more
efficient. Active learning is a concept very similar to sequential
experimental design (Blot & Meeter, 1973). In the latter, there is
available a set of experiments which may  be conducted. After each
observation, a decision is made as to which experiment to con-
duct in the next stage in order to obtain relevant data. Since some
sequences of experiments may  be more “informative” than oth-
ers, there is a potential saving in sequential optimization of data
gathering strategies for model building. In the Bayesian framework,
sampling times are selected using as a guideline a utility function
that pursues a balance between performance improvement and
information gain from an experiment. Before running an actual
experiment, these gains are uncertain. Hence, for active learning,
at each policy evaluation run, the expected objective function is
obtained by averaging over possible outcomes using global sensi-
tivity analysis (GSA). Solely maximizing the expected information
gain tends to select sampling times in an evaluation run which are
far away from the ones used in previous experiments. Information
content alone is unduly sub-optimal and often risky, hence a trade-
off between exploitation of what is already known and exploration
of unknown operating conditions is proposed here to deal with
uncertainty.

In run-to-run optimization, it is assumed that the bioreactor
dynamics is modeled using a number of state variables x(t) whereas
the value of a performance index J(t) can be sampled at selected
times; for the sake of simplicity the dependence of J(t) on other
variables is implicitly assumed. Also, it is assumed that the ten-
dency model is made up of a set of differential–algebraic equations
with uncertain parameters � ∈ � of the form

f  (ẋ, x, m(t), w, �, t) = 0 (1)

with given initial conditions x(t0) = x0, whereas m(t) and w are,
respectively, the time-dependent and time-invariant control vari-
ables (manipulated inputs), � is the feasible space of model
parameters with given prior distributions p(�i), i = 1, . . . , k, and t is
time. Hereafter, it is also implicitly assumed that, at least locally, the
tendency model with a probability density function p(�) =

∏
ip(�i)

is able to approximate the observed bioreactor performance in the
most profitable region of operating conditions by shrinking para-
metric uncertainty toward a given set of model parameters as more
policy evaluation runs are made.

The productivity index to be maximized is estimated at certain
times over a run based on sampled data x(ti) for bioreactor states
at specific times ti, i = 1, . . .,  n, when a given policy is evaluated

J = [J(t1), . . . , J(tn)]T (2)

where the formula for calculating each entry J(ti) in J mainly
accounts for end-product value and downstream processing costs,
and implicitly includes measurement errors of states in data sam-
pled in an experiment. The observable performance J(x) depends
on sampled data x over a run which in turn are the result of manip-
ulated inputs to the bioreactor and sampling times. Control vector
parameterization techniques are used to describe control input
profiles m(t). These control profiles can be piecewise constant,
piecewise linear, polynomials or splines over intervals and are
parametrized accordingly. Thus, it is assumed that m(t) = �(t; ˇ)
is an m-dimensional vector of input variables whose time profiles
are defined by the set of parameters ˇ.

Model-based optimization aims at improving on a run-to-run
basis the productivity index J(tf) by acting on the following design
vector for the operating policy defined as follows:

ϕ = (�0, ˇ, w, tsp, tf ) (3)

where �0 is the set of initial conditions of the bioreactor and tf is
the duration of a production run. The set of time instants at which
the output variables are sampled is a design variable itself, and is
expressed through the vector tsp = [t1, . . .,  tn]T of n sampling times.
The number n of samples taken in a run is fixed and defined as
the minimum number of samples required to make the tendency
model identifiable. It is worth noting that the vector of performance
observations over a run, J, is dependent on the chosen tsp. Thus, in
order to improve the policy parameters in ϕ, sampling times must
be carefully selected so that the performance prediction mismatch
can be reduced on a run-to-run basis. To this aim, an appropriate
time schedule for sampling must be defined based on the sensi-
tivity of performance predictions as model-optimized policies are
implemented (evaluated).

The basic ingredients of the Bayesian decision framework
(Chaloner & Verdinelli, 1995; Lindley, 1972; Verdinelli & Kadane,
1992) are the experiment design space ϕ ∈ ˚,  a probabilistic model
pϕ(�, x) for all relevant random variables, including parameters
� ∈ �,  and the data set x sampled from an experimental output
space ˝,  and a posterior decision space d ∈ D for using sampled data
to revise the posterior density for model parameters. Also, the utility
function u(ϕ, �, x, d) is used to quantify preferences for alternative
experiment outcomes and assumed parameter values � under alter-
native experimental designs ϕ and alternative posterior decisions
d. The probabilistic model can be factored into a prior distribution
for tendency model parameters p(�) and a sampling model pϕ(x|�)
for state predictions at sampling times in tsp. It is worth noting that
this probabilistic model is made dependent on the chosen experi-
mental design ϕ to highlight the decisive influence of sampled data
on the optimality of the operating policy. Since the design decision
ϕ has to be made before the actual experiment has produced any
new data x for the posterior distribution of �, the expectation of u(·)
with respect to (�, x) should be maximized in two  steps.

While the logical procedure for experimental design followed by
inference/decision making proceeds in time order, utility function
optimization is easier to solve in reverse time order. The posterior
stage decision involves finding the best update of the probabilis-
tic model given the observed data x that maximizes the posterior
expected utility for the chosen experimental design

U(ϕ, x) = max
d

∫
�

u(ϕ, �, x, d)pϕ(�|x)d� (4)
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where the expectation or averaging over � accounts for the uncer-
tainty regarding the unknown �. The expectation is taken with
respect to the posterior distribution of �, which properly reflects
the remaining parametric uncertainty for each alternative decision
d on how data gathered in the experiment ϕ is used to modify the
prior distribution p(�) in the probabilistic model.

