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SUMMARY

Recent technology breakthroughs towards a fully automated artificial pancreas give rise to the need of new
monitoring tools aiming at increasing both reliability and performance of a closed-loop glycemic regulator.
Based on error grid analysis, an insightful monitoring tool is proposed to assess if a given closed-loop
implementation respects its specification of an optimally performing glycemic regulator under uncertainty.
The optimal behavior specification is obtained using linearly solvable Markov decision processes, whereby
the Bellman optimality equation is made linear through an exponential transformation that allows obtaining
the optimal control policy in an explicit form. The specification for the desired glucose dynamics is learned
using Gaussian processes for state transitions in an optimally performing artificial pancreas. By means of the
proposed grid, the specification is vis-a-vis compared with glucose sensor readings so that any significant
deviation from the expected closed-loop performance under abnormal or faulty scenarios can be detected.
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1. INTRODUCTION

Type 1 diabetes is caused by selective destruction of the pancreas -cells, which results in deficient
insulin production for glucose regulation. Thus, to restore normal glucose levels, exogenous insulin
delivery is required. Because it is difficult to achieve normoglycemia with intermittent insulin
dosage, continuous intervention of healthcare professionals is required for proper diabetes manage-
ment. As a result, the majority of people with diabetes cannot meet their treatment goals [1]. Perfor-
mance assessment of glycemic regulation is a crucial issue in diabetes care. Reliable information
about blood glucose variability allows clinicians and patients to evaluate the efficacy of insulin
infusion regimes to maintain glucose levels within the normoglycemic range. Monitoring the vari-
ability of glucose levels also allows adjustment in diet, exercise, and medications to improve blood
glucose regulation. Furthermore, monitoring glycemic variability helps in diminishing the risks of
hypoglycemia or hyperglycemia events and long-term complications [2]. However, the dynamics
of human physiology, errors in glucose sensors, and failures in insulin infusion pumps give rise
to a number of challenges for implementing an artificial pancreas (AP). Increasing scientific and
industrial effort is focused on the development of automatic regulation systems to control insulin
delivery in people with diabetes [3]. The ultimate goal in closed-loop control of glycemia is not just
finding the optimal insulin rates that can effectively reduce high blood glucose levels but also infusing
it in such a way that the blood glucose level can mimic the body’s natural regulatory mechanism [4].
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The safety-critical condition of such an automated device makes its performance monitoring task of
paramount importance in order to reduce glucose level variability and to minimize the risks of dan-
gerous excursions outside the normoglycemic range. Hopefully, closing the glycemic control loop
with a fully automated system will certainly improve the quality of life for insulin-dependent patients.
Such a device is made up of a glucose measuring device, an automated insulin infusion pump, and a
feedback control strategy that calculates the insulin infusion rate based on an error-prone glucose sig-
nal. Obviously that, to guarantee an optimal glucose regulation, safe implementation requires proper
functioning of each individual component at all times. Because human body is a highly nonlinear, ro-
bust, and adaptive physiological system, there exists a close relationship between stochastic optimal
control and diabetes care.

The widespread availability of user-friendly monitoring strategies for glucose control is a key
issue to the acceptance of an AP. The criteria to evaluate the efficacy of a monitoring tool should
be based on the usefulness of the test results to improve glycemic control [5], so that the acceptance
of such system by patients and clinicians can be significantly increased. Continuous glucose
monitoring will certainly improve daily diabetes treatment, but the realization of this promise awaits
a complementary shift in the way that glycemic data are processed [6]. Similarly to other regulatory
loops in physiological systems, accessibility to some key variables requires a highly invasive
mechanism, which is not always feasible [7]. Moreover, periodical measuring of plasma glucose
to check if the AP is performing correctly results impracticable for ambulatory patients, particularly
at night time [8]. To solve this problem, a specification of the correct behavior of an AP under
uncertainty is proposed, and then it is compared with samples obtained through a subcutaneous
sensor. This allows contrasting the obtained sensor readings through a vis-a-vis comparison with
the desired glycemic behavior, without repetitively solving a computationally demanding algorithm
and without the on-going active intervention of a clinician. This also has the advantage of making
the monitoring task simple enough to be executed on a mobile device.

Even though the specified behavior describes the optimal manner the AP is expected to work, this
only holds true if a number of factors causing uncertainty are taken into account in specifying the
glucose regulator behavior. For instance, the precision of the insulin pump, physiological and phys-
ical lag times, and the calibration error of the glucose sensor must be accounted for. Even though
there exists a vast literature on using optimal control methods for designing a glucose regulator,
only a few research works focus on the problem of performance monitoring of an AP. Undoubtedly,
the most significant development in control performance monitoring was due to the work of Harris
[9], who proposed the concept of a minimum variance controller as the characteristic behavior of an
optimal regulator. Thus, performance monitoring can be based on comparing the observed mean
squared error of the controlled output with its corresponding minimum variance. This strategy
has already been implemented in monitoring the performance of a control loop for a diabetic patient
[10]. However, because of unavoidable sources of uncertainty and glycemic variability, perfor-
mance assessment tools using the minimum variance method are unable to differentiate normal
from abnormal behavior of an AP [11, 12]. Moreover, for performance monitoring, it is usually
assumed that the control system cannot influence or modify the environment in which it operates.
But an AP must perform in a time-varying and highly nonlinear environment [13], namely, the
human body, which defines a feedback loop with a glycemic regulator. As the AP is a situated entity
interacting with a highly regulated system, its behavior cannot be monitored using a fixed reference,
threshold, or bound.

