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Abstract

We determine the Hochschild homology and cohomology of the generalized Weyl algebras
of rank one which are of ‘quantum’ type in all but a few exceptional cases.

2010 MSC: 16E40, 16E65, 16U80, 16W50, 16W70.

1 Introduction

The Hochschild cohomologyHH∗(A) and homologyHH∗(A) of a k-algebraA are invariants which
are usually hard to compute. For a long time it has been known that they are related to the smooth-
ness of the algebra. For example, if A is a commutative algebra A essentially of finite type — i.e.,
a quotient of a polynomial algebra on a finite number of variables by an ideal, or a localization of
one of these algebras — several authors [2] [5] [12] [14] [15] have obtained results which can be
summarized in the statement

If k is a field, gldim(A) <∞ if and only if there exists n such thatHHi(A) = 0, for all i > n.

Some years ago, L. Avramov and S. Iyengar [1] proved a cohomological version of this property:

if k is a field, gldim(A) <∞ if and only if there exists n such that HHi(A) = 0, for all i > n.

The non commutative case is different. After D. Happel asked in [11]

given a finite dimensional k-algebra A, is it true that the vanishing of HHi(A) for all large i

implies that gldim(A) <∞?

several articles have been devoted to trying to provide an affirmative answer. However, in [8] a
counterexample was given, the “small” algebra k〈x,y〉/(x2,y2, xy+ qyx), with q ∈ k∗ not a root

∗This work has been supported by the projects UBACYTX212, PIP-CONICET 112-200801-00487, PICT-2007-02182, UBA-
CYT 20020090300102 IJ and MATHAMSUD-NOCOMALRET. The first and second authors are research members of CON-
ICET (Argentina). A. Solotar thanks Universidad de Valparaíso (Project MECESUP UVA0806).
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of unity. Subsequently, Y. Han [10] showed that the Hochschild homology of this algebra does not
vanish in infinitely many degrees, proposing thus what is now known as Han’s conjecture:

If all the higher Hochschild homology groups of a finite dimensional algebra vanish, then the

global dimension of the algebra is finite.

This conjecture has been proved to be true for commutative algebras essentially of finite type, not
necessarily finite dimensional [2, 5], for finite dimensional graded local algebras [7], for finite di-
mensional monomial algebras [10], for finite dimensional graded cellular algebras in characteristic
zero [7], for finite dimensional Koszul algebras in characteristic zero [7], for quantum complete in-
tersections [6], for finite dimensional graded local algebras satisfying the hypotheses of Theorem
II of [17], and for algebras satisfying the hypotheses of Theorem I of [17].

The general answer is, however, still unknown. The proof of this last case makes use of the
fact that Hochschild homology is functorial, which is not valid for Hochschild cohomology. The
results of Theorem I of [17] led us to consider the conjecture without the hypothesis of A being
finite dimensional.

It is worth to notice that the proof of the conjecture — homological and cohomological — in
the commutative case, uses the existence of a model, that is, a differential graded algebra quasi-
isomorphic to the inital one, and having thus isomorphic Hochschild homology and cohomology.
The importance of the model, stated informally, is that it allows, in a certain way, to treat more
easily the singularities of the algebra. In other words, the difficulty is no longer in the algebra itself,
but in the differentials of the model. This kind of model, coming from algebraic topology, always
exists in the commutative essentially of finite type case, but usually not in the non commutative
case. One example of a situation where it exists is treated in Theorem II of [17]. Also, for Koszul
algebras, it is clear that the complex which can be used to compute Hochschild (co)homology is
similar to the one constructed from a model in the commutative case. So, in our opinion, and
although the methods used in [7], [10], [6] are different, Han’s conjecture has been proven, up to
now, for algebras which have some kind of “model”.

Following this point of view, in this article we prove it for a family of non commutative algebras
Aq, the quantum generalized Weyl algebras, which we shall call simply Bavula algebras. For this we
compute their Hochschild cohomology and homology, completing in this way the results of [9],
leaving out only a few cases. We get the following two results:

Theorem 1.1. Let A = A(σq,a) be a Bavula algebra with q ∈ k× not a root of 1. Then

HHp(A) =






kN ⊕
⊕

r∈Z\0

k if p = 0;

kM ⊕
⊕

r∈Z\0

k if p = 1;

kM if p ≥ 2;

HHp(A) =






k if p = 0, 1;

kN if p = 2;

kM if p ≥ 3;
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where N = dega andM = deg(a : a ′).