As the operating policy ϕ must be specified before any new data
is observed, the second stage in policy optimization involves finding
the best experiment ϕ* that maximizes the a priori expected utility
which is obtained by integrating the result in Eq. (4) over possi-
ble experiment outcomes x in the sample space � of a dynamic
experiment

U(ϕ) =
∫

˝

U(ϕ, x)p(x|ϕ)dx =
∫

�

∫
˝

U(ϕ, x)pϕ(x|�)p(�)d� dx (5)

The integral in Eq. (5) is defined with respect to p(x|ϕ), the marginal
distribution of data sampled in the experiment ϕ, which is obtained
by integrating pϕ(x|�) over possible prior values for �, described by
the prior distribution p(�).

The Bayesian optimal experimental design using a probabilistic
tendency model pϕ(�, x) can be formally stated as

U(ϕ∗) = maxϕ

∫
˝

maxd

∫
�

U(ϕ, x)pϕ(x|�)p(�)d� dx (6)

Since in modeling for optimization the information content in new
data is useful as long as productivity can be improved, the expected
utility function to be maximized must combine performance out-
come and information gain as follows:

U(ϕ) =
∫ ∫ [

ωp(�)J(tf |�) + ıp(�|x) ln
p(�|x)
p(�)

]
d� dx (7)

where p(�|x) is the posterior probability distribution for parame-
ters in the probabilistic tendency model. The values of the weights
ω and ı express the relative contribution of exploiting the model
for improving the policy (first term in the bracket) and seeking
more information to profit from (exploration), respectively. It is
worth mentioning that the second term in the bracket of Eq. (7) is
the Kullback–Leibler (KL) “distance” between the prior p(�) and the
posterior p(�|x) distributions and measures the novelty, or interest-
ingness, of the information provided by sampled data to be obtained
in the next evaluation run. Since this distance between both distri-
butions directly measures the performance prediction mismatch,
data that increases the KL distance allows exploring apparently
sub-optimal policies. By seeking to explore only the most profitable
space of operating conditions put training inputs for the probabilis-
tic model in the most relevant part of the state space. As more data
are sampled in this subspace of improved operating conditions the
prior p(�) tends to the posterior p(�|x) which decreases exploration
and then exploitation (model-based optimization) is emphasized.
However, as soon as the prior and posterior distributions become
almost identical, no further performance improvements are possi-
ble and policy iteration converges. By resorting to Bayesian active
learning, the model-based policy iteration strategy in the next
section is a systematic approach to the design of a rather short
sequence of optimally informative experiments to explore safely
operating conditions while information gained provides a direction
for improvement. Later on, by exploiting data gathered, conver-
gence to an operating policy ϕ which is optimal, at least locally, is
achieved.

Fig. 1. High-level description of the run-to-run optimization strategy.

3. Run-to-run optimization

3.1. High-level description

A high-level description of the proposed model-based strategy
for run-to-run optimization is given in Fig. 1. It is important to high-
light that the activity called policy evaluation corresponds to the
actual running of a designed experimental run whereas other activ-
ities such as experimental design,  performance sensitivity analysis and
model update are entirely based on model simulations. The operat-
ing policy is first initialized by resorting to expert judgment, if any,
and/or a priori knowledge from lab scale to avoid undesirable phys-
iological states. Samples are taken along this experiment so as to
make a rough estimation of probability distributions or histograms
for parameters in the tendency model. Equipped with a probabilis-
tic model which explicitly addressed its own uncertainty, the policy
improvement loop can be entered. First, a model-optimized oper-
ating policy is obtained based on the prior distributions of model
parameters. Using this policy an optimally informative experiment
is designed to define sampling times along the next evaluation run.
The policy is then evaluated experimentally and new data are gath-
ered. To use data more efficiently, a sensitivity analysis is made to
pinpoint which is the subset of parameters that explain most the
variance of the chosen performance index. Finally, the tendency
model is updated by re-estimating the corresponding distributions
of most sensitive parameters, and a new iteration begins. Starting
from ample initial uncertainty, data gathered on a run-to-run basis
introduce the relevant data for policy optimization so that only the
most relevant operating conditions are explored.

In order for the model to describe the observed bioreactor
dynamics as accurately as possible, the tendency model must faith-
fully represent its own  fidelity of how accurate it is. For example,
if a bioreactor physiological state is found on a simulated tra-
jectory about which not much knowledge has been previously
acquired, the tendency model must be able to quantify this uncer-
tainty, and not simply assume that its best guess is close to the
truth. A probabilistic tendency model quantifies its lack of knowl-
edge and can be considered as a model that captures all plausible
dynamics in a distribution over fitted models. The use of probabilis-
tic tendency models for the dynamics allows us to keep track of
the uncertainties in the simulations used for policy optimization.
Typically, in early iterations, parameter distributions will reflect
that without properly biasing data gathering, the model-optimized
policy can give rise to a significant performance–prediction mis-
match. As more data are sampled, model uncertainty is increasingly
reduced and the operating policy will converge to a local optimal
solution. Accordingly, as the number of runs increases the prob-
abilistic tendency model will tend to a nearly deterministic one
where the output variance is mostly due to model-process mis-
match. Model-based policy iteration is stopped when observed
performance improvement in two  successive runs is lower than



Author's personal copy

E.C. Martínez et al. / Computers and Chemical Engineering 49 (2013) 37– 49 41

a small tolerance which is conveniently chosen in accordance to
the intrinsic bioprocess variability and measurement errors.

