
A

M
I

a

A
R
R
1
A
A

K
M
L
B
D

1

u
d
g
s
r
u
i
i
n
t
f
p
p
v
t
t
s

t
a
p
b
l
p

0
h

Computers and Chemical Engineering 48 (2013) 218–233

Contents lists available at SciVerse ScienceDirect

Computers and Chemical Engineering

journa l homepage: www.e lsev ier .com/ locate /compchemeng

comparative assessment of linearization methods for bilinear models

aria Analia Rodriguez, Aldo Vecchietti ∗

NGAR (CONICET-UTN), Avellaneda 3657, Santa Fe 3000, Argentina

r t i c l e i n f o

rticle history:
eceived 22 November 2011
eceived in revised form
1 September 2012
ccepted 15 September 2012

a b s t r a c t

In this article, optimization problems with bilinear constraints involving one discrete variable are stud-
ied. Several industrial problems present bilinear non-convex constraints which are difficult to solve to
global optimality. For this purpose models must be reformulated what in general terms increases the
problem size. This article proposes two disjunctive transformation techniques which are compared to
other approaches presented in the literature. An analysis is made comparing qualitative and quantita-
vailable online 3 October 2012

eywords:
INLP

inearization methods

tive characteristics of the methods employed. In order to implement proposed transformations, three
industrial cases are studied: trim-loss in a paper mill, cutting stock in the production of carton board
boxes and the purchase, inventory and delivery optimization problem. All of them are reformulated and
solved using the strategies included in the paper. Several instances of each problem are evaluated and

com
ilinear terms
iscrete decisions

their results are analyzed

. Introduction

Several typical industrial problems such as planning, sched-
ling, distribution, inventory, process control and design involve
iscrete decisions, continuous variables and bilinear terms. In
eneral, the original non-linear non-convex problem presents
everal local optima that makes obtaining the global solution a
eally difficult task. One attempt to overcome this issue is to
se global optimization algorithms. However, as the problem size

ncreases, the resolution time rises and the problem could become
ntractable. This context promotes a permanent interest in finding
ew approaches to solve it. One way to address it is to reformulate
he non-convex problem as a linear or convex one. This trans-
ormation methodology, which allows reaching global optimality,
resents two new issues that must be taken into account. In the first
lace, the new formulation increases the problem size in terms of
ariables and constraints, and as a consequence, the solution of the
ransformed model could be a time consuming task. In the second,
he tightness of the representation employed also constrains the
uccess of the applied method.

Several reformulations from in the literature tackle bilinear
erms. These can involve continuous or discrete variables and
ccording to that characteristic, the strategies used to transform the
roblem are different. The simplest case includes the product of two

inary variables. Glover and Woolsey (1974) proposed a reformu-

ation technique that converted a 0–1 polynomial programming
roblems into a 0–1 linear programming problems by replacing

∗ Corresponding author. Tel.: +54 342 4535568; fax: +54 342 4553439.
E-mail address: aldovec@santafe-conicet.gov.ar (A. Vecchietti).

098-1354/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compchemeng.2012.09.011
paring performance of the different methods.
© 2012 Elsevier Ltd. All rights reserved.

cross-product terms by continuous variables. Glover (1975) ana-

lyzed the problem of minimizing
∑

i,j

yiaijyj where yi, yj ∈ {0, 1} and

all the remaining constraints are linear. In this problem, the nonlin-

ear objective function is replaced by
∑

i

zi and 4 · imax constraints

are added to the formulation.
In the case of a bilinear term with one continuous and one binary

variable, Petersen (1971) proposed to introduce a new variable zi,
to replace each bilinear term, and 4 · imax linear constraints, to limit
the upper and lower bounds of the continuous variable. In the same
direction, Psarris and Floudas (1990) applied a similar method for
the same type of problems.

Adams and Sherali (1990) and Sherali and Adams (1994)
introduced a method under the name of Reformulation Lineari-
zation Technique (RLT) that proposed a hierarchy of relaxations
for linear and polynomial 0–1 problems. RLT was then extended
to continuous non-convex programs by Sherali and Tuncbilek
(1992) which generated polynomial implied constraint in a first
step and then, linearized the resulting problem by a suitable vari-
able transformation. As it was mentioned by Chang (2000), the
main drawbacks of this method are exposed in three points. First,
several of the implied constraints need to be generated in a lin-
earized form and tightening its representation step by step is
a long trial-and-error process taking into account the exponen-
tial generation of new constraints and variables. Additionally, RLT
algorithm always requires a huge amount of bounded constraints

to be generated that on many occasions are redundant. Finally,
RLT process varies according to the problem under analysis so a
user needs to formulate a special RLT scheme depending on the
case.

dx.doi.org/10.1016/j.compchemeng.2012.09.011
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:aldovec@santafe-conicet.gov.ar
dx.doi.org/10.1016/j.compchemeng.2012.09.011

and C

s
1

l
a
e
t
o
t
g
p
o
f
n
t
f
t
i
f
R
i
i
l
d
n
c

a
t
t
a
p
l
t
G
r
d
r
t
e
t

a
u
s
w
m
I
o
e
o
W
t
c
r

d
s
a
n
o
e
t
S
b

lower than or equal to nup but when ˇik is equal to zero, nijk is also
zero.
M.A. Rodriguez, A. Vecchietti / Computers

When both variables are continuous, most of the approaches use
ome reformulation based on McCormick relaxation (McCormick,
976).

Grossmann (2002) reported an interesting review of non-
inear programming techniques where topics about bilinearities
re covered. Gounaris, Misener, and Floudas (2009) presented an
xhaustive comparison of several piecewise-linear relaxations for
he pooling problem with the aim of improving the tightness of the
riginal McCormick relaxation and the efficiency of the optimiza-
ion procedure. Liberti and Pantelides (2006) proposed an exact
raph-theoretical algorithm in the reformulation of non-convex
roblems that can be applied whether the variables are discrete
r continuous. The basic idea behind this procedure is inherited
rom Sherali and Adams (1986), which is to multiply the origi-
al linear constraints by the existent variables. Bilinear terms are
hen replaced by their equivalent variable and eliminated from the
ormulation. This method is different from RLT since it applies RLT-
ype multiplications directly to the original NLP problem (and not
ts convex relaxation) deriving an exact reformulation which has
ewer bilinear terms and more linear constraints, called reduced
LT (RRLT). One limitation of this technique appears when there

s a variable only involved in a linear constraint which is not
ncluded in a bilinear product. In this case, when the corresponding
inear constraint is multiplied by one of the variables, the proce-
ure introduces a new bilinear term. Finally, the method could
ot guarantee to turn the original problem into a linear one in all
ases.

The main focus of this work is placed on bilinear terms with
t least one integer variable. In this subject, some works from
he literature aims at solving specific bilinear problems applica-
ions while others present more general transformations. With
broad purpose, Pörn, Harjunkoski, and Westerlund (1999) pro-
osed several convex reformulations for MINLP problems. Some

inear transformations presented in this article were applied to the
rim-loss problem by Harjunkoski, Westerlund, and Pörn (1999).
rossmann, Voudouris, and Ghattas (1992) presented a linear

eformulation which was applied for batch process design and
iscrete sizing structural problems. In both articles, the authors
edefined the integer variable in terms of binary variables and
he bilinear product as the summation of linear terms. How-
ver, they used different strategies to reformulate the non-convex
erm.

In this article, due to the connection between discrete decisions
nd disjunctive modeling, generalized disjunctive programming is
sed to propose transformations which differ from the ones pre-
ented in the literature. These techniques not only offer a natural
ay to represent the original variables but also lead to new refor-
ulations that can also be applied to solve the same problems.

n order to present a qualitative comparison, the proposed meth-
ds and the ones from Liberti and Pantelides (2006), Harjunkoski
t al. (1999) and (Grossmann et al., 1992) are analyzed in terms
f the number of constraints and variables added in the model.
ith the same purpose, plausible links and relations between these

echniques are also studied. From a quantitative perspective, the
omputational effort to solve some typical bilinear problems is also
eported and discussed.

The remaining paper is organized as follows: in Section 2 we
escribe different transformations applied to convert bilinear con-
traints into linear ones. We also explain their characteristics and
nalyze the reformulation’s size. All these transformation tech-
iques proposed are used to reformulate three case studies. Results
btained with those relaxations are presented in Section 3 and an
valuation is carried out based on their efficiency to reach the solu-
ion. Final conclusions and discussions are presented in Section 4.

upplementary data includes Appendices A, B and C present the
ilinear constraints reformulations for each case study.
hemical Engineering 48 (2013) 218–233 219

2. Bilinear term reformulations

In this section all methods used to convert the bilinear terms
into linear are presented.

2.1. Harjunkoski et al.’s reformulation

The first two linearization methods described were proposed by
Harjunkoski et al. (1999). The authors applied these reformulations
for the case of the trim loss problem. However, they can also be used
for any case where at least one of the variables of the bilinear term
is discrete.

Consider the bilinear term presented in Eq. (1):

mi · nj ≤ Dij ∀i ∈ I, ∀j ∈ J (1)

where mi is an integer variable (0 ≤ mi ≤ mup), nj is a positive vari-
able (0 ≤ nj ≤ nup) and Dij is a parameter. Note that one could also
consider a different lower bound for the variables with little change
in the formulation (for more details concerning this point see Pörn
et al., 1999). The bilinear term is transformed using binary (ˇik) and
slack (nijk) variables.