Theorem 1.2. Let A = A(σq,a) be a Bavula algebra with q ∈ k× such that qe = 1. Then

HHp(A) =






kη(a) ⊕
⊕

r∈Z\0

S if p = 0;

kη(c) ⊕
⊕

r∈Z\eZ

(

k[h]/(h)
)

⊕
⊕

r∈eZ

S2 if p = 1;

k[h]/(c)⊕
⊕

r∈eZ

S if p = 2;

k[h]/(c) if p ≥ 3.

HHp(A) =






⊕

r∈eZ

S if p = 0;

⊕

r∈eZ

S2 if p = 1;

kη(a/c) ⊕ k[h]/c⊕
⊕

r∈eZ

S if p = 2;

k[h]/c if p ≥ 3.

where, for a polynomial f ∈ k[h], we write η(f) = deg f − 1
e degN (f) with N the operator defined in

section 2 below, N = dega, c = (a : a ′) and andM = deg c.

Whether the ‘quantum parameter’ q appearing in the definition of these Bavula algebras is a
root of unity or not is a fact that plays a fundamental role, since the computations differ substan-
tially in both cases.

The article is organized as follows. In Section 2 we fix the notations and state some auxiliar
results that will be necessary in the rest of the article. In Section 3 we recall form [3] the definition
of these algebras and we study their global dimension. In Section 4 we compute a projective
resolution of our algebra A as an A-bimodule. In Section 5 we compute the Hochschild homology
and, finally, in Section 6 we compute the Hochschild cohomology.

2 Notations and some generalities

Let k be a field of characteristic zero. If λ ∈ k and n ≥ 0, we write [n]λ = 1+ λ + · · · + λn−1;
in particular, if λ = 1, then [n]λ = n.

We fix a scalar q ∈ k \ {0, 1} and a monic polynomial a =
∑N

i=0 αih
i ∈ k[h] of degree dega =

N > 1. Throughout the paper, A = A(a,q) will denote the k-algebra freely generated by letters y,
h and x subject to the relations

xh = qhx, yx = a(h), hy = qyh, xy = a(qh).

It is easy to see that the set {yihj : i, j ≥ 0} ∪ {hjxk : j ≥ 0, k ≥ 1} is a basis of A as a k-module.
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We let σ = σq : k[h] → k[h] be the algebra automorphism such that σ(h) = qh. Then xr = σ(r)x
and ry = yσ(r) for all r ∈ k[h], and xy = σ(a). Moreover, the algebraA is Z-graded in such a way
that the generators have degrees |y| = 1, |h| = 0 and |x| = −1; we refer to the degree of an element
homogeneous with respect to this grading as its weight.

We remark that there is an algebra isomorphismΦ : A(a,q) → A(σq(a),q−1) such thatΦ(x) =

y,Φ(y) = x andΦ(h) = h. This isomorphism maps the homogeneous component of weight r ∈ Z

of A(a,q) to the component of weight −r of its codomain. This observation will allow us to carry
out homological computations just in weights r ≥ 0, since all arguments will be transferable to
negative degrees using Φ.

Given polynomials p, t ∈ k[h], we shall write (p : t) their greatest common divisor and p ′ the
derivative of p and we make the convention that the degree of the zero polynomial is −∞.

We let c = (a : a ′) and M = deg(c). If q is a root of 1, we let e be its order; if q is not a root of
unity we let e = 0. If r ∈ Z, we say that r is singular if e | r, and that it is regular otherwise.

The subring of k[h] fixed by σ is S = ker(σ− 1), generated by he. We say that a polynomial
p ∈ k[h] is singular if p ∈ S . More generally, when e > 0 we have ker(σ− ql) = hl k[he] for each
l ∈ {0, . . . , e− 1}.

If e > 0, for each f ∈ k[h] such that f(0) 6= 0we define

N (f) = lcm
(

f : σ(f) : · · · : σe−1(f)
)

and f =
N (f)

f
.

Clearly σ(N (f)) is a scalar multiple of N (f); evaluating both at 0 shows then they are in fact equal,
so that N (f) ∈ S . The reason which motivates our interest in the operator N is the following
proposition:

Proposition 2.1. Let f, g ∈ k[h] and suppose f(0) 6= 0.
(i) If fg ∈ S , then f | g.

(ii) If g ∈ S and f | g, then there exists s ∈ S such that g = N (f)s.

Proof. Since fg ∈ S , we know that σi(fg) = fg, so σi(f)|fg for all i. The first statement follows
now from the definition of N (f). The second one is an immediate consequence.

We end this section with two technical lemmas which will be of use in the computation of
Sections 5 and 6.

Lemma 2.2. Let f ∈ k[h] and suppose that f(0) 6= 0 and that q is a root of unity of order e. If π : k[h] →
k[h]/(f) be the canonical projection, then for each l ≥ 0 we have

dimπ(hlS) =
degN (f)

e
.