3.2. Experimental design

As the probabilistic tendency model has a mismatch with the
process, the model-optimized policy using the prior distribution
p(�) is not necessarily the policy obtained when new data x are used
to revise (a posteriori) parameter distributions, which do not neces-
sarily give rise to a better policy. Exploiting what is already known
must be balanced with exploring untried operating conditions to
find better policies. To address this dilemma between exploiting
the tendency model—based on the prior—and bringing novel infor-
mation to generate the required data to revise the posterior p(�|x)
so that the operating policy ϕ is actually improved, experimental
design is split in two sub-problems using two sets of manipulated
inputs as follows

ϕ1 = (�0ˇ, w, tf ); ϕ2 = ttp (8)

which makes room for the next evaluation run to be designed by
optimizing ϕ1 and ϕ2, separately. Since the first term in the bracket
of Eq. (7) only depends on the prior distribution of parameters,
exploitation of available knowledge can be approached by solving
the following optimization problem

maxϕ1

∫
p(�)J̃(tf |�)d� (9a)

subject to:

f (ẋ, x, u(t), w, �, t) = 0, tendency model in Eq. (1) (9b)

ϕL
1 ≤ ϕ1 ≤ ϕU

1 , upper/lower constraints for design variables (9c)

x(t) − G(t) ≤ 0, path constraints for state variables (9d)

Solving the stochastic optimization problem in Eq. (9) is expen-
sive computationally since it requires a Monte Carlo approach to
generate a representative sample of possible realizations of the
parameter vector � over all the parametric uncertainty modeled
by p(�). A significantly less costly alternative would be resorting to
the “most probable” parameterization �̃ for the tendency model in
Eq. (9b) and then replacing the integral in Eq. (9a) with J̃(tf |�̃) as the
objective function. However, by doing this the prediction capability
of a probabilistic tendency model is not fully used as it is required
in a Bayesian decision-theoretic approach.

Having obtained model-optimized policy parameters in ϕ∗
1,

what is left for active learning (exploration) is choosing a priori
the best sampling times, namely ϕ2 = tsp, over an evaluation run.
To this aim the following optimization problem is proposed in
Martínez et al. (2009)

[tsp]∗ = maxtsp det |M(�̃, ϕ∗
1, tsp)|; M = Q T Q (10a)

Subject to:

�tL ≤ ti+1 − ti ≤ �tU ; ti ∈ tsp, i = 1, . . . , n. (10b)

here �tL and �tU are the minimum and maximum time inter-
vals between two successive samples, respectively, and Q is the
following global sensitivity matrix

Q =

⎛⎜⎜⎝
Si11 · · · Si1k

...
. . .

...

Si1n . . . sink

⎞⎟⎟⎠ (10c)

Analogous to the well-known Fisher Information Matrix (FIM),
each entry of the matrix Q, Siij, measures the sensitivity of the per-
formance index at the ith sampling time with respect to the jth
policy parameter in ϕ∗

1. However, each entry in matrix Q is a global
sensitivity index instead of a local one. As a result, the design cri-
terion in Eq. (10) can be named Global FIM (GFIM); the reader
is referred to the works of Rodriguez-Fernandez, Kucherenko,
Pantelides, and Shah (2007) and Hamisu (2010) for further details
regarding the GFIM criterion. The number of samples along each run
will be defined in accordance to the budget for processing samples
and bearing in mind that this number should be, at least, equal to
the number of policy parameters in ϕ∗

1.

3.3. Performance sensitivity analysis

For effective model update in policy iteration, it is important
to pinpoint the sub-set of parameters whose distributions must be
re-estimated using new data in order to reduce the performance
prediction mismatch. To this aim, global sensitivity analysis (GSA) is
now used to assess how bioreactor performance can be apportioned
to the uncertainty in different parameters of the tendency model.
To understand the rationale behind GSA, it is assumed that, for a
given policy ϕ, the probabilistic model in Eq. (1) implicitly defines
a nonlinear mapping from parameters � to performance J over a
dynamic experiment such that the regression model must fit

J̃ = F(�) + ε (11)

where the vector J̃ = [J(t1), . . . , J(tn)]T has the sampled per-
formance data, the corresponding predictions are F(�) =
[F(t1, �), . . . , F(tn, �)]T , whereas ε = [ε(t1), . . . , ε(tn)]T is the
vector of measurement errors. Various sensitivity measures can
be used to carry out performance sensitivity analysis bearing in
mind parametric uncertainty. The variance-based method is the
most commonly used since sensitivity indices are calculated based
on Monte Carlo simulations. Variance-based sensitivity indices
are calculated based on the prior information in the probabilistic
model by a (joint) probability density function p(�) =

∏
ipi(�i).

Performance sensitivity Si(tj) to the parameter �i at a given samp-
ling time tj requires calculating the conditional variance (Chu &
Hahn, 2010; Saltelli, Ratto, Tarantola, & Campolongo, 2006; Sobol’,
1993):

var[E[F(tj, �)|�i]] = E[(E[F(tj, �)|�i)] − E[F(tj, �)]2] =
∫ ⎛⎝∫

. . .

∫
F(tj, �)

∏
k /=  i

pk(�k)
∏
k /= i

d�k −
∫

. . .

∫
F(tj, �)

∏
k

pk(�k)
∏

k

d�k

⎞⎠2

pi(�i)d�i

(12)

The first term in the bracket of Eq. (12) is the conditional mean
of the performance index at time tj according to a particular real-
ization of the model parameter �i, whereas the second term is
the mean of the model output over all plausible parameter val-
ues. Accordingly, performance sensitivity for a given parameter is
measured by the conditional variance divided by the total variance
of model predictions for a given policy

Si(tj) = var[E[F(tj, �)|�i]]

var[F(tj, �)]
(13)
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Fig. 2. Data bootstrapping for shaping parametric uncertainty.

Several approaches can be followed to compute the conditional
variance including the regression method, the Sobol’s method, the
Fourier amplitude sensitivity test (FAST) and extensions of FAST.
To study how parametric uncertainty translates into performance
variability, the tendency model in Eq. (1) must be simulated for
specific realizations of the entries in the vector of model parameters
� as it has been proposed in Chu and Hahn (2010)

�i = ˛iϑi(Ui) (14)

where ˛i = �U
i

− �L
i
, Ui ∈ [0,  1], is a pseudo-random number and the

input function ϑi must be chosen such that it is bounded as follows

ϑi(Ui) ∈
[

�L
i

�U
i

− �L
i

,
�U

i

�U
i

− �L
i

]
. (15)

Using the cumulative distribution of the parameter �i, F(�i), the
input function above can be readily defined as

ϑi(Ui) = 1
˛i

F−1(Ui) (16)

Once the performance sensitivity Si(tj) for each parameter is
known, the subset of parameters to be re-estimated using data
obtained in the last evaluation run is determined and their proba-
bility distributions are updated.