The first strategy, called HK1, presents an intuitive form to
model the discrete variable. This variable is defined in Eq. (2) as
the summation of the K possible values that mi can take multiplied
by the binary variable ˇik. Only one binary variable can be nonzero
(Eq. (3)) in order to guarantee that only one value is given to variable
mi.

mi =
∑

k

k · ˇik ∀i ∈ I (2)

∑
k

ˇik ≤ 1 where K = {1, 2, . . . , mup} ∀i ∈ I (3)

In the second transformation, named HK2, the discrete variable is
defined using a two-based formulation as shown in Eq. (4).

mi =
∑

k

2k−1 · ˇik where K = {1, 2, . . . , �log2(mup)� + 1 ∀i ∈ I (4)

Eq. (4) defines the integer variable mi as the summation of K terms.
In this case, more than one binary variable (ˇik) can assume a pos-
itive value. The combinations of positive terms will form different
possible values of mi. As a consequence, this formulation leads to
less number of 0–1 variables than the previous one.

Whether HK1 or HK2 representation is used to define vari-
able mi, some other constraints, Eqs. (5) and (6), must be added
to replace variable nj. For this purpose, a positive slack variable
(nijk ≥ 0) is introduced.

nijk − nj ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (5)

Eq. (5) forces the value of nijk to zero when nj is equal to zero.

−nijk + nj − nup(1 − ˇik) ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (6)

Note that Eq. (6) has the form of a big-M constraint. When ˇik is
one, this constraint must be satisfied and then nijk will be equal to
nj since Eq. (5) makes nijk lower than nj and Eq. (6) makes it greater
than nj. On the contrary, if ˇik is zero Eq. (6) is relaxed.

nijk − nup · ˇik ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (7)

Finally, Eq. (7) is an upper bound for nijk. When ˇik is one, nijk is
At this point, we can analyze the constraints proposed by
Petersen (1971) for the bilinear product of a binary variable by a

2 and C

p
g

y

w
a
a

y

n

S
b
t
(

n

−
n

I
P
q
H
e
b
f
v
e
t
a

∑

∑
T
d

•
•
•

t

•
•
•

t
l
n
n
v
T
r
r
o
o
r

20 M.A. Rodriguez, A. Vecchietti / Computers

ositive continuous one. Consider the following bilinear product
iven by Eq. (8):

i · nj ∀i ∈ I, ∀j ∈ J (8)

here yi = {0,1} and nj continuous such that 0 ≤ nj ≤ nup.A new vari-
ble nij is introduced in the formulation to replace the bilinear term
nd the following inequalities are added:

i · nlo ≤ nij ≤ yi · nup ∀i ∈ I, ∀j ∈ J (9)

j − nup(1 − yi) ≤ nij ≤ nj − nlo(1 − yi) ∀i ∈ I, ∀j ∈ J (10)

ince in this case, nlo = 0, variable nij is positive (nij ≥ 0) and lower
ound constraint can be omitted. Also, if we disaggregate inequali-
ies in Eq. (10) and change the order of the terms we get inequalities
11) to (13):

ij − nj ≤ 0 ∀i ∈ I, ∀j ∈ J (11)

nij + nj − nup(1 − yi) ≤ 0 ∀i ∈ I, ∀j ∈ J (12)

ij − yi · nup ≤ 0 ∀i ∈ I, ∀j ∈ J (13)

t is interesting to notice that there is a connection between
etersen’s and Harjunkoski’s methods. In fact, Eqs. (11)–(13) are
uite similar to Eqs. (5)–(7). The difference between Petersen’s and
arjunkoski’s methods is given by the discrete variable in the bilin-
ar term. Petersen’s only introduces these 3 inequalities for each
ilinear term (3 × i × j) while Harjunkoski’s has to add these three
or each new binary variable (3 × i × j × k) to represent the discrete
ariable of the bilinear term. In other words, Harjunkoski’s strat-
gy disaggregates the original bilinear term into several bilinear
erms formed by one binary and one continuous variable and then it
pplies Petersen’s transformation to linearize these bilinear terms.

Then, for the first strategy, HK1, Eq. (1) can be rewritten as (14):

k

k · nijk ≤ Dij ∀i ∈ I, ∀j ∈ J (14)

For the second approach, HK2, Eq. (1) is replaced by (15):

k

2k−1 · nijk ≤ Dij ∀i ∈ I, ∀j ∈ J (15)

hen, HK1 is given by (2), (3), (5)–(7), (14). This alternative intro-
uces in the original problem:

2 × i + 3 × mup × i × j constraints;
mup × i binary variables;
mup × i × j continuous variables.

HK2 strategy is given by Eqs. (4)–(7), (15). This model adds to
he original formulation:

i + 3 × (� log2(mup) � +1) × i × j constraints;
(� log2(mup) � +1) × i binary variables;
(� log2(mup) �) × i × j continuous variables.

On the one side, it is remarkable that the latter approach leads
o a smaller formulation because the 2-based representation needs
ess number of variables and constraints to transform the origi-
al model. On the other side, this formulation also allows more
umber of values for variable mi. It increases in 2k−1 the possible
alues for the discrete variable when set K is augmented in one unit.
hen, according to the maximum value allowed for +(mup), 2-based
eformulation (HK2) could include more possible values for mi than

eally required. In those cases, integer cuts can be introduced in
rder to eliminate the unwanted values for the variable. Using any
f these transformations, the bilinear term becomes linear and the
elaxed problem can be solved to global optimality.
hemical Engineering 48 (2013) 218–233

2.2. Voudouris, Ghattas and Grossmann’s reformulation

The method studied in this section was derived from the work
presented by (Grossmann et al., 1992). In this article, the authors
proposed a reformulation which is applied to two examples. They
showed that when one of the variables of the bilinear problem is
restricted to discrete values the original nonlinear model can be
reformulated as a MILP. In fact, some other authors also applied
this technique for batch design applications (Moro & Pinto, 2004;
Moreno & Montagna, 2009; Ierapetritou & Pistikopoulos, 1996).
For further reference in this paper this method will be called VGG
(Voudouris–Ghattas–Grossmann) method.

VGG redefines variable mi in Eq. (16) in terms of binary variables
ˇik and parameter k which indicates the possible values for this dis-
crete variable. This method also introduces continuous variables,
nijk ≥ 0, to represent the original continuous variable nj. Upper
bound for nijk is determined in Eq. (18). Finally, variable nj is calcu-
lated in (19) and the original bilinear constraint (1) is replaced by
(20).

Note that VGG method shows some similarities and differences
with respect to HK1. First, Eqs. (2) and (3) are the same as Eqs. (16)
and (17) and Eq. (7) is equal to (18). The constraint that replaces
the original bilinear restriction is also the same (Eqs. (14) and (20)).
The difference is that VGG uses Eq. (19) instead of Eqs. (5) and (6)
of HK1 which leads to a much more compact representation.

mi =
∑

k

k · ˇik ∀i ∈ I (16)

∑
k

ˇik ≤ 1 where K = {1, 2, . . . , mup} ∀i ∈ I (17)

nijk − nup · ˇik ≤ 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (18)

nj =
∑

k

nijk ∀i ∈ I, ∀j ∈ J (19)

∑
k

k · nijk ≤ Dij ∀i ∈ I, ∀j ∈ J (20)

This reformulation is formed by Eqs. (16)–(20) which presents a
reduced number of equations compared to HK1 and HK2. Note that
Eq. (20) replaces (1). In fact, this method introduces:

• 2 × i + i × j + mup × i × j constraints;
• mup × i binary variables;
• mup × i × j continuous variables.

Note that this formulation presents some similarities to the
convex hull relaxation applied to disjunctive models. There is a dis-
aggregation of the variables and upper bound constraints. We will
show later some interesting conclusions connected with one of the
disjunctive approach proposed in this article.

2.3. Liberti and Pantelides’s method

The next method analyzed in this section was proposed by
Liberti and Pantelides (2006) and it was called RRLT (Reduced
Reformulation Linearization Technique). The authors reformulate
non-linear problems in such a way that some of the nonlinear con-
straints are replaced by linear ones.

The basic idea of this method was first proposed by Sherali
and Adams (1986). They create new linear constraints by multi-

plying existing linear constraints by problem variables under the
name “reformulation-linearization technique” (RLT). The RLT uses
these linear constraints to provide a lower bound to bilinear pro-
gramming problems. The maximum possible number of new linear

and C

c
p
s
i
w

s
b
l

a

a

T
e

a

T
c
m
o
(

s

A
m
E
c
t
r
s

t
c
m
n

p
i

m

w

0

0

C
e

a

w
e
c

a

s

O
t
e
m
b
e
m
p

v

M.A. Rodriguez, A. Vecchietti / Computers

onstraints is obtained by multiplying all linear constraints by all
roblem variables. As a consequence, the RLT could lead to exces-
ive computational complexity in large problems. Extending these
deas, Liberti and Pantelides proposed an algorithm that identifies

hich set of multiplications are in fact beneficial.
Given the bilinear restriction in Eq. (1) and other linear con-

traints such as Eq. (21), the method multiplies the linear constraint
y the other variable participating in the bilinear product, which

eads to Eq. (22).

i · mi + bi = 0 (21)

i · mi · nj + bi · nj = 0 (22)

hen, we can introduce a new variable sij which replaces the bilin-
ar product in (22):

i · sij + bi · nj = 0 (23)

he linear constraint (23) is redundant with respect to the original
onstraints. Certainly, it can be used to replace the bilinear term
i · nj in the original problem without affecting the feasible region

f the problem. Then, Eq. (1) can be rewritten as Eq. (24) and Eq.
21) can be eliminated and replaced by (23):

ij ≤ Dij (24)

limitation of this technique is that all bilinear products of the type
i · nj have to exist in the problem before the linear constraint (like

q. (23)) can be created. Otherwise, new bilinear terms would be
reated by this procedure. Liberti and Pantelides have concluded
hat such reduction constraint is valid if the substitution leads to a
eduction in the overall number of bilinear constrains in compari-
on with the original problem.