This work highlights that stochastic optimal control is the cornerstone for defining the specifica-
tion of an AP under uncertainty. To this aim, a probabilistic characterization of the expected glyce-
mic behavior is built upon a stochastic process specification of the glucose regulator. The desired
optimal behavior is obtained analytically using a class of Markov decision processes that are
linearly solvable [14, 15]. Through an exponential transformation, the Bellman equation for such
problems can be made linear despite nonlinearity in the stochastic dynamical models, which
facilitates applying efficient numerical methods. The AP specification is modeled by a prior
Gaussian distribution for state transitions, which accounts for different sources of glycemic variabil-
ity. The availability of an optimal control policy allows simulating the desired behavior over time
and comparing it with its specification in order to identify deviations from the desired performance.
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To this aim, an offline clinical monitoring tool based on error grid analysis (EGA) is proposed to
detect failures and performance degradation in the closed-loop glycemic regulator. The major
advantage for the closed-loop error grid analysis (CL-EGA) is that it can be employed for visually
detecting significant deviations of an AP from its specified behavior corresponding to an optimally
performing glycemic regulator.

2. OPTIMAL CONTROL UNDER UNCERTAINTY

2.1. Optimal control policy

To achieve a proper characterization of the optimal behavior of a glycemic regulator under uncer-
tainty, the novel approach of linearly solvable Markov decision process (LSMDP) is used [14],
whereby the Bellman optimality equation is made linear through an exponential transformation that
allows obtaining the optimal control policy in an explicit form.

Consider a controller choosing actions over time (the glycemic regulator), an uncertain dynami-
cal system whose state is affected by those actions (the body), and a performance criterion that the
controller seeks to achieve (normoglycemia). We employ a structured formulation that greatly
simplifies the construction of optimal control laws in continuous domains, because an exhaustive
search over actions is avoided and the problem becomes linear. To this aim, the optimal cost-to-go
function v(x) is defined as the expected cumulative cost for starting at state x and acting optimally
thereafter. By acting on the uncertain glycemic dynamics, the controller generates a sequence of
actions that optimize a performance criterion in the long run. As a result, if the regulator performs
away from the specified behavior, it must pay a price for suboptimal reshaping of the glycemic
dynamics [16]. Any increase in the price to be paid is an evidence of a performance loss. Hence,
v(x) equals the minimum of an immediate cost £(x,u«) plus an expected cost-to-go x’~u (x'Ix) at
the next state x’ (see (4) in the succeeding texts). The subscript indicates that the expectation is
taken with respect to the state transition probability distribution p*(x’lx,«), which is induced by
the control action u.

A special feature of this formulation is that, instead of asking the controller to specify symbolic
actions that are later replaced with transition probabilities, we allow the controller to specify tran-
sition probabilities directly. Let p*(x'Ix, u)=u(x'Ix) denote the transition probability given a control
policy u=n(x), whereas p°(x’Ix) models the transition probability for the uncontrolled or passive
glycemic dynamics. Regarding uncertainty, the state transition function in this problem obeys to
a controlled diffusion process with the following form:

dx = a(x)dt + B(x)(udt + odw) (1)
where weR!" and o denote a Brownian noise and its scaling parameter, respectively. The expression a
(x) describes the passive dynamics, and B(x) is the input—gain matrix.

In order to express (1) in a more convenient form, the A-step transition probability for the passive
or uncontrolled dynamics p° is expressed as a Gaussian distribution N as

P’ (X [x) = N(xX |x + ha(x) + hB(x), hoB(x)" B(x)) )

The controlled diffusion process p* is approximated as a deterministic function expressed as a
Gaussian distribution whose mean and covariance are given as

p(x'x) = N(x[x + h(a(x) + hB(x)u), X)) 3)

One way of thinking the net effect of control actions is noting how they change the distribution of
the next state from (x+ha(x) +hB(x),Y)) to (x+h(a(x) + hB(X)u),Y.), where Y =hoB(x)"B(x) is the
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covariance. In other words, the controller shifts the probability distribution from one region of the
state space to another [16]. Specifically, it is assumed that a diabetic patient has an uncontrolled
glucose dynamics that gives rise to a distribution p® over future states; then, the regulator acts by
modifying this distribution obtaining a controlled glucose dynamics p“.

2.2. Optimal control policy

An insulin control policy 7(x) is thus defined as a probability of selecting the action u#, which
corresponds to a change to the insulin infusion rate, at the glycemic state x. The main objective
is to find an optimal insulin infusion policy 7 (x) that minimizes the expected cumulative cost
function v(x) as

v (%) = mind £(x, 7(%)) + By _yxi [v(x)] | @)
where x’ denotes the next glycemic state for a given action . The minimum cost-to-go for starting at a
state x and acting optimally thereafter enables greedy computation of optimal actions. Equation (4) is
fundamental to optimal control theory and is called the Bellman optimality equation. The Bellman
equation can be simplified by assuming that the immediate cost function has the following form:

€(x,u) = hq(x) + KL(u(x|x) || p(x x)) ®)

Here, the state cost g(x) is an arbitrary function encoding how desirable different glucose levels are.
Because the controller acts directly over the transition probabilities, it makes sense to measure its
magnitude in terms of the difference between the controlled transition probability and the uncontrolled
transition probability by means of the Kullback—Leibler divergence. The distance can be understood as
the price to be paid for the optimal shifting by the insulin infusion action u of the passive dynamics
corresponding to an uncontrolled patient. An exponential function of the value function v(x) is used
to highlight that the most desired states are those where the cost-to-go is small. Even though the
Bellman equation is nonlinear in terms of the value function, it yields a linear equation in a new
variable z(x) when using the exponential transformation

2(x) = exp(—v'(x)) (©)

and combining (5) and (6), the Bellman equation can be expressed as a linear function

togte(s) = a9 mnd B[O @

The last expression resembles the Kullback—Leibler divergence between u(x'Ix) and p(x’Ix) z(x’),
but it should be first normalized by introducing an integral operator G[z](x) defined as

Glz)(x) = _[po (x'[x)z(x)dx (8)
The use of this integral operator allows (7) to be rewritten as
2(x) = exp(—hq(x))G[z](x) ©)

which is known as the desirability function [15].
In contrast to the cost function v(x), the negative exponential portrays that states are more desir-
able. Once the desirability function is found, the optimal control policy is computed using (6) as
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' (x) = —0°B(x) vy (x) (10)

In this manner, optimal action selection can be expressed analytically given the optimal cost-
to-go. Thus, instead of finding a trajectory-based solution, the goal is to find a global optimal policy
over the entire state space.