3.4. Model update

In tendency models (Bonvin & Rippin, 1990; Filippi et al., 1989;
Fotopoulos et al., 1998; Georgakis, 1995; Uhlemann et al., 1994), it is
typically assumed that bioreactor dynamics can be approximated
reasonably well using a single parameter set, which is fixed, but
unknown. Probabilistic tendency models are based on a completely
different—the Bayesian one—approach to parameter estimation:
the tendency model parameter � is not fixed, but described as a
random variable. By choosing the prior probability distributions

in p(�) =
∏

i

pi(�i) for each parameter model uncertainty is repre-

sented in such a way prior knowledge is used to express general
beliefs about plausible values for model parameters in advance. For
each prior distribution p(�) and a given policy ϕ, it is assumed that
a specific sampled data x will be observed with a probability den-
sity (likelihood) pϕ(x|�). Hence, parameters and sample data follow
a joint probability distribution with density p(x, �) = pϕ(x|�)p(�).
From this distribution, the conditional probabilities of the model
parameters given the data x are computed using the “Bayes’ for-
mula”

p( �
∣∣ x) =

pϕ(x
∣∣� )p(�)

p(x)
(17)

which states that the posterior probability for a given vector � of
model parameters is proportional to the product of the likelihood

and the prior density and represents a compromise between them.
For given data x, the denominator in Eq. (17) is a fixed number
which only serves the purpose of normalization constant. Typically,
the posterior distribution is narrower compared to the prior one,
which reflects the information gain by accounting for data sampled
in an evaluation run.

Bayesian parameter estimation differs considerably from max-
imum likelihood estimation in the type of approximation and
interpretation of the nature of parameters obtained. In maximum
likelihood estimation, the regression problem is about finding
a model parameterization which makes the data look probable,
whereas in Bayesian estimation the idea is pinpointing which
parameter set in a model appears as the most probable given the
observed data. Moreover, the goal in Bayesian parameter estima-
tion for tendency models is not to choose a single parameter set,
but to characterize the entire probability distributions, i.e. marginal
distributions of individual parameters and probabilities for perfor-
mance predictions at different sampling times. Bearing in mind the
small number of samples in a production run, a practical approach
to Bayesian estimation of parameters in a tendency model is boot-
strapping (Efron & Tibshirani, 1993; Joshi, Seidel-Morgenstern, &
Kremling, 2006).

Due to structural mismatch and scarce data it is not possible
to determine the “true” parameters in the tendency model, but
only an estimate �̂(x, ϕ) for the chosen operating policy. Each time
the estimation is carried out with a different data set, a different
estimate of model parameters is obtained. However, only a single
data set is available in practice from a policy evaluation run. There-
fore, only a single point estimate �̂ is obtained with little insight or
no knowledge at all about its distribution or confidence intervals.
Bootstrapping provides a way  to determine, at least approximately,
the statistical properties of this estimator.

As it is shown in Fig. 2, bootstrapping is a simulation method for
statistical inference using re-sampling with replacements (Efron
& Tibshirani, 1993). A main application of the method is approx-
imating non-parametric distributions for statistical variables in
model fitting. The method has been successfully applied in quan-
tifying confidence intervals of uncertain kinetic parameters in
metabolic networks (Joshi et al., 2006). To construct a histogram
for some parameters in a tendency model, bootstrapping simu-
lates the effect of artificially excluding some data points in the
data set x when parameters are estimated. We  randomly sample n
data points with replacement from the current data set, where the
probability of each data point being selected is 1/n.  These n data
points are regarded as a re-sampled training data x1. The bootstrap
approach uses Monte Carlo simulation to generate a large number
N of re-sampled experimental data sets x1, x2, . . .,  xN such that the
probability for a data point to be part of any of these artificial repli-
cas for parameter fitting are all equal. Accordingly, the probability
of a simulated data set having all the original sampled data x is quite
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Table  1
Parametric uncertainty for the tendency model with the right structure.

Parameter Symbol Units Uncertainty interval “In silico” bioreactor

Maximum specific growth rate �max h−1 0.12–0.17 0.13
Saturation parameter for biomass production Kx g-substrate/g-DW 0.006–0.4 0.131
Cellular death rate Kd h−1 0.005–0.01 0.006
Cellular lysis constant klis h−1 0.00001–0.008 0.0008
Yield factor for substrate to biomass Yxs g-DW/g-substrate 0.40–0.58 0.52
Yield factor for substrate to penicillin Yps g-Penicillin/g-substrate 0.4–1 0.97
Maximum specific synthesis rate of penicillin �max h−1 0.003–0.015 0.011
Saturation parameter for penicillin production Kp g L−1 0.00001–0.0002 0.0001
Maximum substrate uptake rate for maintenance �max h−1 0.014–0.029 0.02
Saturation parameter for cellular maintenance Ks g L−1 0.00001–0.0002 0.0001
Penicillin hydrolysis rate Kh h−1 0.002–0.01 0.002

low. Even though the number of samples in each replicated data set
is the same, most of the re-sampled data sets x1, x2, x3, . . .,  xN will
provide a different estimation of model parameters. Histograms for
each model parameter are obtained using these alternative estima-
tors based on a given criterion, e.g. minimum least-square (LS) or
maximum likelihood (ML).

In bootstrapping, a ML  estimator is preferable over a LS esti-
mator because the former is more flexible and can incorporate
statistical tests more readily than the latter. However, point-wise
estimation of the most sensitive parameters in a tendency model
is an inherently nonlinear problem. That is, the surface to be mini-
mized or maximized in parameter fitting is likely to have multiple
optima and a complex topography. Estimating likelihoods when
the approximated shape of parameter distributions is not known is
computationally intensive to comprehensively explore this surface.
Moreover, some problems may  arise when bootstrap regression
is made using small sample data sets. For example, in parameter
estimation, a matrix whose inverse is needed to obtain the ML  esti-
mator may  be rank-deficient in a bootstrap sample because some
observations are missing. For ordinary LS, small samples makes
mandatory resorting to nonlinear optimization techniques such as
the “Levenberg–Marquardt” with multiple initializations, or better,
global optimization methods such as genetic algorithms. Bayesian
bootstrap predictions with bagging (see Fushiki, 2010, for details) of
parameter histograms directly is the alternative of choice, mainly
when errors in model structure are significant.