Since the aim of this work is to compare linear transformation
echniques, the application of this method will be restricted to the
ases where linear formulation can be obtained. In other cases, the
ethod will not be considered as a valid technique because it would

ot guarantee global optimality.
We have also studied the application of this technique to bilinear

roducts of two discrete variables. Suppose the bilinear constraint
n Eq. (25):

· n ≤ D (25)

here both m and n are discrete variables such that:

≤ m ≤ mup (26)

≤ n ≤ nup (27)

onsider that the original problem also includes the following lin-
ar constraint:

· m + b ≤ 0 (28)

hen Eq. (28) is multiplied by variable n, the bilinear term gen-
rated is replaced by variable s in (29). Then, the original bilinear
onstraint Eq. (25) is replaced by Eq. (30).

· s + b · n ≤ 0 (29)

≤ D (30)

ne interesting point is that variable m will be also eliminated from
he formulation. Then, even if the new variable s and n are consid-
red discrete variables, the discrete nature of the original variable

is missed because the new model cannot guarantee that s would
e exact multiple of variable n. Although the reformulation is lin-
ar, it offers a lower bound of the original problem (in the case of

inimization). This is a limitation that the other methods do not

resent since the original variables remain in the model.
No generalization can be concluded regarding the number of

ariables introduced because it depends on the structure of the
hemical Engineering 48 (2013) 218–233 221

original problem. However, it is possible that if the problem can be
reformulated as a linear model the number of variables and con-
straints remain constant which is the best feature of the method.

2.4. Disjunctive reformulation

In this section, we propose some reformulations using a disjunc-
tive approach. Even though the main idea of these techniques also
relies on the use of binary variables to represent the discrete ones,
the way of modeling through disjunction varies from the previous
methods. First, the disjunctive reformulation is more expressive
and clearly addresses the integer nature of the original variables.
Second, linear reformulations, applying Convex Hull and Big M
relaxations, lead to different MILP models from the ones proposed
by the previous authors. Two transformations are proposed using
a disjunctive representation.

2.4.1. First disjunctive approach
In the first method, each term in the disjunction represents one

possible value of variable mi as shown in Eq. (31). Consequently, the
disjunction has as many terms as the number of possible values of
mi. Note that each disjunction’s term involve a positive variable
sij ≥ 0, which represents the bilinear product (mi · nj).

∨
k

⎡
⎢⎣

ˇik

mi = k − 1

sij = (k − 1) · nj ∀j ∈ J

⎤
⎥⎦ ∀i ∈ I (31)

In (31) K = {1, 2, . . ., mup + 1}. Then, Eq. (1) can be reformulated as:

sij ≤ Dij ∀i ∈ I, ∀j ∈ J (32)

Note that the first equation in disjunction (31) might be not
required if variable mi is only required in the bilinear term but not
in the rest of the model. As mentioned, one advantage of the dis-
junctive representation is its compact form where a more natural
representation of the decision variables is obtained.

In order to implement this disjunctive model we present two
relaxations. In the first place, Big-M reformulation is given by Eqs.
(32)–(37).∑

k

ˇik = 1 where K = {1, 2, ..., mup + 1} ∀i ∈ I (33)

mi ≥ (k − 1) − M−
ik

(1 − ˇik) ∀i ∈ I, ∀k ∈ K (34)

mi ≤ (k − 1) + M+
ik

(1 − ˇik) ∀i ∈ I, ∀k ∈ K (35)

sij ≥ (k − 1) · nj − S−
ijk

(1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (36)

sij ≤ (k − 1) · nj + S+
ijk

(1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (37)

A tight Big-M reformulation could be obtained with appropriate
definition of parameters M−

ik
, M+

ik
, S−

ijk
and S+

ijk
. Analyzing the possible

values for variables m and s, these parameters are determined as
follows:

M−
ik

= (k − 1) ∀i ∈ I, ∀k ∈ K (38)

M+
ik

= mup − (k − 1) ∀i ∈ I, ∀k ∈ K (39)

S−
ijk

= (k − 1) · nup ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (40)

S+
ijk

= (mup − (k − 1)) · nup ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (41)

This relaxation introduces:
• i + 2 × (mup + 1) × i + 2 × (mup + 1) × i × j constraints;
• (mup + 1) × i binary variables;
• i × j continuous variables.

2 and C

C∑
m

s

m

s

n

0

0

0

N
j
d
i
v

m
I
c
i
a
b∑

m

s

n

0

I
r
a∑
T
E

•
•
•

o
t
i
d

22 M.A. Rodriguez, A. Vecchietti / Computers

Another strategy to reformulate disjunction (31) is given by the
onvex Hull relaxation presented in Eqs. (42)–(50).

k

ˇik = 1 where K = {1, 2, . . . , mup + 1} ∀i ∈ I (42)

ik = (k − 1) · ˇik ∀i ∈ I, ∀k ∈ K (43)

ijk = (k − 1) · nijk ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (44)

i =
∑

k

mik ∀i ∈ I (45)

ij =
∑

k

sijk ∀i ∈ I, ∀j ∈ J (46)

j =
∑

k

nijk ∀i ∈ I, ∀j ∈ J (47)

≤ mik ≤ mup
k

· ˇik ∀i ∈ I, ∀k ∈ K (48)

≤ sijk ≤ sup
k

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (49)

≤ nijk ≤ nup
k

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (50)

ote that Eqs. (43) and (44) redefines the constraints of the dis-
unctive terms using new continuous variables, Eqs. (45)–(47)
isaggregates the original variables in terms of the new ones

ntroduced and Eqs. (48)–(50) give lower and upper bounds to new
ariables.

Since Eqs. (43) and (44) already give the corresponding values to
ik and sijk, the upper bounds of Eqs. (48) and (49) can be omitted.

n this reformulation we can reduce the number of variables and
onstraints if we relax the equality of Eq. (42) and rewrite the orig-
nal variable mi and sij in terms of the right hand side of Eqs. (43)
nd (44), respectively. Then, the new linear model is determined
y Eqs. (51)–(55).

k

ˇik ≤ 1 where K = {1, 2, . . . , mup} ∀i ∈ I (51)

i =
∑

k

k · ˇik ∀i ∈ I (52)

ij =
∑

k

k · nijk ∀i ∈ I, ∀j ∈ J (53)

j =
∑

k

nijk ∀i ∈ I, ∀j ∈ J (54)

≤ nijk ≤ nup · ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (55)

f we further rewrite this formulation, new variable sij is in fact not
equired in the formulation. We can then replace Eq. (32) by (56)
nd eliminate Eqs. (53).

k

k · nijk ≤ Dij ∀i ∈ I, ∀j ∈ J (56)

hen, this Convex Hull reformulation, called DR1-CH, is given by
qs. (51)–(52), (54)–(56), adding to the original formulation:

2 × i + i × j + mup × i × j constraints;
mup × i binary variables;
mup × i × j continuous variables.

Comparing this reformulation, called DR1-CH, to the one

btained applying the VGG method we can conclude the later is
he convex hull relaxation of the disjunctive representation given
n Eq. (31). This conclusion was not self-evident when writing the
isjunction to replace the bilinear term, because a mathematical
hemical Engineering 48 (2013) 218–233

simplification was made to arrive at the final form of DR1-CH,
equivalent to VGG. This is a very interesting result of this study
since Voudouris, Ghattas and Grossmann’s approach was exten-
sively used to solve batch design applications with excellent results.
The strength of these methods is given by the facts that: the Convex
Hull reformulation gives tight bounds to the relaxed problem and,
in this case, the reformulation provides a compact model because
many superfluous variables and constraints were eliminated from
its original form.

2.4.2. Second disjunctive approach
In the second technique a two terms disjunction is used instead

of the several terms one (Eq. (31)) applied in the first representation
to calculate the value of mi. Now, the discrete variable mi is calcu-
lated outside the disjunctions as the summation of K terms, defined
by the positive variable mik, given in each disjunction (i,k). In this
case, if the Boolean variable ˇik is true, a positive value is assigned
to mik, otherwise mik is zero. This new formulation is given by Eqs.
(57)–(59).⎡
⎢⎣

ˇik

mik = 2k−1

sijk = 2k−1 · nj ∀j ∈ J

⎤
⎥⎦ ∨

⎡
⎢⎣

¬ˇik

mik = 0

sijk = 0 ∀j ∈ J

⎤
⎥⎦ ∀i ∈ I, ∀k ∈ K (57)

where k = {1, 2, . . ., � log2(mup) �}.
Variables mik and sijk are added to the original model to repre-

sent the integer variable mi and the bilinear term, respectively. The
definition of mi is now written as shown in (58).

mi =
∑

k

mik ∀i ∈ I (58)

Eq. (1) is now rewritten as (59):∑
k

sijk ≤ Dij ∀i ∈ I, ∀j ∈ J (59)

Note that if variable mi is only used in Eq. (1), then there is no
need to define mi in the disjunction (57) and constraint (58) can
be omitted. When the number of possible values of variable mi is
large, this representation could be more attractive than the first
one since it requires less number of Boolean variables due to the 2-
based representation of the discrete variable. As it was also pointed
out for the HK2 method, the disadvantage is that it could include
more possible values for mi than really required.