The continuous problem given in (1) can now be solved by choosing a set of states {x,} and
adjusting the matrix P of transition probabilities from state x to the next x’ given by the passive
dynamics described in (2). The min operator in (4) can be dropped, and the Bellman equation is
then expressed in terms of the transformed variable z(x). As the integral operator G[z] (x) is linear,
thus, (9) is also linear in z(x) and can be expressed in vector notation. Defining the vector z with
elements z(x,,) and the matrix Q with elements exp(—hg(x,,)) on its main diagonal, we obtain

z= 0Pz (11)

This expression has the same functional form that an eigenvector problem has, and then can be solved
iteratively by taking advantage of the exponential form of the value function [14].

2.3. Modeling glycemic dynamics

Diabetes mellitus is characterized by the inability of the pancreas to properly control blood
glucose concentration. Current subcutaneous treatments often result in poor maintenance of
normoglycemia (glucose levels within 80-140mgdl~'), and excessive variation in blood glucose
levels is observed because of the inefficacy of intermittent control. In order to achieve a proper
characterization of an optimal regulator behavior, glycemic variability is simulated by means of
a stochastic processes superimposed on an otherwise deterministic model of the glucose—insulin
dynamics. The Lehmann and Deutsch model [17] is used as the basis to describe such determin-
istic dynamics. By adding an Ito’s process to the model, glycemic variability in a type 1 diabetic
patient is obtained as

Gm + NHGB — Gout - Gren
Vg

dBG = ( >dt+adw (12)

where BG is the plasma glucose concentration, Gj, is the systemic appearance of glucose via glucose
absorption from the gut, NHGB is the net hepatic glucose balance, G,,, is the overall rate of periph-
eral and insulin-dependent glucose utilization, G,,, is the renal excretion of glucose, and Vi is the
glucose distribution volume. A value of 6=0.25 was suggested to be representative of glycemic var-
iability in the work of Acikgoz and Diwekar [18]. Such value allows considering daily variations in
glucose concentration on a diabetic patient, also including different unknown sources of uncertainty
such as errors in the model, inaccurate measuring, and unpredictable behavior of the metabolism in
diabetic patients.

Modeling glycemic variability through a diffusion process, a cohort of in silico subjects that
accounts sufficiently well for the observed inter-subject and intra-subject variability is obtained.
For all simulations hereafter, the meal intake regime in Table I is used.

Error-prone measurements of BG concentration are obtained by a subcutaneous glucose sensor,
which is only an estimation of the actual plasma glucose concentration. As the sensor needle is
placed in the subcutaneous tissue, it determines the interstitial fluid (/G) concentration instead of

Table I. Carbohydrate intake schedule.

Carbohydrate content [g] 47 16 63 31 63 31
Meal times [h] 8.00 10.00 12.30 16.00 19.30 22.00
Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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the plasma glucose directly. To this aim, the sensor response is described in (13). Each IG value is
obtained by integrating a BG-IG dynamics, where p is the static gain (considered equal to 1) and 7 is
the time lag constant

dIG(k) = —%IG(k) + gBG(k)
s(k) = (1 + <(k)IG(k) + (k)

(13)

As a result, sensor readings s(k) are corrupted by a random time-varying calibration error plus a
white Gaussian noise process y(k). It is worth noting that the expression BG instead of /G is used
hereafter, but recall that it refers to the outcome of a continuous glucose monitor. In Figure 1,
plasma glucose levels and sensor responses are depicted for different sensor calibration errors
and time lag values using the optimal control policy (see Section 3.3, for details).

2.4. Glucose-insulin passive dynamics

As mentioned, the passive dynamics represents the behavior of the stochastic dynamics in the
absence of control actions. Likewise, in a type 1 diabetic patient, the passive dynamics represents
the behavior of BG levels when no exogenous insulin is administrated. Because the ability to
mitigate glycemic variability has been lost, the patient may experiment hyperglycemic or hypogly-
cemic events as BG values vary without control over a wide range. As a consequence, this passive
dynamics makes possible for the learning controller to visit a large number of glycemic states,
which are essential for obtaining an optimal control policy. The passive dynamics is then crucial
in order to specify the desired behavior of an AP, yet it is unknown in general and needs to be some-
how approximated using a model. To begin with, notice that by discretizing the dynamical system
in (1), the h-step state transition probability for the uncontrolled glucose dynamics can be expressed
as a Gaussian distribution as given in (2). Then, the continuous problem is approximated in discrete
time by choosing a set of BG states {x,} and adjusting the matrix Py 4. of transition probabilities
from x; to X, , | given by the passive dynamics distribution.

Because the passive dynamics accounts for the space of all possible state transitions in an uncon-
trolled patient, it is possible to estimate the passive dynamics by using a reduced version of the
model described in (12). In fact, the Lehmann and Deutsch model previously described is an
augmented representation of the two-compartment minimal model described in Bergman et al. [19]

_ 140 £=2% _ 140
o t=5min| T
S 120 S 120
E E
(n 100 (100
Q Q
800 6 12 18 24 800 6 12 18 24
Time [h] Time [h]
_140 c=2% _140 £=10%
o t=20min| o © =20 min
5120 5120
E E
o 100 ¢ 100
Q Q
800 6 12 18 24 800 6 12 18 24
Time [h] Time [h]
Figure 1. Sensor reading errors distorting plasma glucose levels because of miscalibration and excessive
time lags.
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dBG
7 = (pl — IG)BG +p1Gb

dla
T pola+psI(1)

(14)

where Ia represents the time course or profile for the insulin infusions and G, is the basal glucose level.
In this minimal model of the glucose kinetics, the insulin action /(f) enters at a remote compartment
with the goal of speeding up the glucose disappearance process and at the same time inhibits every
hepatic glucose production. The model parameters p; are given in Table II. Despite the limitations
of the Bergman’s minimal model, it can properly describe glucose—insulin state transitions in a diabetic
patient.