4. Simulation results

4.1. Case study—fed-batch fermentation of penicillin G

Penicillin production is an established benchmark in fed-batch
fermentation for testing new approaches in modeling, optimiza-
tion and control of novel bioprocesses (Bajpai & Reuss, 1980; Cinar,
Parulekar, Ündey, & Birol, 2003, chap. 2; Li, Zhao, & Zuan, 2005;
Menezes, Alves, & Lemos, 1994; Riascos & Pinto, 2004). Typically,
industrial cultures of Penicillium crysogenum are operated in two
phases. Firstly, a batch mode of operation is used to favor mycelium
growth. Later on, for penicillin production, cells in the culture are
put in a condition of metabolic stress. To improve yield and pro-
ductivity of antibiotic expression, a fed-batch fermentation mode
is used to add substrates continuously to the culture alongside
with a specific inductor. Penicillin and biomass are obtained at
the expense of substrates (S) such as glucose, which is taken as
the limiting carbon source, and organic nitrogen compounds that
are generally provided in excess by using corn steep liquor. Since
the concentrations of viable (v) and dead (d) biomass (X), peni-
cillin (P) and glucose (S) are routinely measured, they are chosen as
the descriptive state variables along with broth volume (V) which
varies with time t in this fed-batch bioprocess. Model equations
for an unstructured tendency model of a fed-batch bioreactor are

given below whereas uncertainty intervals of model parameters
are given in Table 1 (Menezes et al., 1994). Moreover, the tendency
model takes into account a culture media evaporation rate Fevap

which is set as constant in the present study.

dV(t)
dt

= Fin − Fevap

dXv

dt
= �Xv − KdXv − (Fin − Fevap)

V
Xv; � = �maxS

KxXv + S

dXd

dt
= KdXv − klisXd − (Fin − Fevap)

V(t)
Xd

dS

dt
= −Xv + 〈SinFin〉 − (Fin − Fevap)

V(t)
S;  = �

Yxs
+ �

Yps
+ �; � = �maxS

Ks + S

dP

dt
= �Xv − (Fin − Fevap)

V(t)
P − KhP; � = �maxS

Kp + S

(18)

The policy optimization problem is defined such that the
amount of penicillin obtained at the end of a production run,
J = P(tf) · V(tf)), is maximized. The fed-batch bioreactor needs some
discharges of culture medium in order to maintain both viability
and axenity of the penicillin producing fungi strain since intermit-
tent drain-offs reduce the possibility of mutations and productivity
reduction. Such discharges must be made at some specific moments
along the production run and with certain frequency. At any time
t, the operating policy ϕ1 is defined by the set of parameters (�0,
ˇ, w, tf) corresponding to two different degrees of freedom for pro-
cess optimization. All policy parameters in ϕ1 correspond to inputs
that can be modified from run-to-run but are time-invariant in a
given run such as the initial bioreactor volume (�0) or the vector
of parameters w whose entries are: tfeed, the substrate feed con-
centration, the first drain-off time, the drain-off volume and the
drain-off frequency. Policy parameters also include the vector ˇ
corresponding to parameters which are used here to describe the
profile of time-varying control variables such as the feeding rate.
In the latter case, a key issue is the mathematical description to
be used so as to provide ample room for different profile patterns
within economic and safety constraints with a minimum number
of independent parameters in ˇ.

To complete the experimental design of each policy evaluation
run, ten optimal sampling times tsp are obtained by solving the
mathematical program in Eq. (10) using the current estimation
of the optimal operating policy and global sensitivities describing
the variability of the total amount of penicillin present at different
sampling times. For this purpose, 45 min  of CPU time are typically
required when using the fmincon solver from the optimization tool-
box of Matlab R2008a running on a PC equipped with an Intel i7
1.73 GHz processor and 4 GB of memory. From the computational
standpoint, the optimization problem for optimal sampling in Eq.
(10) is far more demanding than the one in Eq. (9) for optimization
of the operating policy. The latter requires less than 5 min  of CPU
time using the fmincon solver and the same PC.

In previous works there have been various approaches to imple-
ment bioreactor feeding policies which can be defined as constant,
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Table 2
Performance improvement in model-based policy iteration under parametric uncertainty.

Policy parameter Exploratory run Lower bound Upper bound Run #1 Run #2 Run #3 Run #4 “Real” optimum

A [L h−2] 0.6882 0 4.13 1.5537 1.0357 1.0993 1.1153 1.2100
B  [h−1] 0.1431 0.1 0.86 0.1120 0.1 0.1000 0.1006 0.1000
C  [h−2] 0.0002 −0.0008 0.0012 0.0012 0.0012 0.0005 0.0006 0.0007
tfeed [h] 0 0 24 24 0 24 24 24
tfinal [h] 240 200 300 243 223.22 294.3 283.0 282.7
Substrate feed concentration [g L−1] 240 200 350 350 350 350 350 350
First drain-off time [h] 24 24 48 24 48 24 24 24
Drain-off volume [L] 60 30 80 80 80 80 80 80
Drain-off frequency [h] 24 24 60 24 60 24 25.9 25.13
Initial volume [L] 600 500 700 500 500 500 500 500
Penicillin G, J (Kg) 22.54 47.23 45.90 50.61 51.88 51.92
Pred.  error (J) (Kg) 4.42 4.08 2.58 1.27

piecewise constant, piecewise continuous or run-wide continuous
functions of time. In this section, the feeding rate profile is varied
with time using an inverse quadratic polynomial. Inverse polyno-
mials (see Nelder, 1966, for details), resort to a small number of
parameters to define time trajectories which are quite flexible for
modeling a rich variety of continuous feeding patterns in bioreac-
tor optimization. It is worth noting that the methodology proposed
in Sections 2 and 3 is by no means limited to a given family of
mathematical functions to describe time-varying input controls.
However, bioreactor dynamics slowly unfolds cell responses to
environmental changes which make smooth continuous profiles
definitively more appealing to drive the physiological state along a
profitable trajectory of states.