In order to implement this model as a MILP, this disjunctive
representation is also reformulated using Big-M and Convex Hull
relaxations. The first one, called DR2-BM, is presented in Eqs.
(60)–(67).

mik ≥ 2k−1 − M1−
ik

· (1 − ˇik) ∀i ∈ I, ∀k ∈ K (60)

mik ≤ 2k−1 + M1+
ik

· (1 − ˇik) ∀i ∈ I, ∀k ∈ K (61)

sijk ≥ 2k−1 · nj − S1−
ijk

· (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (62)

sijk ≤ 2k−1 · nj + S1+
ijk

· (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (63)

mik ≥ −M2−
ik

· ˇik ∀i ∈ I, ∀k ∈ K (64)

mik ≤ M2+
ik

· ˇik ∀i ∈ I, ∀k ∈ K (65)

sijk ≥ −S2−
ijk

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (66)

sijk ≤ S2+
ijk

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (67)
Note that Eqs. (60)–(63) represent the first term of disjunction (57)
while Eqs. (64)–(67) redefine the second term.

As it was shown in the first disjunctive method, suitable values
of Big-M parameters lead to tight representations of the original

and C

p
e

M

M

M

M

I
o
a

m

m

m

N
a
O
i
e
i
E

m

m

N

S

S

S

S

T
p
t

s

s

s

N
t

r
(

•

•
•

t
(

m

s

M.A. Rodriguez, A. Vecchietti / Computers

roblem. Then, for variable mik, appropriate values for these param-
ters are calculated in (68) to (71).

1−
ik

= 2k−1 ∀i ∈ I, ∀k ∈ K (68)

1+
ik

= 0 ∀i ∈ I, ∀k ∈ K (69)

2−
ik

= 0 ∀i ∈ I, ∀k ∈ K (70)

2+
ik

= 2k−1 ∀i ∈ I, ∀k ∈ K (71)

f we replace these parameters in the corresponding equations we
btain the following. Note that mik ≥ 0 is omitted because the vari-
ble is non-negative by definition.

ik ≥ 2k−1 − 2k−1 · (1 − ˇik) ∀i ∈ I, ∀k ∈ K (72)

ik ≤ 2k−1 ∀i ∈ I, ∀k ∈ K (73)

ik ≤ 2k−1 · ˇk ∀i ∈ I, ∀k ∈ K (74)

ote that Eqs. (73) is the upper bound for variable mik. Eq. (72) is
ctivated when ˇk = 1 and makes mik greater than or equal to 2k−1.
n the contrary, Eq. (74) applies when ˇk = 0 and forces mik to take

ts lower bound (zero) in that case. In fact, Eqs. (73) and (74) can be
liminated from the formulation since bounds are already included
n the Big-M constraints (72) and (74). Then, if we further rewrite
q. (72) we get the following:

ik ≥ 2k−1(1 − (1 − ˇik)) ∀i ∈ I, ∀k ∈ K (75)

Then, Eq. (80) is finally given by (76).

ik ≥ 2k−1ˇik ∀i ∈ I, ∀k ∈ K (76)

ow, we analyze Big-M parameters for variable sijk.

1−
ijk

= 2k−1 · nup
j

∀i ∈ I, ∀j ∈ J, ∀k ∈ K (77)

1+
ijk

= 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (78)

2−
ijk

= 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (79)

2+
ijk

= 2k−1 · nup
j

∀i ∈ I, ∀j ∈ J, ∀k ∈ K (80)

he corresponding inequalities are then transformed using Big-M
arameters of Eqs. (77)–(80). Note that sijk ≥ 0 is omitted because
he variable is non-negative by definition.

ijk ≥ 2k−1 · nj − (2k−1 · nup
j

) · (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (81)

ijk ≤ 2k−1 · nj ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (82)

ijk ≤ (2k−1 · nup
j

) · ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (83)

ote that in this case Eq. (82) cannot be omitted since it offers
ighter bounds than (83), when it is relaxed.

In summary, when we transform the second disjunctive
eformulation into its Big-M representation, called DR2-BM, Eqs.
58)–(59), (74), (76), (81)–(83) are used.

This model adds:

i + 2 × (� log2(mup) � +1) × i + 3 × (� log2(mup) � +1) × i × j con-
straints;
(� log2(mup) � +1) × i binary variables;
(� log2(mup) � +1) × i + (� log2(mup) � +1) × i × j continuous vari-
ables.

The second approach proposed to relax this 2-based disjunc-
ive representation is given by the Convex Hull relaxation in Eqs.

84)–(96).

ik = mik1 + mik2 ∀i ∈ I, ∀k ∈ K (84)

ijk = sijk1 + sijk2 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (85)
hemical Engineering 48 (2013) 218–233 223

nj = nijk1 + nijk2 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (86)

mik1 = 2k−1 · ˇik ∀i ∈ I, ∀k ∈ K (87)

mik2 = 0 · (1 − ˇik) ∀i ∈ I, ∀k ∈ K (88)

sijk1 = 2k−1 · nijk1 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (89)

sijk2 = 0 · (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (90)

mik1 ≤ 2k−1 · ˇik ∀i ∈ I, ∀k ∈ K (91)

mik2 ≤ 0 · (1 − ˇik) ∀i ∈ I, ∀k ∈ K (92)

sijk1 ≤ 2k−1 · nup
j

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (93)

sijk2 ≤ 0 · (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (94)

nijk1 ≤ nup
j

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (95)

nijk2 ≤ nup
j

· (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (96)

Note that Eqs. (84)–(86) redefine the original variables that partic-
ipate in the disjunctive terms, Eqs. (87)–(90) rewrite the equations
in terms of the new variables introduced and Eqs. (91)–(96) estab-
lish bounds for the new variables. It is also noteworthy that this
formulation can be greatly simplified since mik2 and sijk2 are equal
to zero. Then mik = mik1 and sijk = sijk1, as a consequence mik1, mik2,
sijk1 and sijk2 are eliminated from the model. Additionally, since
equation in the disjunction (57) establishes the values of variable
mik and sijk, no bound constraints are necessary for these variables.
Then, Eqs. (97)–(98) replace Eqs. (87) and (89) respectively and Eqs.
(84)–(85), (88) and (90)–(94) are eliminated.

mik = 2k−1 · ˇik ∀i ∈ I, ∀k ∈ K (97)

sijk = 2k−1 · nijk1 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (98)

Finally, note that we can replace mik and sijk in the model by their
corresponding values given by (97) and (98). Then this formulation,
called DR2-CH, is given by (99)–(103).

mi =
∑

k

2k−1 · ˇik ∀i ∈ I (99)

∑
k

2k−1 · nijk1 ≤ Dij ∀i ∈ I, ∀j ∈ J (100)

nj = nijk1 + nijk2 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (101)

nijk1 ≤ nup
j

· ˇik ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (102)

nijk2 ≤ nup
j

· (1 − ˇik) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (103)

Again, the Convex Hull relaxation of the 2-based disjunctive
approach leads to a compact reformulation adding to the original
problem:

• i + 3 × (� log2(mup) � +1) × i × j constraints;
• (� log2(mup) � +1) × i binary variables;
• 2 × (� log2(mup) � +1) × i × j continuous variables.

Finally, in order to compare transformations’ sizes, Table 1
presents an example with:

mup = 8, i = 4 and j = 3.
According to this example, it can be concluded that Convex Hull
and 2-based reformulations (HK2, VGG, DR1-CH, DR2-CH) present
smaller sizes than the other techniques.

224 M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233

Table 1
Reformulations’ sizes example.

Constraints Binary variables Continuous variables

HK1 2 × i + 3 × mup × i × j = 296 mup × i = 32 mup × i × j = 96
HK2 i + 3 × (� log2(mup) � +1) × i × j = 148 (� log2(mup) � +1) × i = 16 (� log2(mup) � +1) × i × j = 48
VGG 2 × i + i × j + mup × i × j = 106 mup × i = 32 mup × i × j = 96
DR1-BM i + 2 × (mup + 1) × i + 2 × (mup + 1) × i × j = 292 (mup + 1) × i = 36 i × j = 12
DR1-CH 2 × i + i × j + mup × i × j = 106 mup × i = 32 mup × i × j = 96

up up (up up up

(
–

3

i
p
f
a
i
i
(

3

s
o
t
o
t
p
t∑

T
p

M

DR2-BM i + 2 × (� log2(m) � +1) × i + 3 × (� log2(m) � +1) × i × j = 180
DR2-CH i + 3 × (� log2(mup) � +1) × i × j = 148
RRLT –

. Case studies

Three test problems are presented in order to assess the linear-
zation techniques presented in the previous section. Since these
roblems were taken from the literature, full formulations can be
ound in the corresponding articles. In order to illustrate them,

brief description and their bilinear constraints are presented
n the next subsections. Bilinear transformations’ can be found
n the Appendices A, B and C for each case study, respectively
Supplementary Data).