The glycemic regulator is thus based on two physiological variables, which can be readily
known. The control task is mainly concerned with reducing glycemic variability while minimizing
the deviation from the desirable BG levels. For this purpose, the cost function is conveniently de-
signed in such a way it guarantees an acceptable behavior of blood glucose dynamics within a target
band (80-140mgdl ™). The state cost function g(x) is thus represented by a square exponential
function that enforces normoglycemia, whereas it penalizes large deviations from the desired BG
levels, that is, values as close as possible to BG=110mgdl~! and Ja=30mU1~". Note that this
is a two-dimensional state problem with x;=[BGy, Ia;] and control action u; = Al;, which accounts
for the amount of plasma insulin entering into the remote compartment. A restriction is imposed so
that the rate of change of the control action is not higher than a preset value as follows given as
AL:<8mUmin~'.

To approximate the continuous problem in (12), we use a state space discretization by means of a
151-by-151 grid over the intervals BG € [0, 220] mg di7! and Ia € [0, 60] mU1~". The passive
dynamics is then constructed by discretizing the time axis, using a time step #=0.05, and by defin-
ing probabilistic transitions among discrete states as in (2) such that the mean and variance of the
continuous state dynamics are preserved. The noise distribution is discretized at 9 points spanning
+3 standard deviations and using a noise scale parameter 6=0.1. A small value of ¢ is chosen here
to represent glycemic variability because inaccurate measurements are included in the sensor error.

Once the passive dynamics matrix P and the cost matrix Q are found, the desirability function can
be optimized by means of (11). One way to find the solution is the power iteration method — which
in the present context is equivalent to value iteration in the exponentiated form. Despite this equiv-
alence, however, solving (11) can be orders of magnitude faster than value iteration for generic
MDPs, because the optimal controls are found analytically and the value iteration can converge
slowly, whereas using the exponential transformation, convergence is linear. The optimal control
policy was subsequently derived from the obtained desirability function using (6) and (11).

Results are displayed in Figure 2, where the axes denote the variables used to describe the glycemic
state of a patient. Figure 2(a) depicts the scheme of the Bergman’s minimal model used to approximate
the passive dynamics. Even if this reduced model is used to approximate the passive dynamics, it is
worth noting that the optimal control policy will be applied in the augmented model presented in
(12) including the sensor signal response. Figure 2(b) graphically depicts the state cost function g(x)
centered on the desired basal values for BG and /a. In Figure 2(a), blue regions correspond to low
values and red to high values. Figure 2(c) shows the optimal cost-to-go function obtained. As can
be seen, states with higher costs are placed in the upper and lower boundaries of the plot.

Table II. Parameters of the Bergman’s minimal model.

Parameter Value
P 2.96x1072 [min"}]
P> 1.86x 1072 [min™']
P3 6.51%107° [min 2 pU 'ml™ "]
Gy 97 [mgdl™"]
Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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Figure 2. (a) Reduced model of the glucose-insulin dynamics. (b) State cost function ¢(x). (c) The optimal
cost-to-go function. Sample trajectories are generated using different values of the noise scale parameter o.
(d) The optimal control policy obtained.

The two small paths drawn over the optimal cost-to-go function correspond to stochastic trajec-
tories generated by the optimal policy; the red one was obtained using a noise scale 6 =0.1, whereas
the black trajectory corresponds to o =0.25. When BG is high, insulin infusion rates are also high so
that costs can be lowered, whereas smaller insulin infusion rates are required for optimal control
when BG is low. Finally, Figure 2(d) describes the obtained optimal control policy used as the
specification for behavior monitoring of a glycemic regulator under uncertainty.

2.5. Optimal behavior specification

The key issue to be addressed in performance monitoring of a glycemic regulator is how a
well-performing AP can be characterized in the face of uncertainty. The desired behavior of a given
glucose—insulin system is mandatory to detect the discrepancies between the specification and
degraded performance in a suboptimal implementation. To this aim, state transition probabilities
are represented using fully probabilistic Gaussian processes (GP) models that provide information
about confidence intervals for value function predictions and optimal actions.

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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Gaussian processes [20] are stochastic processes used to describe distributions directly into the
space of functions. It is implicit that training examples are informative for reliable predictions.
When using GPs, it is assumed that the joint distribution of the data is a multivariate Gaussian. Con-
sequently, the problem is to find a covariance function that explains the data properly. Interesting
properties of GPs are providing a probabilistic approach to inductive modeling and giving uncer-
tainty estimates through prediction variances. GP regression uses a collection of random variables
to represent the value of the unknown function f(x) for different inputs x. A GP is fully specified by
a zero mean function m(x;) and a covariance function k(x;, X;), encoding correlations between pairs
of random variables

k(x;, x;) = exp(—y,”x,»-x,»”z) + 2,05 (15)

with y,>0 the kernel width parameter, 4,>0 the noise variance, and u, the Kronecker delta function.
This prior for the kernel function constrains input samples that are nearby to have highly correlated
outputs. Short-term transition dynamics are modeled based on interactions (real or simulated) with
the glycemic regulatory system. Given any state vector X, a separate GP model is trained for each state
dimension x, in such a way the effect of uncertainty about its change due to a control action is modeled
statistically as

Axy. ~ GP(m, k) (16)

where the training inputs to the model are the states, whereas the targets are the differences between the
successor state and the state in which the action is applied.