Proof. Since multiplication by π(h) on k[h]/(f) is an isomorphism, it is enough to prove this when
l = 0. Let us consider the following commutative diagram, in which the morphisms are the

4



obvious ones:

k[h]

π

��

π ′
// // k[h]/(N (f))

ρ
xxpp

p
p
p
p
p
p
p
p
p

k[h]/(f)

Let G be a cyclic group of order e generated by an element g ∈ G. We endow k[h] with the action
ofG such that g acts as σ. Since N (f) isG-invariant there is an induced action on k[h]/(N (f)). The
map π ′ is surjective, so the restriction (π ′)G : S →

(

k[h]/(N (f))
)G is surjective too.

The situation is described by the following commutative diagram

S

π|S
��

(π ′)G // (k[h]/(N (f)))G

ρ
wwoo

o
o
o
o
o
o
o
o
o

k[h]/(f)

If s ∈ S is such that π|S(s) = 0, then there exists a b ∈ k[h] such that fb = s ∈ S and it follows from
the previous proposotion that b = f̄s1 for some s1 ∈ S : we see that s = N (f)s1 and (π ′)G(s) = 0.
As (π ′)G is surjective, this implies that the map ρ is injective and, as a consequnce, that dimπ(S) =

dim(k[h]/(N (f)))G.
Now, k[h]/(N (f)) has {hi : 0 ≤ i < degN (f)} as a basis and the action of G is diagonal with

respect to it. It is immediate, then, that dim(k[h]/(N (f)))G = 1
e degN (f)

Lemma 2.3. Let f ∈ k[h] such that f(0) 6= 0, q ∈ k a root of unity of order e, l ≥ 0 and consider the

S-linear map ψf,l : p ∈ k[h] 7→ (σ− ql)(fp) ∈ k[h]. Then

cokerψf,l ∼= hlS ⊕ kη(f)

with η(f) = deg f− 1
e degN (f).

Proof. We decompose k[h] ∼= S ⊕ hS · · · ⊕ he−1S as S-module. Since ker(σ− ql) = hlS , the map
σ− ql induces an injective map k[h]/hlS → k[h], still denoted σ− ql. Consider the following
diagram

k[h]
f // k[h]

σ−ql

//

p

��

k[h]

k[h]/hlS
σ−ql

::
u

u
u

u
u

u
u

u
u

Because σ− ql is injective, it is immediate that cokerψf,l ∼= hlS ⊕ coker(p ◦ f) and, since

cokerp ◦ f ∼=
k[h]

hlS + (f)
∼=
k[h]

(f)

/

π(hlS)

with π the map defined in Lemma 2.2, we see that dim cokerp ◦ f = η(f).
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We remark that the isomorphism in the statement of this lemma is actually an isomorphism of
S-modules, if we identify the summand kη(f) with the quotient k[h]/(hlS + (f)) appearing in the
proof.

3 Global dimension

Given a noetherian algebra Rwhich is an integral domain, a non zero central element a ∈ R and an
algebra automorphism σ ∈ Autk(R), the Bavula algebra Λ = Λ(R,σ,a) is the k-algebra generated
by R and two variables x, y subject to the relations

yx = a, xy = σ(a), xr = σ(r)x, ry = yσ(r)

for all r ∈ R. It was introduced by V. Bavula in [3] with the name of generalized Weyl algebra. The
algebra A introduced in Section 2 is a special case of this construction.

The algebra A is a noetherian domain and there is a Z-grading on Λ with all elements of R in
degree 0, and x and y in degrees −1 and 1, respectively; we denote |u| the degree of an homoge-
neous element u ∈ Λ and call it its weight.

Using the easily obtained description of automorphisms of k[h], one can obtain the following
classification of the algebras of the form Λ(k[h],σ,a) up to isomorphism, as in [13]:

Proposition 3.1. The algebra Λ = Λ(k[h],σ,a) is isomorphic to exactly one of the following list:

1. Λ(k[h], Id,a) for some a ∈ k[h];
2. Λ(k[h],σcl,a) with σcl(h) = h− 1 and a ∈ k[h];
3. Λ(k[h],σq,a) with q ∈ k \ {0, 1}, σq(h) = qh and a ∈ k[h].

We refer to case 2 as the classical case and to case 3 as the quantum case.

If b ∈ R, let I(x,b) = Λx+Λb ⊆ Λ. Bavula proved in [4] the following result concerning the
global dimension of his algebras:

Theorem 3.2. [4, Thm. 3.5] If R is a commutative Noetherian domain of finite global dimension n and

a 6= 0, then the following two conditions are equivalent:

• gldimΛ <∞
• pdimΛΛ/I(x, p) <∞ for all prime ideals p of R which contain a.