.1. Case Study 1: the trim-loss problem in the paper mill

This example was presented by Harjunkoski et al. (1999) con-
isting of cutting big paper rolls into several smaller ones. The
bjective is to minimize the trim loss and the number of cutting pat-
erns. The main decision variables are the definition of the number
f patterns j (mj) and the number of orders i assigned to each pat-
ern j (nij). The demand constraint is a bilinear inequality with the
roduct of these two variables, as shown in Eq. (104). Fig. 1 depicts
he cutting process indicating these variables and the bilinear term.

j

mj · nij ≥ Di ∀i ∈ I (104)

he objective function in Eq. (105) which minimizes the trim loss
resents the same bilinear term (mj · nij).
in
∑

j

mj ·
(

Bmax −
∑

i

nij · Bi

)
+ Cj · yj (105)

Fig. 1. Paper rolls production example, for
� log2(m) � +1) × i = 16 (� log2(m) � +1) × i + (� log2(m) � +1) × i × j = 64
� log2(mup) � +1) × i = 16 2 × (� log2(mup) � +1) × i × j = 96

–

In (105) Bmax represents the roll width; Bi is another parameter
indicating the paper roll widths of the customer orders; and Cj is the
cost of producing a new pattern j. The binary variable yj indicates
the existence of pattern j.

3.2. Case Study 2: the cutting stock problem in the production of
board boxes

In the production of board boxes several cutting patterns are
defined to obtain the board sheets that will form the boxes. In
order to produce the cutting patterns, first, several paper rolls
are selected to form the board layers. In a second step, orders
are assigned to define cutting pattern. Assignment decisions usu-
ally implicate binary variables leading to more difficult models
and time-consuming solutions. When the board is cut into smaller
pieces to produce the sheets, some waste of material always occurs
due to the differences between the pattern’s and the papers’ widths.
Then, the objective function is to minimize the cost of paper trim
loss in the cutting process. The original non-convex problem was
first developed by Rodriguez and Vecchietti (2008). In this case, two
different bilinear terms appears in the original formulation given
by Eqs. (106)–(109).

tapk ≥ Wappk · xp ∀p ∈ P, ∀k ∈ K (106)

Eq. (106) determines the total area of pattern p in layer k, tapk,
where Wappk is a discrete variable corresponding to the paper

width assigned to layer k of pattern p, and xp is a positive variable
which indicates the pattern length. Then, in this case, the bilinear
term corresponds to the product of one continuous variable by one
integer one.

orders i1 and i2 in patterns j1 and j3.

M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233 225

mple

m
s
g

p

I
c
p
r
p
t
v
a
t

o

E
b
s
i
x
d

d

V
t
v
S

3

d
D
i
o
q
e
i
i
m
(

t

Fig. 2. Board sheet production exa

Another bilinear term also appears in Eq. (107) which deter-
ines a limitation according to the total amount of materials in

tock. This equation establishes that paper consumption cannot be
reater than the amount in stock.∑
∈ Rp k tp

∑
k ∈ Rp k tp

wap k p · ˛k · xp ≤ Stpap ∀tp ∈ TP, ∀ap ∈ AP (107)

t should be noted that ˛k is a parameter representing the paper
onsumption of layer k (fluted layers consumes more than 1 m to
roduce 1 m length of board). Parameter Stp ap corresponds to the
aw material in stock, while wap k p is a binary variable which selects
aper width ap of layer k in pattern p. In this inequality, Eq. (107),
he bilinear product is formed by a continuous variable and a binary
ariable. It is noteworthy that even though the presented methods
re applied to bilinear products with at least one integer variables,
his would be a special case that can also be solved.

The third bilinear term in this example is given in (108).

aip = ni p · Wii · xp ∀p ∈ P, ∀i ∈ I (108)

q. (108) calculates the area of pattern p, oaip, considering the num-
er of order sheets i included in pattern p (nip) the width of each
heet i (Wii) and the length of the pattern (xp). In this case, there
s a product of the integer variable nip by the continuous variable
p. The same bilinear term appears in Eq. (109) which is used in
emand constraints.

ip = nip · xp

Lii
∀p ∈ P, ∀i ∈ I (109)

ariable dip represents the number of orders i produced with pat-
ern p, where Lii is a parameter indicating the length of order i. This
ariable is used to satisfy demand and overproduction restrictions.
ee Fig. 2 for more details.

.3. Case Study 3: purchase, inventory and delivery optimization

The main target of this problem is to optimize the inventory and
elivery management integrated with material purchase decisions.
iverse materials are purchased from various manufacturers sign-

ng different contract types. This kind of commitments in general
ffers discounts according to the amount purchase so as a conse-
uence they promote large purchase orders to take advantage of
conomy of scale. However, due to limitations in storage capac-
ty and financial resources, the quantity purchased is distributed
n several deliveries. This gives rise to non-convexities in the for-
ulation. This problem was presented by Rodriguez and Vecchietti
2010).

The first bilinear term appears in Eq. (110). It determines that the
otal amount delivered of material family f from supplier j during
, for orders i1 and i3 in pattern p1.

period t must be equal to the amount bought of family f material
from that supplier in that period. Note that the amount purchased
of family f is in fact given by

∑
k ∈ FKfk

qjkt where k represents each

material belonging to family f. This equation guarantees coherence
between purchase and delivery decisions.∑
k ∈ FKfk

qjkt = njft · eoqjft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (110)

Integer variable njft represents the number of deliveries of material
family f from supplier j in period t, variable eoqjft corresponds to
delivery order size; while positive variable qjkt indicates the quan-
tity bought of material k from supplier j in period t. Note that the
total quantity delivered of family f from supplier j during period t
is given by a bilinear product of the number of deliveries (njft) by
the delivery quantity (eoqjft).

The second bilinear term comes from total delivery cost defini-
tion (tdcjft) in Eq. (111).

tdcjft = njft · dcjft ∀j ∈ J, ∀f ∈ F, ∀t ∈ T (111)

where dcjft is a positive variable that corresponds to the unit cost
of each delivery of material family f from supplier j in period t. The
total delivery costs in period t for a supplier j and material family f
is determined by the bilinear product shown in Eq. (111).

4. Results

The main target of this section is to complete the qualitative
assessment presented in Section 2 with a quantitative analysis
comparing models performance. Ten instances of each problem
were reformulated as linear models using all methods described
in that section. Each instance was generated varying the data and
parameters as well as the number of variables and constraints. In
sum, 190 models were executed. The instances sizes for the trim-
loss, the cutting stock and delivery problems used in this study are
presented in Tables 2, 3 and 4, respectively. They were posed in
GAMS system, solved using CPLEX 11.0.1 and executed over a PC
with an Intel Pentium D 2.8 GHz processor and 3.5 GB of RAM.

From Tables 2–4, it can be seen that for the three problems ana-
lyzed the model sizes are quite augmented from the original MINLP
problem. In the trim-loss case, the number of constraints is incre-
mented 16 times and the number of binary variables, 7 times on
average. Moreover, the number of continuous variables moves from
one to 220 on average. In the cutting stock example, the number

of constraints and binary variables are duplicated from the orig-
inal MINLP problem while the number of continuous variables is
increased by an average of almost 6 times. Similar is the case of
the third problem example in which the number of constraints is

226 M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233

Table 2
Trim-loss problem sizes used in this study.

Original HK1 HK2 VGG DR1-BM DR2-CH DR2-BM

Instance 1
Constraints 22 217 106 100 217 106 124
Integer variables 15 33 21 33 36 21 21
Continuous variables 1 67 31 67 13 79 40
Instance 2
Constraints 43 1567 481 595 1309 481 529
Integer variables 48 126 66 126 126 66 66
Continuous variables 1 511 151 511 43 295 175
Instance 3
Constraints 29 373 177 165 353 177 201
Integer variables 24 48 32 48 52 32 32
Continuous variables 1 117 53 117 21 101 65
Instance 4
Constraints 30 458 214 198 418 214 238
Integer variables 28 52 36 52 56 36 36
Continuous variables 1 145 65 145 35 125 77
Instance 5
Constraints 39 1249 564 489 1034 524 564
Integer variables 50 95 65 95 100 65 65
Continuous variables 1 406 166 406 46 326 186
Instance 6
Constraints 39 1859 773 719 1505 773 821
Integer variables 50 126 90 126 132 90 90
Continuous variables 1 607 247 607 67 487 271
Instance 7
Constraints 40 1400 585 545 1145 585 625
Integer variables 60 110 70 110 105 70 70
Continuous variables 1 456 186 456 51 366 206
Instance 8
Constraints 30 458 214 198 418 214 238
Integer variables 28 52 36 52 56 36 36
Continuous variables 1 145 65 145 25 125 77
Instance 9
Constraints 38 783 358 328 683 358 388
Integer variables 50 75 55 75 80 55 55
Continuous variables 1 251 111 251 41 216 126
Instance 10
Constraints 39 1249 524 489 1034 524 564

2
d
v

o
U
e
e
p
o
o
i
i
t
p
a
r
i

t
t
o
t
r

c
y
c

Integer variables 50 95 65
Continuous variables 1 406 166

times larger from the non-convex problem and the number of
iscrete variables rises from 84 to 132. Moreover, 74 continuous
ariables are added to the formulation.