We can build the optimal transition probability u*(x, Ix;) as a GP model, namely, GP*, which
describes the stochastic specification of the AP. On the other hand, a model GP# describes any im-
plemented glycemic regulator, modeled as the transition probability u8(x; , 11x;), which may deviate
from optimal control under uncertainty. In order to detect abnormal or faulty conditions, the GP
model used to characterize the glycemic regulator must be updated online. In Figure 3, a realization
of the glucose stochastic process obtained by applying the optimal policy for a scale of variability
0=0.10 is shown. To simulate an increase in glycemic variability in a diabetic patient, the noise
scale parameter is changed to ¢ =0.50 from the 12th hour onwards, while the optimal control policy
is applied. In the lower part of Figure 3, the predicted state transition distributions are given: Shaded
areas describe the uncertainty in predictions, whereas solid lines correspond to the prediction
means. Note that an increase in glucose variability is shown not only for the predicted means but

220

-
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Figure 3. Effect of glycemic variability on the performance of a glycemic regulator. Mean and standard
deviation values are generated through the noise scale parameter o.
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also for the errors in the glucose level predictions, which reveals a significant degradation in the
performance of the glycemic regulator because of a sudden increase in glycemic variability.

3. OPTIMAL CONTROL PERFORMANCE MONITORING

3.1. Implementation challenges of an artificial pancreas

Despite recent technology breakthroughs towards a fully automated AP, many issues still prevent
safe and optimal operation of closed-loop therapies in diabetic patients. For example, continuous
subcutaneous insulin infusion devices are prone to technical failures, being the obstruction of the
catheter the most frequent event [21]. Moreover, sensor readings are affected not only by time lags
and calibration errors — which increase with time — but also by environmental factors and other
substances that can generate unstable output signals [22]. As the control algorithm may be executed
in a mobile device, for example, a smart phone, wireless connection between the components of the
glycemic regulator may be affected by delays or interference in data transmission. Even worse,
ill-tuning of the control algorithm used to calculate the insulin bolus required can lead to severe
hypoglycemia events. Thus, it is of paramount importance to address the issue of performance
monitoring of an AP whose desired behavior should be established with respect to a formal
specification of an optimally controlled glycemic dynamics. To this aim, the performance of a blood
glucose regulator is evaluated in a range of treatment scenarios to detect any deviation of an imple-
mentation regarding its specification. It is important to note that we are dealing with a monitoring
tool and not a diagnostic one. Thus, a warning about a deviant behavior does not necessarily need
to differentiate between different probable causes, for example, a sensor calibration error or abnor-
mal glycemic variability. Thus, monitoring is mostly concerned with converting glucose sensor data
into warning signals accounting for any suspicious behavior of the AP and extracting meaningful
information to prompt immediate action such as opening the glucose control loop [23].

3.2. Closed-loop error grid analysis

To further our concept of performance monitoring based on a specification of an optimally
performing AP, let us introduce EGA methods designed to assess the accuracy of glucose sensors.
EGA methods use a Cartesian diagram in which BG data measured through a glucose sensor are
displayed in the y-axis against the BG data provided by the specified or reference method in the
x-axis. For example, in Clarke’s grid [24], the diagonal line represents the perfect agreement
between the two measures, whereas points below and above the 45° line indicate overestimation
and underestimation of the actual glycemic values, respectively. Another suitable tool to assess
the efficacy of glucose variability control is the so-called control variability grid analysis proposed
by Magni et al. [25]. The tool is appropriate for visualization of extreme glycemic excursions as
well as detection of abnormal variability patterns. More closely related to our work, Chassin
et al. [26] introduced a grading tool specifically designed to facilitate clinical assessment of
closed-loop systems including that of glucose controllers. In similar works (refer to [27, 28]), the
performance of glucose prediction algorithms has been tested using a reference measure.

Nevertheless, lacking an optimal control policy under uncertainty as a reference behavior, most
grid tools are not readily prepared for performance monitoring of the AP as a whole, and specially
detection of harmful events. In Figures 5-10, we propose a CL-EGA tool that is able to pinpoint
deviations from a specified behavior corresponding to optimal control under uncertainty. Values
along the y-axis represent BG levels obtained through a sensor whose readings are exposed to
glycemic variability, different levels of calibration errors and time lags, insulin pump failures,
and so on. The optimal policy describes the specified manner a glycemic regulator should behave;
this specified behavior is reproduced in the x-axis. The specified BG dynamics incorporates the
intrinsic (default) glycemic variability because of the glucose sensor errors and lag time for glucose
absorption.

The proposed grid takes into account not only the difference between the measured BG values — of
the implemented controller — and the expected BG values — of the specification — but also the clinical
significance of this difference. Zone F~ represents severe hypoglycemia conditions. BG values falling
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in this zone result potentially life threatening — because of the risk of coma [29] — and are likely to
require external assistance. Defective glucose counter regulation and hypoglycemia unawareness
[30] episodes might lead to a vicious cycle of recurrent hypoglycemia and thus are used to characterize
zone E~. Mild hypoglycemic episodes frequently precede severe hypoglycemia and are grouped in
zone C™. Zones A~ and A™ both describe an optimally performing glucose regulator, that is, when
the AP implementation closely follows the specification. Zone B* denotes a state of increasing risk
of progressing to diabetes but likely to revert to normal values. Zone C* is classified as poorly con-
trolled diabetes. Above these levels, for example, zone D*, demand aggressive control actions aiming
at lowering BG to avoid any risk of a stroke. Strokes are the third leading cause of death and disability
in the developed world, which make mandatory to maintain glycemic levels away from zone E*. For
extremely high plasma glucose levels, the risk of diabetic coma is exceedingly high, requiring external
assistance, and such a level is classified as grade zone F*. Note that those zones that describe hyper-
glycemic and hypoglycemic risk, that is, E and F, do not depend on meal intake and are limited by
constant thresholds. A more detailed description of every grid zone is given in the Appendix.