In penicillin production, the feasible range of variation for each
parameter in  ̌ shaping the substrate feeding profile have been
defined from an exhaustive analysis of alternative parameteriza-
tions of an inverse quadratic polynomial so that the feed rate is
constrained to the interval [0–10] L h−1 at any time over a pro-
duction run with length tf ≤ 300 h. The chosen family of inverse
polynomials is used to specify the feed rate profile as:

Fin =

⎧⎨⎩
0, t < rfeed

At′

1 + Bt′ + Ct′ t ≥ tfeed

(19)

where t′ = t − tfeed. Feed rate profiles defined by Eq. (19) have been
chosen to eliminate problems found when applying GSA techniques
to assess performance sensitivity to profile parameters  ̌ = (A, B,
C). To this aim, it is important to guarantee that all parameters
defining the feed rate profile are independent of each other which
makes Sobol’s main effects Si(tj) in Eq. (13) optimally informative.
For assessing the performance sensitivity to the policy parameters
ϕ1 at given sampling times tj, j = 1, . . .,  n, Eqs. (14)–(16) are used.
It is worth remembering that the conditional variance in Eq. (13)
describes the portion of the total variance that can be explained by
the uncertainty regarding a given parameter �i. Once the perfor-
mance sensitivity Si(tj) for each parameter is known, the subset of
relevant parameters to be re-estimated using data gathered in the
last evaluation run is established and their probability distributions
are then updated using bootstrapping.

4.2. Tendency model with the right structure

To demonstrate the effectiveness and convergence to an opti-
mal  policy of the proposed model-based run-to-run optimization
methodology, the case where the tendency model has significant
parametric uncertainty but the correct structure is addressed. To
this aim, productivity optimization using the methodology in Fig. 1
has been made upon sampled data provided by the in silico model in
Eq. (18) and parameters from Table 1 with 5% added random noise
such that observations correspond to yi = h(xi) + ε, ε∼N(0, 2

ε )

where the variance is 2
ε = 0.05 h(xi). It is worth noting that the

probabilistic tendency model is capable of faithfully approximating
the in silico model as long as data gathering is increasingly biased
toward the more profitable region of operating conditions. Also, all
parameter values for the in silico model are included in the initial
subspace of parametric uncertainty which provides enough room
for obtaining an input policy which is near-optimal. In Table 2, the
model-optimized values for the input policy parameters in four
evaluation runs along with the exploratory run are shown. The feed
rate profile in the exploratory run is an approximation using an
inverse quadratic polynomial to the one proposed in Menezes et al.
(1994). Also, the actual values obtained (including the measure-
ment noise) for the objective function J after each policy evaluation
run and its standard deviation std(J) are shown. Performance pre-
diction errors are computed using GSA to account for parametric
uncertainty in the probabilistic tendency model. Finally, the “true”
optimal policy parameterization has been obtained using the in
silico model in Table 1 along with the upper/lower bound con-
straints for policy parameters. To this aim, a nonlinear optimization
problem is solved using a deterministic tendency model with struc-
ture in Eq. (18) along with in silico model parameters.

As it can be seen in Table 2, the optimal penicillin production
is reached after just four policy evaluation runs using the model-
based policy iteration strategy in Fig. 1. Moreover, the penicillin
obtained using the model-optimized input policy after the first
evaluation run is more than twice the amount obtained in the
exploratory run. Productivity improvement is highlighted using
bold figures for the amount of penicillin obtained. It is notewor-
thy how run-to-run reduction of parametric uncertainty in the
probabilistic tendency model can be readily seen in the levels of
confidence for performance predictions. As more sampled data
are available to re-estimate some kinetic parameters and their
probability distributions (histograms), the policy parameters fast
converge toward the parameter values of the optimal policy. In
particular, both the substrate feeding concentration and the initial
culture volume as well as the discharge frequency fast converge to
their optimal values just after the first evaluation run. In Fig. 3, the
evolution of feed rate profiles in model-based policy iteration is
shown. Model-based optimized profiles alternate between above
and under the optimal feed rate as more data are introduced in
the tendency model. Moreover, despite added measurement errors
in sampled data, feed rates in run #3, #4 and the optimal pro-
file are not statistically different from the viewpoint of penicillin
production.

Data gathered in each dynamic experiment done with the in
silico model are used to (re)estimate selectively model parame-
ter distributions in accordance with their first order (main effects)
sensitivity indices (Si). These indices have been computed using
empirical probability density function (pdf) or histograms esti-
mated based on bootstrapping data in the exploratory run. In
Table 3, performance sensitivity indices after the exploratory run
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Table  3
Sensitivity indices for the tendency model with the right structure.

Model parameter Si (exploratory run) Si (run #1) Si (run #2) Si (run #3)

�max 0.1818 0.0187 0.0731 0.0840
Kx 0.0282 0.0194 0 0.0134
Kd 0.0891 0 0.1051 0.1166
klis 0.0327 0.0193 0.0563 0.0845
Yxs 0.1641 0.1635 0.0535 0.1024
Yps 0.0906 0.0684 0.1308 0.1325
�max 0.0408 0.2306 0.0450 0.0122
Kp 0.0342 0.0195 0.0708 0.0849
�max 0 0.1659 0.1344 0.0705
Ks 0.0327 0.0192 0.1124 0.0847
Kh 0.3031 0.0947 0.1738 0

and three evaluation runs are shown. Initially, most of the uncer-
tainty of interest in the probabilistic tendency model is located in
just three parameters: to �max, Yxs and Kh. The corresponding his-
tograms for these parameters are shown in Fig. 4. The parameter Kh
alone is able to explain 30% of performance uncertainty regarding
the model-optimized policy obtained. As more policy evaluation
runs are carried out, performance variance is spread among an
increasing number of parameters. Sobol’s main effects Si in Table 3
highlight that a further reduction in the uncertainty of performance
predictions for the model-optimized policy can be achieved by
using data from the second experimental run to re-estimate �max,
Yxs, and Kh. However, uncertainty reduction for model parameters
Kx, klis and Kp is never a relevant issue to better explain performance
variance of a model-optimized operating policy in an evaluation
experiment.