Since the aim of this work is to compare linearization meth-
ds, RRLT is only applied when it allows a linear reformulation.
nfortunately, due to the complexity of cutting stock and deliv-
ry problems this technique introduces new bilinear terms when
liminating the original ones from them. In the case of the trim-loss
roblem (Table 2), it does obtain a linear representation. However,
ne disadvantage in this particular case is due to the integer nature
f both variables of the bilinear terms. Since a new variable s is
ntroduced to replace the bilinear term and one of the original ones
s eliminated from the formulation, the new model cannot guaran-
eed that s will be exact multiple of the remaining variable in the
roblem. Then, the original integer nature of the eliminated vari-
ble is missed. As a consequence, the reformulation obtained is a
elaxation of the original problem. For this reason the RRLT method
s not included in the results analysis.

Tables 5–7 show the model performances in terms of CPU execu-
ion time (in seconds) and number of iterations and nodes required
o reach the solutions. In those tables it is also displayed the number
f the matrix non-zero elements of each example instance. In these
ables the fastest method for each instance is highlighted with a
ectangle and the slowest, with a black background.
From Tables 5–7 it can be seen that the execution time varies
onsiderably from one method to the other so a more detailed anal-
sis is required to conclude about their performance. The CPU time
onsumed to reach the solution is used to determine the methods’
95 100 65 65
406 46 326 186

ranking, where number 1 is assigned for the fastest method and 6,
for the slowest one (note that RRLT method was excluded from
the comparison due to the limitations mentioned before). Note
that the same ranking can be established considering the num-
ber of iterations and nodes needed to find the solution. The mean
and standard deviation are calculated taking into account the
ranking values for each method in all the instances of the three
problems studied. These values are presented in Table 8, assum-
ing a normal distribution, this information is also presented in
Fig. 3.

According to Fig. 3 that VGG and DR2-CH methods present
almost the same ranking mean, near the value of 2. However, DR2-
CH mean ranking shows a higher probability of occurrence due to
a lower standard deviation, which is a desirable characteristic for
a well-ranked reformulation method. In third place, HK2 method
appears with a mean value of 2.87 and a standard deviation of
1.01. The following mean value is obtained by DR2-BM. However,
one drawback of this method is given by a large standard devia-
tion reporting a significant variability in the method’s performance.
DR1-BM method is in the fifth place with a mean value of 4.6 and a
1.28 standard deviation. In the last position, HK1 presents a mean
of 5.43. Due to a low dispersion in the results of this method, there
is a significant probability to obtain this mean value.

Some differences are also observed from problem to problem.

Then a similar analysis is presented for each problems considering
all instances evaluated. According to this information, Figs. 4 and 5
show the mean and standard deviation of the methods depending
on the problem evaluated.

M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233 227

Table 3
Cutting stock problem sizes used in this study.

Original HK1 HK2 VGG DR1-BM DR2-CH DR2-BM

Instance 1
Constraints 929 2141 1977 1545 2393 1769 2425
Integer variables 256 424 368 424 480 368 368
Continuous variables 97 577 521 577 353 913 633
Instance 2
Constraints 752 1632 1536 1176 1708 1304 1792
Integer variables 208 304 272 304 336 272 272
Continuous variables 97 433 401 433 305 625 465
Instance 3
Constraints 721 1589 1484 1148 1708 1288 1764
Integer variables 196 301 266 301 336 266 266
Continuous variables 85 421 386 421 281 631 456
Instance 4
Constraints 1078 2638 2278 1828 2938 2008 2758
Integer variables 300 540 420 540 600 420 420
Continuous variables 121 721 601 721 421 1021 721
Instance 5
Constraints 1077 2818 2278 1888 3178 2008 2758
Integer variables 300 600 420 600 660 420 420
Continuous variables 121 781 601 781 421 1021 721
Instance 6
Constraints 1364 2332 2140 1684 2636 1940 2652
Integer variables 374 464 400 464 528 400 400
Continuous variables 133 625 561 625 369 1009 689
Instance 7
Constraints 1364 2524 2140 1748 2892 1940 2652
Integer variables 374 528 400 528 592 400 400
Continuous variables 133 689 561 689 369 1009 689
Instance 8
Constraints 1364 2524 2140 1748 2892 1940 2652
Integer variables 374 528 400 528 592 400 400
Continuous variables 133 689 561 689 369 1009 689
Instance 9
Constraints 878 1982 1838 1430 2174 1622 2222
Integer variables 240 384 336 384 432 336 336
Continuous variables 97 529 481 529 337 817 577
Instance 10

F
D
t
s
r
t
p
l
d

i

Constraints 878 1982 1838
Integer variables 240 384 336
Continuous variables 97 529 481

According to the method’s average performance shown in
igs. 4 and 5 it can be concluded that the top three methods are VGG,
R2-CH and HK2 while DR2-BM, DR1-BM and HK1 are the bottom

hree. This is verified in the three problems analyzed. For cutting
tock problem DR2-CH best performs since it shows the best mean
anking, really near the value of 1 and the lowest standard devia-
ion. Similarly, VGG shows the best performance for the delivery
roblem while HK2 is considered the number one for the trim-
oss problem. Nevertheless, these are average results and slight
ifferences could occur for specific instances.

In order to perform an assessment of the relation between the
nstances’ size and the methods’ execution time, we group the three

Ranking distribution for Reform

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4

Ranking

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u

ti
o

n

DR2-CH

VGG

HK2

DR2-BM

Fig. 3. Ranking distribution for
1430 2174 1622 2222
384 432 336 336
529 337 817 577

most efficient approaches (HK2, VGG and DR2-CH) and the least
efficient (HK1, DR1-BM and DR2-BM). In this analysis, model sizes
are represented by the number of non-zero elements of the prob-
lems’ matrix.

In the case of trim-loss problem, Table 5 shows that for the first
group of methods, the maximum model size is around 3500 non-
zero elements corresponding to the longest CPU time (7000 s). In
contrast, the second set in Table 5 presents larger sizes (almost 6000

non-zero matrix coefficients) with several instances taking around
10,000 s to reach a solution. Since execution time was limited to
this value, the obtained solutions present a gap greater than zero
(marked with (*) in Tables 5–7).

ulation Methods

5 6 7

VGG

DR2-CH

HK2

DR2-BM

DR1-BM

HK1

DR1-BM

HK1

reformulation methods.

228 M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233

Table 4
Purchase, inventory and delivery problem sizes used in this study.

Original HK1 HK2 VGG DR1-BM DR2-CH DR2-BM

Instance 1
Constraints 395 1259 920 893 1055 839 1151
Integer variables 162 270 216 324 297 216 216
Continuous variables 358 655 559 775 397 721 628
Instance 2
Constraints 265 1057 619 601 853 565 769
Integer variables 108 216 144 216 234 144 144
Continuous variables 319 504 412 556 304 520 454
Instance 3
Constraints 265 1057 619 601 853 565 769
Integer variables 108 216 144 216 234 144 144
Continuous variables 319 504 412 556 304 520 454
Instance 4
Constraints 265 841 619 529 709 565 769
Integer variables 108 180 144 180 198 144 144
Continuous variables 319 472 412 484 304 520 454
Instance 5
Constraints 241 601 485 421 539 449 583
Integer variables 102 138 120 138 156 120 120
Continuous variables 283 370 344 370 272 416 370
Instance 6
Constraints 241 601 485 421 539 449 583
Integer variables 102 138 120 138 156 120 120
Continuous variables 283 370 344 370 272 416 370
Instance 7
Constraints 323 899 682 593 763 625 836
Integer variables 144 207 171 198 225 101 171
Continuous variables 280 508 423 469 315 601 469
Instance 8
Constraints 323 899 682 593 763 625 836
Integer variables 144 207 171 198 225 101 171
Continuous variables 280 508 423 469 315 601 469
Instance 9
Constraints 323 899 682 593 763 625 836
Integer variables 144 207 171 198 225 101 171
Continuous variables 280 508 423 469 315 601 469
Instance 10

T
b
i
V
t

s
m
o

Constraints 241 601 485
Integer variables 102 138 120
Continuous variables 283 370 344

A similar analysis can be done for the cutting stock problem from
able 6, the matrix maximum size includes 7500 elements in the
est methods while it is 9500 in the second group. The difference

n CPUs to reach the optimal solution is even more significant. HK2,
GG and DR2-CH methods do not need more than 200 s to obtain

he global solution while the other three requires almost 3000 CPUs.

In the case of the delivery problem from Table 7, instances’

ize of the first approaches do not exceed the 3300 non-zero ele-
ents converging at less than 1400 s. Quite different is the case

f methods HK1, DR1-BM and DR2-BM in which maxima sizes

Fig. 4. Average performance ranking of m
421 539 449 583
138 156 120 120
370 272 416 370

are around 3700 but execution time takes 10,000 s for several
instances.

All these results quantify the differences between the advan-
tageous methods (HK2, VGG and DR2-CH) and the less efficient
ones (HK1, DR1-BM and DR2-BM). In general, there is a correspon-
dence between the model sizes, defined as the quantity of non-zero

elements of the matrix, and the execution time, although data
dependence is observed in some instances solved. Then, reform-
ulation methods with less number of variables and constraints are
preferable than those with the opposite characteristic.

ethods according to problem type.

M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233 229

Table 5
Trim-loss results.