3.3. Simulation of faulty scenarios

The specified behavior represents the optimally controlled glucose dynamics that the closed loop is ex-
pected to generate. This represents an optimal control policy acting over a regularly working AP (sensor,
pump, control algorithm, and glucose metabolism). This closed-loop dynamics is represented by GP* in
(16). The specified dynamics GP* — controlled by the optimal control policy for insulin infusion — is per-
formed using variability o =0.10, calibration error £ =2%, and time lag 7 =5 min. The 24-h glucose pro-
file is built using a sampling time of 6 min with the multiple meal consumption pattern shown in Table I.

A GP# model describes the current behavior of the glycemic control loop (considering the effects
of measurement errors, infusion pump malfunctioning, algorithm ill-tuning, and glycemic variabil-
ity). This allows to evaluate the effect of a deviation from the specified behavior, which may be
revealed by the CL-EGA tool. This Gaussian model describes an implementation of the glycemic
regulator by a suboptimal control policy and possibly underperforming because of ill-functioning
of the glucose sensors and the infusion pump. Suboptimal control strategies of the regulatory sys-
tem are exemplified here by a proportional—integral-derivative (PID) algorithm and an integrated
fuzzy-PID scheme. Even if different studies have shown a comparable performance between the
control system and the routine clinical treatment [31, 32] using PID-type controllers, the ones pre-
sented in this work exhibit difficulties for efficiently controlling glycemic variability and are used
here as representative examples of performance degradation. The intention is basically to display
how an underperforming controller may be pinpointed by the monitoring tool, but a performance
comparison between different glycemic regulators is out of the scope of the present work.

Low performance obtained through suboptimal control is (see y-axis on the grid) compared with
the specified optimal behavior obtained using the LSMDP algorithm (see x-axis on the grid). This
allows us to evaluate the overall efficiency of the AP when the control loop is affected by sensor
errors as well as time lags compounded with the effect of intrinsic patient variability. The PID
algorithm in (17) for the glucose—insulin model is fully described in Farmer et al. [33]. Here, u,
is the basal insulin, k¢ is the proportional action, z; is the integral time, and 7, is the derivative time.
Parameters for the PID algorithm are given in Table III. To maintain basal conditions, the set point
is set to the basal glucose concentration G,.

d(G(t)—G,.)

In(0) = +ke | (G0-G,) +2.J, (600G, Y-+ v =

(17

The design of the expert fuzzy-PID controller is fully described in the work of Susanto-Lee et al.
[34]. The fuzzy algorithm is based on a Mamdani-type fuzzy inference system, with one input
variable (BG level) and one output variable (insulin delivery rate). The defuzzification for the output
is calculated using the centroid method, which essentially determines the center of mass of the set of
fuzzy outputs. For the proportional action, a sliding scale has a continuous blood glucose level
partitioned into zones with a linear increment of the insulin rate according to the BG level. If the
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Table III. Proportional-integral-derivative parameters.

Parameter Value

G, 110 [mgdl ']

up 16.667 [mU min ']

ke 12 [mUmin~" mgdl™"]
[75) 40 [min]

7 3300 [min]

bolus relieved by the sliding scale does not provide enough insulin to lower the BG level, an integral
actuator provides the extra increment needed to the insulin infusion rate. The derivative action is
performed through a least square regression technique that provides a mechanism to boost the
insulin delivery during a rapid increase in the BG level.

Figure 4 vividly highlights how suboptimal control policies affect the glycemic dynamics. More
specifically, at the 12th hour, the parameter ¢ is significantly increased (from ¢=0.10 to 0.50) to
simulate a sudden rise in glycemic variability. By contrasting the optimal and suboptimal controlled
dynamics, the performance loss is readily revealed.

3.3.1. Closed-loop controller. The results of ill-tuning in the PID control strategy are portrayed in
Figure 5. As the PID gain parameter k. increases, so does the value of the output action for a given

440

220

BG [mg/dI]

0 6 12 18 24
Time [h]

Figure 4. Effect of increasing glycemic variability using a noise scale ¢ =0.50. LSMDP, linearly solvable
Markov decision process.
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Figure 5. Performance degradation due to an ill-tuning of proportional action in the proportional—integral—
derivative controller (kc=20 blue circles, k=5 red circles).
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change in the error signal (G(f)-G(r)) in (17). However, excessive gain may lead the system to
instability. In order to make the glycemic regulator capable of dealing with this scenario, the pro-
portional parameter is increased from k=12 to kc=20. A larger proportional gain causes glycemic
levels to fall near the hypoglycemic limit, and this can be observed by the large number of blue
circles falling below zone A. Later on, the proportional gain is reduced to k=35, which makes
the insulin infusion strategy much less effective giving rise to an increase in the BG levels
(see red circles in Figure 5).

The same scenario was put into practice for the fuzzy-PID scheme in Figure 6, where the propor-
tional gain kp was first raised from 12 to 20 and later reduced to 5. Performance degradation in the
glucose regulator is clearly revealed in the performance grid. Because of an excessive control action
in the fuzzy-PID loop, the chances of a hypoglycemic event increase significantly (see blue circles).
Similarly, a reduction of the proportional parameter kp gives a severe performance degradation and
BG reading shift towards hyperglycemic regions (red circles in Figure 6).

3.3.2. Glycemic variability. The capability of each controller to mitigate high levels of glycemic
variability is at this point assessed. The value of the Ito’s parameter of the glucose-insulin model is
set to 0 =0.50, which gives rise to a much larger glycemic variability. A considerable reduction of the
number of circles within zone A for all of the control techniques was observed, as it is shown in
Figure 7. No dangerous BG circles can be observed when implementing the LSMDP algorithm
(zones E™ and F™), despite enlargement of the spread of glucose levels (blue circles). For the PID
strategy (red circles), BG values are evenly spread below and above the euglycemic zone, but some
circles may indicate harmful situations for patients, as those falling in zone E™ and F~. Measured
glucose concentration obtained by implementing the fuzzy-PID scheme indicates some difficulty
to avoid hyperglycemia conditions, and several circles actually fall in zone D* (green circles). The
algorithm is not capable of calculating the right insulin bolus needed to mitigate such a level of gly-
cemic variability in the patient. It is noteworthy how the performance of the fuzzy controller quickly
degrades because of an increase in glycemic variability. However, in spite of this high variability, the
robustness of LSMDP controller ensures that glucose levels fall inside the euglycemic range.