As can be seen, a selective decrease in parametric uncertainty is
obtained when data from a handful of designed experiments are
used to compute bootstrapping histograms for parameters that
best explain the variance in performance predictions. After just
four runs, the initial model uncertainty has been reduced to a
level of variability that renders model-optimized policies statis-
tically identical. Thus, performance predictions cannot be further
improved using new data. In Fig. 5, run-to-run evolution of the
corresponding empirical pdf (histogram) for Yxs is shown to high-
light fast shrinking of parametric uncertainty when the model has
the correct structure. As more data are introduced into the prob-
abilistic tendency model, the parameter value 0.52 used for the in
silico model (see Table 1) becomes definitively the most probable
within a much smaller confidence interval. Also, as the policy is
improved using data from evaluation runs, the parameter distribu-
tion is clearly not Gaussian, but left-skewed. Fast convergence of
the model-optimized policy is the direct result of using data from

Fig. 3. Run-to-run improvement of the substrate feed rate profile using a tendency
model with the right structure.

Fig. 4. Histograms for the most influencing model parameters based on bootstrap-
ping data obtained in the exploratory run. (a) �max; (b) Yxs; (c) Kh .
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Fig. 5. Run-to-run evolution of histograms for Yxs highlighting uncertainty reduction when only parametric uncertainty must be reduced. (a) Exploratory run; (b) run #1;
(c)  run #3.

designed experiments to revise selectively posterior distributions
of the most influencing model parameters.

4.3. Process-model structure mismatch

To assess the effect of a structure mismatch between the
bioreactor behavior and the tendency model used for run-to-run
optimization, the model proposed in Riascos and Pinto (2004) has
been implemented as the in silico bioreactor. The Riasco and Pinto’s
model structure is described by the following set of differential
equations

dV

dt
= Fin − Fevap

dX

dt
= �X − KdX − (Fin − Fevap)

V
X; � = �maxS

KxX + S

dS

dt
= −X +

〈
SinFin

〉
− (Fin − Fevap)

V
S;  = �

Yxs
+ �

Yps
+ �; � = �maxS

Ks + S

dP

dt
= �X − (Fin − Fevap)

V
P − KhP; � = �maxS

Kp + S(1 + (S/Kin))

(20)

Table 4 provides a convenient parameterization for the in silico
model so that the tendency model proposed in Menezes et al. (1994)
equipped with a probabilistic representation of its parameters can
be used as a rough guideline for optimizing the operating policy.
Results obtained in run-to-run optimization of the operating policy
for three iterations following the exploratory run are summarized
in Table 5 and Fig. 6. It is worth noting that an improvement of
roughly 300% is obtained from the exploratory run in just three
evaluation experiments. However, policy convergence is achieved
with a 9% productivity loss. Comparing results obtained using the
probabilistic tendency model with the optimal productivity for the
in silico bioreactor is quite clear that due to structural errors the
productivity cannot be improved further. For run #4, modeling
errors are so significant that actually a lowering of productivity is
observed when the model-optimized policy is evaluated in run #4.
This fact can be understood as the necessary result of over-fitting
parameter distributions.

Fig. 6. Run-to-run improvement of the substrate feed rate profile when the ten-
dency model has a process-model structural error.

Histograms for model parameters have been obtained using
bootstrapping with sampled data. In Fig. 7, distributions based on
data gathered in the exploratory run are shown for two  parame-
ters: Yps and �max,. It was  found that for some parameters the most
probable values coincide with either the upper or lower bounds in
their uncertainty intervals. A plausible explanation of such bias is
that a significant structural process-model mismatch in bootstrap-
ping gives rise to a very low frequency of inner parameter values
which cannot fit data properly.

The structural mismatch between the in silico model and the
tendency model is vividly shown in Fig. 8 using sampled data for
penicillin in the exploratory run and the third optimization run
when evaluating operating policies in model-based policy itera-
tion. For the exploratory run (see Fig. 8(a)), the level of parametric
uncertainty is considerably high which makes structural errors less
evident. As more data have been introduced both the parameter
distributions and the operating policy are changed significantly to
reflect structure errors in the tendency model. The model-process

Table 4
The in silico model parameters used to assess the effect of structural modeling errors.

Parameter Notation Units Value

Maximum specific growth rate �max h−1 0.15
Saturation parameter for biomass production Kx g-substrate/g-DW 0.06
Yield  factor for substrate to biomass Yxs g-DW/g-substrate 0.45
Yield  factor for substrate to penicillin Yps g-Penicillin/g-substrate 0.9
Maximum specific synthesis rate of penicillin �max h−1 0.012
Saturation parameter for penicillin production Kp g L−1 0.0001
Maximum substrate uptake rate for maintenance �max h−1 0.025
Saturation parameter for cellular maintenance Ks g L−1 0.0001
Inhibition parameter for penicillin production rate Kin g L−1 0.1
Penicillin hydrolysis rate Kh h−1 0.003
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Table  5
Performance improvement in model-based policy iteration under structural modeling errors.