Instance 1 HK1 HK2 VGG≡DR1-
CH

DR1-BM DR2-CH DR2-BM

Non-zero elements 679 322 436 595 322 358

CPUs 0.782 0.437 0.328 2.172 0.328 0.375

Iterations 7697 1527 1340 7446 930 1609
Nodes 1013 512 390 1254 230 502
Instance 2

Non-zero elements 4915 1531 2935 3811 1531 1627

CPUs 118 96 59 189 101 169

Iterations 54220 18232 45438 41412 18954 20502
Nodes 5551 3655 5043 5621 3828 3645
Instance 3

Non-zero elements 1173 553 741 993 553 601

CPUs 3.3 1.18 2.6 2.8 1.21 1.11

Iterations 54220 18232 45438 41412 18954 20502
Nodes 5551 3655 5043 5621 3828 3645
Instance 4

Non-zero elements 1441 677 901 1193 677 725

CPUs 8.1 2.5 2.3 4.1 2.1 1.7

Iterations 112534 39105 28333 67131 31330 27811
Nodes 9212 8729 4389 8204 5711 3828
Instance 5

Non-zero elements 3916 1676 2356 3036 1676 1756

CPUs 416.3 132.0 12.1 214.0 61.0 113.0

Iterations 6897441 1997429 26031 3953917 1032497 2200508
Nodes 177954 253083 7443 228754 115096 158728
Instance 6

Non-zero elements 5827 2491 3487 4459 2491 2587

CPUs 10000 (*) 3946 7194 8958 5472 10000 (*)
Iterations 1061100830 34551782 40614959 98908991 29662582 261345880
Nodes 6807148 7488991 7665443 4374560 7459550 20261198
Instance 7

Non-zero elements 4386 1876 2631 3376 1876 1956

CPUs 2630.17 2175 1878.7 7194 3501 3100

Iterations 12400971 12592778 2303940 34718413 43233065 20136287
Nodes 3032832 6295745 529022 12247498 3599834 7214109
Instance 8

Non-zero elements 1441 677 901 1193 677 725

CPUs 8.38 3 5.3 3.4 2.14 4.1

Iterations 104228 37747 60327 54338 27768 46530
Nodes 19721 13550 14631 6421 7889 16341
Instance 9

Non-zero elements 2471 1156 1526 1991 1156 1216

CPUs 72.92 12.43 24.72 413.3 14.06 10.56

Iterations 835641 136257 283245 3249018 153963 150813
Nodes 129588 44136 58002 1239948 45793 25381
Instance 10

Non-zero elements 3916 1676 2356 3081 1676 1756

CPUs 1254.39 848 1355.29 10000 (*) 1150 1300.97

7851
8785

o
p
e
s

Iterations 6173384 6497694 10054394 1
Nodes 1711229 2327017 1613391 1

Although the analysis of MINLP algorithms is beyond the scope

f this work, the original non-convex problems were also solved
resenting the difficulty of finding the global solution, as it was
xpected. Bilinear problems present several suboptimal solutions
o local optimization algorithms like DICOPT does not reach the
5235 6372680 5859523
808 3052535 2004686

global one in most cases. Furthermore, there is a critical influence

of the initial points to get even a feasible solution. It is noteworthy
that global optimization algorithm (BARON) was also used to solve
the original formulation but converge was extremely slow, so this
strategy was excluded from results.

230 M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233

Table 6
Cutting stock results.

Instance 1 HK1 HK2 VGG≡DR1-
CH

DR1-BM DR2-
CH

DR2-BM

Non-zero
elements 6551 6047 5383 7135 6391 7591

CPUs 975.24 220.67 78.09 479.13 80.73 328.28

Iterations 5713955 1408649 817395 3814596 513789 2195683
Nodes 142181 43943 9588 64908 10929 54582
Instance 2
Non-zero
elements 4839 4524 3971 5168 4601 5525

CPUs 14.43 4.23 4.83 5.9 2.03 4.52

Iterations 149972 44836 51702 65030 24100 47737
Nodes 2800 1019 1242 1794 549 1149
Instance 3
Non-zero
elements 5000 4721 4096 5272 4672 5656

CPUs 246.11 60.58 57.22 74 36.19 133.67

Iterations 2215446 574926 671708 607865 320791 784696
Nodes 42108 12605 11375 17551 7870 30175
Instance 4
Non-zero
elements 8081 7001 6551 8801 7271 8801

CPUs 1071.2 68.7 63.66 97.3 22.74 123.16

Iterations 5931849 492324 551422 804183 133431 975773
Nodes 122409 9373 12882 14724 2457 9051
Instance 5
Non-zero
elements 8621 7001 6911 9461 7271 8801

CPUs 2987.49 107.4 128.2 97.4 97.0 218.4

Iterations 15259631 930107 1189785 750752 471149 1314098
Nodes 329174 13928 15564 13298 6313 24971
Instance 6
Non-zero
elements 7101 6525 5845 7661 6997 8269

CPUs 592.33 117 45.91 104 11.11 252.13

Iterations 4737243 1115364 562139 826222 99200 2290451
Nodes 155947 27578 14253 37549 2560 52983
Instance 7
Non-zero
elements 7677 6225 6229 8493 6997 8397

CPUs 1469.5 25.66 51.58 49.74 10.53 64.33

Iterations 12534117 151349 361204 351735 80813 874172
Nodes 402549 5414 15318 10247 2017 30228
Instance 8
Non-zero
elements 7677 6525 6229 8493 6997 8397

CPUs 103.44 36.75 7.97 34.3 12.11 55.72

Iterations 1586869 386391 48982 327364 104151 599261
Nodes 32481 6759 2396 8794 3180 9016
Instance 9
Non-zero
elements 6050 5618 4970 6482 5934 6962

CPUs 80.23 32 10.66 8.42 9.92 30.52

Iterations 726955 415222 137707 59119 129090 266049
Nodes 21286 11464 4268 2705 2829 9727
Instance 10
Non-zero
elements 6458 5594 5234 6986 5810 7034

CPUs 21.25 15.2 6.64 24.85 3.39 32.88
Iterations 190181 142992 81315 208385 40075 381418
Nodes 6723 6292 2037 6718 958 9098

M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233 231

Table 7
Purchase, delivery and inventory results.

Instance 1 HK1 HK2 VGG≡DR1-
CH

DR1-BM DR2-CH DR2-BM

Non-zero elements 3661 2632 3199 3523 2470 3256

CPUs 9320.2 361.84 9.78 10000 (*) 372.85 601.63

Iterations 51756453 2793048 11637 46498630 2506289 4949379

Nodes 4567500 191636 1292 5067949 215541 313794
Instance 2

Non-zero elements 3124 1798 2176 2968 1690 2206

CPUs 3277.81 71.8 0.83 3830.84 31.5 63.4

Iterations 10768085 472364 1980 15070367 200007 465888

Nodes 2083696 92370 416 4368707 36669 85848
Instance 3

Non-zero elements 3124 1798 2176 2968 1690 2206

CPUs 7843.53 1322.77 106.2 10000 1379.5 1839.07

Iterations 29740430 8603393 651962 43079269 7912131 11387541

Nodes 5741900 1091669 72508 7361639 1171468 1441158
Instance 4

Non-zero elements 2476 1798 1816 2392 1690 2206

CPUs 7274.56 741.0 7.7 3422.56 356.92 521.69

Iterations 40281605 3983122 48481 14063118 2373003 3486273

Nodes 4744940 687209 4259 2537592 349592 471198
Instance 5

Instance 1 HK1 HK2 VGG≡DR1-
CH

DR1-BM DR2-CH DR2-BM

Non-zero elements 3661 2632 3199 3523 2470 3256

CPUs 9320.2 361.84 9.78 10000 (*) 372.85 601.63

Iterations 51756453 2793048 11637 46498630 2506289 4949379

Nodes 4567500 191636 1292 5067949 215541 313794
Instance 2

Non-zero elements 3124 1798 2176 2968 1690 2206

CPUs 3277.81 71.8 0.83 3830.84 31.5 63.4

Iterations 10768085 472364 1980 15070367 200007 465888

Nodes 2083696 92370 416 4368707 36669 85848
Instance 3

Non-zero elements 3124 1798 2176 2968 1690 2206

CPUs 7843.53 1322.77 106.2 10000 1379.5 1839.07

Iterations 29740430 8603393 651962 43079269 7912131 11387541

Nodes 5741900 1091669 72508 7361639 1171468 1441158
Instance 4

Non-zero elements 2476 1798 1816 2392 1690 2206

CPUs 7274.56 741.0 7.7 3422.56 356.92 521.69

Iterations 40281605 3983122 48481 14063118 2373003 3486273

Nodes 4744940 687209 4259 2537592 349592 471198
Instance 5

Non-zero elements 1744 1404 1348 1686 1332 1672

CPUs 82.39 10.0 1.7 27.56 7.5 5.8

Iterations 564155 64293 6974 234868 51378 46606

Nodes 79408 11849 922 32729 7140 5849
Instance 6

Non-zero elements 1744 1404 1348 1686 1332 1672

CPUs 199.42 38.8 3.28 48 23.47 58.88

Iterations 1274052 279438 8123 314432 168324 452104

Nodes 183446 52208 1170 51569 26822 70615
Instance 7

Non-zero elements 2533 1925 1855 2285 1802 2341

CPUs 428 21.27 1.65 63.84 20.77 22.75

Iterations 2028941 102245 3794 344979 98532 106076

Nodes 296234 23946 558 60221 20794 24383
Instance 8

Non-zero elements 2533 1925 1855 2285 1802 2341

CPUs 4598.78 39.2 3.95 567.25 30.05 21.27

Iterations 24825948 241955 19352 3222857 196837 93416

Nodes 2526264 41334 2526 507412 28553 22571
Instance 9

Non-zero elements 2533 1925 1855 2285 1802 2341

CPUs 2136.08 6.55 3.5 809.11 2.83 8.4

Iterations 10869012 32297 14347 5083615 10729 40053

Nodes 1311079 6640 1900 572520 1852 7848
Instance 10

Non-zero elements 1744 1404 1348 1686 1332 1672

CPUs 107.95 9.78 1.45 45.23 13.89 11.66

Iterations 912775 70493 4474 359455 100351 78300

Nodes 94773 10350 693 53499 14408 13048

232 M.A. Rodriguez, A. Vecchietti / Computers and Chemical Engineering 48 (2013) 218–233

Fig. 5. Standard deviation in performance ranki

Table 8
Ranking mean and standard deviation.