3.3.3. Continuous glucose monitoring system. The magnitude of the BG-IG lag may be no more
than 5min in optimal conditions, but after prolonged implantation, the sensor surface becomes
increasingly fouled with fibrotic substance. As a result, the time lag progressively increases. In
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Figure 6. Fuzzy-PID ill-tuning as a result of varying the proportional gain (k=20 blue circles, kc=5 red
circles).
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Figure 7. Assessment of the effect of high glycemic variability using a noise scale 6 =0.50 (linearly solv-
able Markov decision process blue, PID red, fuzzy-PID green).

Figure 1, truthful plasma glucose levels and their respective estimated sensor responses were
depicted for different magnitudes of the calibration errors and time lags. The effect on the AP per-
formance of a significant miscalibration of the glucose sensor (¢ =10%) as well as a large time lag
(r=20min) are depicted in Figures 8 and 9, respectively. It is worth reminding that as the control
algorithm responds to the outcome of the glucose sensor, it actually acts over inaccurate readings
rather than true plasma levels. The same calibration errors and time lags do not give rise to a con-
siderable performance degradation when implementing the LSMDP algorithm and most BG circles
are in zones A and B. In turn, sensor readings affected by calibration errors and high time lags
severely reduce the performance of a PID controller. As a result, the BG levels mostly fall in the
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Figure 8. Performance loss due to glucose sensor miscalibration using ¢=10% (linearly solvable Markov
decision process blue, PID red, fuzzy-PID green).
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Figure 9. Performance loss due to a large time lag using 7=20 min (linearly solvable Markov decision
process blue, PID red, fuzzy-PID green).

hyperglycemic range in an upper zone D* of the grid. For the fuzzy controller, significantly higher
calibration errors and time lags do not give rise to important deviations from accurate zones. A few
BG circles in zone D* and many more in zone C* indicate poorly controlled diabetes with symp-
toms of hyperglycemia when there exist sensor errors and increased time lags. Hypoglycemia
appears (green circles C~ and E™), when the sensor experiments an excessive time lag.

3.3.4. Continuous subcutaneous insulin infusion. Many commercially available insulin pumps

deliver insulin continuously and subcutaneously. There exist local and systemic complications in
controlled insulin delivery that include improper dosing because of electronic failures, catheter
obstructions, battery depletion, and infections [35]. The simulation presented in Figure 10 tests a
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Figure 10. Performance degradation due to a catheter blockage (blue circles) and a coarse actuator (red
circles) in an implantable insulin pump.
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likely scenario in which a catheter blockage occurs during the use of an insulin pump. Because of
this blockage, insulin dose administrated via the pump suffers a 20% reduction with respect to the
level prescribed by the optimal bolus calculated by the LSMDP algorithm. This reduces the effect of
the bolus and leads to poorly controlled glycemic variability, which is portrayed by the amount of
circles in the upper zones D* and E*.

To simulate chaotic behavior of a coarser actuator (insulin pump), let us assume the actual infu-
sion rate is given by u(f) =u* + fdw, where u* is the optimal action calculated using the LSMDP at
time f, dw is the differential of Brownian random noise, and =3 is the standard deviation of the
added noise. Hence, the AP can calculate the optimal bolus to be administrated but is unable to
set the right amount of insulin that is in fact delivered to the patient. Note that a Brownian noise
is added to the optimal insulin action u* to simulate the actuator fault in a realistic way. Because
there is a zero mean noise, the path still converges to the vicinity of the target BG=110mgdl~’,
although there exists increased variability in the glucose dynamics. The chaotic controller has a sim-
ilar effect as the one obtained by increasing the noise parameter o, but here, excessive glycemic var-
iability is caused by the regulator itself and not by physiological changes in the patient dynamics.

4. DISCUSSION

This paper proposes a novel grid-based monitoring tool to assess the performance of a closed-loop
glycemic regulator. The main challenge for performance monitoring of an AP is defining the
desired behavior under the uncertain conditions the glycemic regulator should face. To this aim,
the monitoring tool has been tested on a stochastic model of a diabetic patient to assess its efficacy
to pinpoint performance degradation under faulty conditions in sensor, control and insulin
infusion pumps, or abnormal blood glucose variability because of a physiological disorder. The
proposed monitoring tool highlights a well-established and user-friendly method for patients
and clinicians such as the EGA in order to readily assess performance degradation. As the grid
is divided in different zones, the CL-EGA allows fast detection of likely harmful episodes at a
glance. Taking into account that most methods focus on performance assessment of glucose
sensors, our performance grid is a one-of-a-kind attempt in the design of advanced tools aiming
at monitoring an implantable AP.

The specification of the optimal glycemic regulator is obtained using a class of Markov decision
processes that are linearly solvable. It has been reported [15] that the framework of LSMDP can find
an optimal policy faster than conventional learning algorithms. Conversely, it requires the knowl-
edge of state transition probabilities in advance, which perhaps is the most demanding optimization
task. A major advantage of using the proposed approach is that it provides an explicit optimal policy
for insulin delivery, which allows building a specification of the desired glycemic dynamics over
time. Because the transition probability between different states is learned using GPs, it makes room
for comparing the glucose readings with its specification for an optimally performing AP. Further-
more, the proposed performance monitoring tool has the advantage of being fully portable on a
mobile device; because the optimal specification is provided explicitly, online optimization is not
longer required.