Policy parameter Exploratory run Lower bound Upper bound Run #1 Run #2 Run #3 Run #4 “Real” optimum

A [L h−2] 0.6882 0 4.13 0.8707 0.9697 1.3494 1.3036 1.2755
B  [h−1] 0.1431 0.1 0.86 0.1 0.1022 0.1015 0.1000 0.1018
C  [h−2] 0.0002 −0.0008 0.0012 2e−4 3e−4 9e−4 8e−4 0.0012
tfeed [h] 0 0 24 24 23.6 24 24 22.37
tfinal [h] 240 200 300 300 300 294.8 300 300
Substrate feed concentration [g L−1] 240 200 500 500 500 500 500 500
First  drain-off time [h] 24 24 48 24 24.17 24.02 24 24
Drain-off volume [L] 60 30 80 80 80 80 80 79.57
Drain-off frequency [h] 24 24 60 24 24 24.62 24 35.28
Initial volume [L] 600 500 700 500 500 500 500 500
Penicillin G, J (kg) 16.12 35.47 40.49 57.51 53.6 63.24
Pred.  error (J) (kg) 3.1 2.1 2.5 1.9

structure mismatch is clearly revealed in Fig. 8(b) through peni-
cillin concentrations that are outside the prediction ranges for the
probabilistic tendency model.

In Table 5, sensitivity indices Si (main effects) for the per-
formance index, namely the amount of penicillin obtained, on a
run-to-run basis are shown. Figures in bold highlight productivity
improvement based on model-based policy iteration. These indices
highlight the sensitivity of productivity predictions due paramet-
ric uncertainty and model-process mismatch. At the beginning of
policy optimization main sources of performance uncertainty are
related to only two parameters, Yps and �max, which explain almost
the same amount of variability. Despite at evaluation run #2 and
run #3 the amount of variance explained by principal effects is

Fig. 7. Histograms for the most influencing model parameters based on bootstrap-
ping data obtained in the exploratory run. (a) �max; (b) Yps .

reduced, it is interesting to observe that variability appears mainly
due to a few uncertainty sources and is not spread evenly as in
previous example of Section 4.2.  In Figs. 9 and 10,  histograms that
highlight run-to-run uncertainty reduction for parameters Yxs and
�max are shown. It is noteworthy that uncertainty reduction for
these parameters drastically changes the median of the histograms.
These noticeable changes in the shape of parameter histograms
are rather expected whenever a model with a significant

Fig. 8. Penicillin prediction degradation as more data bias are introduced into the
tendency model with structural errors. (a) After the exploratory run; (b) after run
#3.



Author's personal copy

48 E.C. Martínez et al. / Computers and Chemical Engineering 49 (2013) 37– 49

Fig. 9. Run-to-run evolution of histograms for Yxs highlighting uncertainty reduction under significant model-process structure mismatch. (a) Exploratory run; (b) run #1;
(c)  run #3.

Fig. 10. Run-to-run evolution of histograms for �max highlighting uncertainty reduction under significant model-process structure mismatch. (a) Exploratory run; (b) run
#1;  (c) run #3.

Table 6
Sensitivity indices for the tendency model with process-model structure mismatch.

Model parameter Si (exploratory run) Si (run #1) Si (run #2) Si (run #3)

�max 0 0 0.0329 0
Kx 0.0236 0.0012 0.5910 0.0029
Kd 0.0005 0.0013 0.0015 0.0056
klis 0.0003 0.0014 0.0384 0
Yxs 0.0341 0.1289 0 0
Yps 0.3838 0.0012 0.0062 0.0112
�max 0.3888 0.0426 0.0191 0.2501
Kp 0.0004 0.0013 0.0015 0
�max 0.0875 0.5224 0.0364 0.0001
Ks 0.0004 0.0014 0.0015 0
Kh 0.0114 0.2627 0.0072 0

model-process structural mismatch is used for performance predic-
tions in an ample range of operating conditions (Table 6). In Table 6,
sensitivity indices in bold correspond to the most sensitive model
parameters at each iteration.

5. Concluding remarks

A Bayesian decision-theoretic approach for run-to-run pro-
ductivity optimization of bioreactors under uncertainty has been
proposed. An important contribution of the presented work is
integrating probabilistic tendency models with Bayesian active
learning for experimental design in modeling for optimization.
Global sensitivity analysis has been used to formulate the optimal
sampling strategy in each dynamic experiment as an optimization
problem whose solution provides the optimal sampling times at
which the performance objective is most sensitive to changes in
the policy parameters. Results obtained for the penicillin G case
study highlight that, even when there may  exist significant errors
in a process model structure, a significant increase in bioreactor
productivity can be achieved using model-based policy iteration.

For run-to-run optimization of the operating policy, it was
proposed that parameter distributions in a probabilistic model
of bioreactor performance must be selectively re-estimated on a
run-to-run basis based on bootstrapping. Accordingly, a proba-
bilistic tendency model is instrumental for designing optimally
informative experiments in experimental optimization and reduc-
ing parametric uncertainty using a learning-from-last-samples type
of approach. Solely based on gathered data in a few policy evalua-
tion runs, model-based policy iteration is able to explore only the
most profitable region of operating conditions guided by a util-
ity function which combines information gain and performance
improvement to trade off exploitation with exploration. First-
principles and constitutive laws in a probabilistic tendency model
constitute soft constraints for policy optimization to avoid phys-
iological states in the bioreactor which are undesirable from the
productivity viewpoint. Sample data, in turn, allow introducing the
needed bias in gathering the most informative data to selectively
explore the subspace of policy parameters.

Current research efforts attempt to extend the proposed
approach to take advantage of several tendency models in policy
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iteration. To this aim, model selection and multi-model infer-
ence in modeling for optimization is being addressed using the
Kullback–Leibler divergence—or relative entropy—between prior
and posterior distributions for each model before and after the data
produced by the new experiment have been used for parameter re-
estimation. Accordingly, models are ranked in order to maximize
the “interestingness” of new data from the viewpoint of produc-
tivity improvement. A promising alternative in this regard is the
anticipatory approach to optimal experimental design recently pro-
posed by Donckels, De Pauw, De Baets, Maertens, and Vanrolleghem
(2009). Currently, the presented Bayesian framework is being
extended so as to rely on a library of tendency models with dif-
ferent structures for safely exploring operating conditions while
collecting new information to discover better policies with less
time and money at stake.
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