VGG DR2-CH HK2 DR2-BM DR1-BM HK1

5

f
c
a
c
c

•

•

•

•

Mean 2.13 2.07 2.87 3.73 4.60 5.43
Std. deviation 1.38 1.01 1.01 1.41 1.28 0.94

. Conclusions

In this article, several transformation techniques are presented
or MINLP problems with bilinear terms involving at least one dis-
rete variable. Two new disjunctive methods are proposed which
re general enough to be applied to any kind of problem with this
haracteristic. These strategies are quantitatively and qualitatively
ompared to various techniques proposed by other authors.

Qualitative assessment brings the following conclusions:

An interesting connection was found between Petersen’s and
Harjunkoski’s methods (HK1 and HK2). The first case is applied
to bilinear products of one binary variable by a continuous (or
integer) one while the second one is applied to bilinear prod-
ucts of an integer variable by a continuous (or integer) variable.
It could be observed that Petersen adds a new constraint and one
variable for each bilinear term in the problem. Similarly, HK1 and
HK2 methods in the first place transform the bilinear product into
the sum of various products like those studied by Petersen. Then,
they applied identical constraints and variables for each of these
terms. This similarity has not been reported previously.
Disjunctive methods proposed were transformed using Big-M
and Convex Hull relaxations in order to be implemented as MILP
problems. It was observed that these relaxations could be sim-
plified eliminating some superfluous variables and constraints.
After these simplifications, a remarkable conclusion appeared:
the Convex Hull relaxation of DR1 method leads to the Voudouris,
Ghattas and Grossmann technique. This also explains the good
performance of this method when it was applied for batch design
problems. It also gives reasons for its compact and tight represen-
tation.
RRLT method is a potentially powerful strategy since in many
cases it could reformulate the bilinear problem without introduc-
ing additional variables or constraints. However, it was also
noticed that this strategy does not guarantee to get a linear model.
This restricted the use of this method in some of the cases studied
in this work. Another limitation comes from the case of bilinear
products of two integer variables. The new variable introduced to
replace the bilinear problem does not allow keeping the original

integer nature of the eliminated one.
Since model size of reformulated problems is a critical issue in
order to achieve an efficient solution convergence, one important
feature of this qualitative analysis is placed on the quantification
ng of methods according to problem type.

of the number of constraints, continuous and binary variables
introduced by each method. This is also strengthened by the per-
formance comparison carried out in Section 4.

From the quantitative study some other conclusions are drawn:
• Three typical problems from the literature are considered and

ten instances of each are executed using all transformations pre-
sented. Those models were analyzed in terms of the convergence
time, number of nodes and iteration to reach the solution. In this
regards, conclusions can be stated as follows:
◦ Methods are ranked according to the best execution time for

each run. This performance reference is equivalent to the num-
ber of nodes and iterations to reach the optimum. From this
ranking, the three best techniques are VGG (equivalent to
DR1-CH), DR2-CH and HK2. Analyzing these methods’ char-
acteristics, it is noteworthy that they employ: a two based
representation to rewrite the integer variable and/or the con-
vex hull relaxation. According to this, DR2-CH positions as the
most robust method.

◦ HK1, DR1-BM and DR2-BM methods take more time to get a
solution, even though tight values were determined for Big M
parameters. They also lead to larger model sizes.

◦ Execution time is data dependent. Although methods main-
tain their performance in relative terms, solution time can vary
significantly from one instance to the other even with minor
changes in problem size.

In the context analyzed, linearization techniques are required to
deal with this kind of problems and to obtain a global solution. With
this purpose, this work establishes and compares a set of methods
that could successfully be used to achieve this goal.

Acknowledgement

The authors would like to acknowledge financial support from
the Consejo Nacional de Investigaciones Científicas y Técnicas
under grant PIP 1817.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.compchemeng.2012.09.011.

References

Adams, W., & Sherali, H. (1990). Linearization strategies for a class of zero-one mixed

integer programming problems. Operations Research, 38, 217–226.

Chang, C. (2000). An efficient linearization approach for mixed-integer problems.
European Journal of Operational Research, 123, 652–659.

Glover, F. (1975). Improved linear integer programming formulations of nonlinear
integer programs. Management Science, 22, 455–460.

http://dx.doi.org/10.1016/j.compchemeng.2012.09.011
http://dx.doi.org/10.1016/j.compchemeng.2012.09.011

and C

G

G

G

G

H

I

L

M

M

M.A. Rodriguez, A. Vecchietti / Computers

lover, F., & Woolsey, E. (1974). Converting the 0–1 polynomial programming prob-
lem to a 0–1 linear program. Operations Research, 22, 180–182.

ounaris, C., Misener, R., & Floudas, C. (2009). Computational comparison of
piecewise-linear relaxation for pooling problems. Industrial Engineering and
Chemistry Research, 48, 5742–5766.

rossmann, I. (2002). Review of nonlinear mixed-integer and disjunctive program-
ming techniques. Optimization and Engineering, 3, 227–252.

rossmann, I., Voudouris, V., & Ghattas, O. (1992). Mixed-integer linear program-
ming formulations of some nonlinear discrete design optimization problems. In
Recent Advances in Global Optimization (pp. 478–512). Princeton, New Jersey, US:
Princeton University Press.

arjunkoski, I., Westerlund, T., & Pörn, R. (1999). Numerical and environmental
considerations on a complex industrial mixed integer non-linear programming
(MINLP) problem. Computers and Chemical Engineering, 23, 1545–1561.

erapetritou, M., & Pistikopoulos, E. (1996). Batch plant design and operations under
uncertainty. Industrial Engineering and Chemistry Research, 36, 772–787.

iberti, L., & Pantelides, C. (2006). An exact reformulation algorithm for large noncon-
vex NLPs involving bilinear terms. Journal of Global Optimization, 36, 161–189.

cCormick, G. (1976). Computability of global solutions to factorable nonconvex

programs: Part I—Convex underestimating problems. Mathematical Program-
ming, 10, 147–175.

oreno, M., & Montagna, J. (2009). A multiperiod model for production planning
and design in a multiproduct batch environment. Mathematical and Computer
Modelling, 49, 1372–1385.
hemical Engineering 48 (2013) 218–233 233

Moro, L., & Pinto, J. (2004). Mixed-integer programming approach for short-term
crude oil scheduling. Industrial Engineering and Chemistry Research, 43, 85–94.

Petersen, C. (1971). A note on transforming the product of variables to linear form in
linear programs. West Lafayette, IN: Purdue University.

Pörn, R., Harjunkoski, I., & Westerlund, T. (1999). Convexification of different
classes of non-convex MINLP problems. Computers and Chemical Engineering,
23, 439–448.

Psarris, P., & Floudas, C. (1990). Improving dynamic operability in MIMO systems
with time delays. Chemical Engineering Science, 45, 3505–3524.

Rodriguez, M., & Vecchietti, A. (2008). Enterprise optimization for solving an assign-
ment and trim-loss non-convex problem. Computers and Chemical Engineering,
32, 2812–2822.

Rodriguez, M., & Vecchietti, A. (2010). Inventory and delivery optimization under
seasonal demand in the supply chain. Computers and Chemical Engineering,
1705–1718.

Sherali, H., & Adams, W. (1986). A tight linearization and an algorithm
for 0–1 quadratic programming problems. Management Science, 32,
1274–1290.

Sherali, H., & Adams, W. (1994). A hierarchy of relaxations and convex hull charac-

terizations for mixed-integer zero-one programming problems. Discrete Applied
Mathematics, 52, 83–106.

Sherali, H., & Tuncbilek, C. (1992). A global optimization algorithm for polynomial
programming problems using a reformulation-linearization technique. Journal
of Global Optimization, 2, 101–112.

	A comparative assessment of linearization methods for bilinear models
	1 Introduction
	2 Bilinear term reformulations
	2.1 Harjunkoski etprotect protect unhbox voidb@x penalty @M {}al.'s reformulation
	2.2 Voudouris, Ghattas and Grossmanns reformulation
	2.3 Liberti and Pantelidess method
	2.4 Disjunctive reformulation
	2.4.1 First disjunctive approach
	2.4.2 Second disjunctive approach

	3 Case studies
	3.1 Case Study 1: the trim-loss problem in the paper mill
	3.2 Case Study 2: the cutting stock problem in the production of board boxes
	3.3 Case Study 3: purchase, inventory and delivery optimization

	4 Results
	5 Conclusions
	Acknowledgement
	Appendix A Supplementary data
	References