In this paper, a monitoring tool is proposed. Monitoring works online and uses sensors to provide
raw data and detect anomalies from the system under study whenever the system performs away
from its expected behavior. Further analysis of the obtained data should be made using a diagnostic
tool in order to analyze fault causes and provide meaningful information about the operation of the
different system components [35]. Because both the expected glycemic variability and the sensor-
related errors have been characterized through Gaussian transition probabilities, every significant
deviation of points displayed in the grid is indicative of performance degradation in the control
loop, for example, glucose sensor, control algorithm, pump, or even abnormal glycemic variability.
Accordingly, our focus is in the AP as a whole; hence, the monitoring tool is instrumental to
pinpoint any deviation from optimal performance.

To enhance the monitoring task, we are currently working on an online metric to detect devia-
tions fast from an optimally performing AP. Furthermore, we intend to integrate learning the control
policy for optimal acting with the monitoring tool. That is, currently, the monitor detects a deviant
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behavior, but no course of action for correcting it is taken. To address this issue, our current
research efforts pursue tightly the integrating fault diagnosis within the glycemic regulator design
in the framework of autonomic systems so that the controller can self-monitor, self-diagnostic,
and self-optimize its control policy in real time.

APPENDIX. CLOSED-LOOP ERROR-GRID ANALYSIS

In CL-EGA, the values along the y-axis represent BG levels obtained through a sensor whose read-
ings are exposed to glycemic variability, different levels of calibration errors and time lags, insulin
pump failures, and so on. The specified manner a glycemic system should behave is reproduced in
the x-axis. Fasting and prandial conditions must be taken into account to assess glycemic variability.
A fasting state is a condition associated with no caloric intake for at least 8 h, whereas a prandial
state describes a 2-h post-glucose intake containing the equivalent of 75 g of anhydrous glucose
dissolved in water.

Plasma glucose at 50mgdl™" is used as threshold for zone F~, which represents severe hypoglyce-
mia. BG values falling in this zone result potentially life threatening — because of the risk of coma
[29] — and may require external assistance. Hypoglycemia antecedents, with prior plasma glucose
concentrations as high as 70mgdl™!, causes defective glucose counter regulation and hypoglyce-
mia unawareness [30]. These episodes might lead to a vicious cycle of recurrent hypoglycemia,
which set boundaries for zone E~. In addition to glucose counter regulatory systems that are
triggered at this plasma glucose concentration in a nondiabetic person, warning symptoms of hypo-
glycemia are critical to allow interventions to restore plasma glucose concentration towards normal
values. Mild hypoglycemic episodes frequently precede severe hypoglycemia. Diabetic persons
have reported typical symptoms of hypoglycemia but with a measured plasma glucose concentra-
tion >70mgdl~"'. Hence, zone C™ reflects the fact that patients with chronically poor glycemic con-
trol can experience symptoms of hypoglycemia at plasma glucose levels >70mgdl~! [36]. Because
of the proximity between the hypoglycemic symptoms in zone C™~ and the hypoglycemic episodes
in zone E™, a predictable zone D™ has not been included in the grid.

When blood glucose decreases to a concentration of about 80 mg dl~", inhibition of insulin secre-
tion occurs, resulting in a decrease in the use of peripheral glucose [37]. This value was set as the
lower limit for normality during a fasting condition. The upper bound of 110mgdl~" was recom-
mended as a limit for normality by the American Diabetes Association [38] for fast period. Notice
that the range between 80 and 110mgdl~" defines a rectangle for accurate functioning in fasting
conditions (zone A™) when the monitored AP operates optimally. Euglycemia during prandial
conditions is restricted to the range from 110 to 140 mg dl~"'. This range defines optimal functioning
for a postmeal state (zone A™). Because glycemic risk is continuous, extending below and above the
limit of the accurate range is needed; hence, two lines connect zones A~ and A*. This also avoids
discontinuities in the grid and forms an inclusive zone A. Postprandial plasma glucose readings
below zone A are likely to result from insulin overdosing. This situation may lead to an accelerated
downward trend when glucose appearance from the gut is completed; thus, it is not advisable to
incorporate a benign zone B™.

Zone B* was restricted according to the World Health Organization diagnostic criteria for diabe-
tes and intermediate hyperglycemia, through impaired glucose tolerance (BG>126mgdl~!) and
impaired fasting glucose levels (BG>200mgdl~') [39]. Thus, zone B* denotes a state of increased
risk of progressing to diabetes but likely to revert to normal values, which is actually referred to as
pre-diabetes [40]. Furthermore, this state describes an intermediate group of subjects whose glucose
levels, although not meeting the criteria for diabetes, are nevertheless too high to be considered nor-
mal. Plasma glucose above 142mgdl~" increases the risk of endothelial cell complications and is
used as the upper limit for zone C* under fasting conditions. The degree of endothelial dysfunction
after a meal intake ranges from 142 to 300mgdl~' [41]. However, plasma glucose level above
250mgdl~" is classified as poorly controlled diabetes and thus set the upper limit for zone C*.
Above these levels, ketones appear, and some restoring action aimed to lower BG is required; this
corresponds to zone D*. In diabetic ketoacidosis, the plasma glucose concentration is typically
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greater than 250 mg d1~"'. The two major precipitating factors in the development of ketoacidosis are
inadequate insulin treatment and infection. Although stroke is the third leading cause of death and
disability in the developed world, no current standards exist for tight glycemic control, although the
American Stroke Association recommends glucose to be maintained at <300 mgdl~' [42]. This BG
value is used as the defining threshold for zone E*. When plasma glucose is above 450 mgdl~", the
risk of diabetic coma is exceedingly high, requiring external assistance, and such a level is classified
as grade zone F*. Note that those zones that describe hyperglycemic and hypoglycemic risk, that is,
E and F, do not depend on meal intake and are limited by constant thresholds.
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