When R = k[h], the hypotheses of this theorem are satisfied and we can give a characterization
of Bavula algebras of finite global dimension.

Theorem 3.3. Let R = k[h], a ∈ R, σ ∈ Autk(R) and Λ = Λ(R,σ,a). Then

gldimΛ <∞ ⇐⇒ (a : a ′) = 1.

Proof. The “only if” part has been proved by Bavula in [4], so we only have to prove the “if” part.
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Let p ∈ R be a prime element which divides a, so that there is a b ∈ R with a = pb. The
canonical short exact sequence of left Λ-modules

0→ I(x,p) → Λ→ Λ/I(x,p) → 0

tells us that pdimΛΛ/I(x,p) < pdimΛ I(x,p) + 2. We shall prove that if (a : a ′) = 1, then I(x,p)
is a projective Λ-module.

We start by showting that Λx ∩ Λp = I(x,b)p. Fix f ∈ Λx ∩ Λp; we may assume that f is
homogeneous with respect to the weight and that |f| = r ≥ 0: the case in which the weight of f is
negative is similar. Since f ∈ Λx ∩Λp, there exist u, v ∈ R such that f = yr+1ux = yrvp. As

yr+1ux = yraσ−1(u) = yrpbσ−1(u) = yrσ−1(u)bp

and Λ is a domain, σ−1(u)b = v and, in consequence, f ∈ I(x,b)p. The other inclusion is easy.
Consider now the short sequence of left Λ-modules

0 // I(x,b)
γ // Λ⊕Λ

φ // I(x,p) // 0 (1)

where φ(α,β) = αx−βp and γ(w) = (wpx−1,w); this last expression makes sense because for all
p ∈ I(x,b) we have wp ∈ Ax = xA and A is a domain.

It is clear that γ is a monomorphism, φ is an epimorphism and that imγ ⊆ kerφ. The se-
quence (1) is in fact exact: to check the other inclusion suppose that (α,β) ∈ Λ ⊕ Λ is such
that αx = βp. This element belongs to Λx ∩ Λp = I(x,b)p, and it follows that α = βpx−1. If
(a : a ′) = 1, then (p : b) = 1 and there exist s, t ∈ R such that 1 = sp + tb. We define the
map ψ : Λ⊕ Λ → Λ by ψ(α,β) = αxs + βbt. It is easy to verify that imψ ⊆ I(x,b) and that
ψ ◦γ = IdI(x,b). As a consequence, the sequence (1) splits and I(x,p) is a projectiveΛ-module.

In particular, for the algebras introduced in Section 2 we have the following:

Corollary 3.4. For all q ∈ k \ {0, 1} and all a ∈ k[h] we have

gldimΛ(k[h],σq,a) <∞ =⇒ gldimΛ(k[h],σq,a) = 2.

Proof. It follows from [4, Thm. 2.7] that if the global dimension of Λ(R,σ,a) is finite, it equals
either gldimR or gldimR+ 1. In the situation of the corollary, then, gldimΛ(k[h],σ,a) ∈ {1, 2} if
it is finite. Moreover, using [4, Thm. 3.7], we see that gldimΛ(k[h],σ,a) = 2 if and only if either
(i) there is a maximal ideal of k[h] of height 1 with finite orbit under σ, or (ii) if there are maximal
ideals p, q of k[h] of height 1 such that σi(p) = q for some i 6= 0, i ∈ Z and a ∈ p∩ q. Since the ideal
(h) of k[h] is obviously fixed by σ and it is of height 1, we are always in case (i), and the corollary
follows.

The conditions (i) and (ii) mentioned in the proof of this corollary are not exclusive. Indeed,
most of the complication encountered in the computations that follow arises when the algebra A
satisfies condition (ii) or, in other words, when the polynomial a has two roots in the same orbit
under σq.
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4 A projective resolution

The purpose of this section is to construct a projective resolution of the Bavula algebra A. We do
this in two steps, using an algebra Bl as an intermediate step, as in [9].

4.1 Smith algebras

Fix a polynomial l =
∑m

i=0 λiH
i ∈ k[H], with m > 0 and λm 6= 0. We consider the k-algebra Bl,

or simply B, with generators Y, H and X subject to the relations

HY = qYH, [X, Y] = l, XH = qHX.

This algebra was considered by P. Smith in [16], observing that it is in many aspects similar to the
enveloping algebra U(sl2); we will call it a Smith algebra.

The set {YiHjXk : i, j, k ≥ 0} is a basis of B as a k-module. Let V = kY ⊕ kH⊕ kX ⊂ B. Setting
|X| = |Y| = 1 and |H| = 0 we obtain a grading on TV , which induces an increasing filtration on B;
let us write Y, H and X for the principal symbols of Y, H and X, respectively, in B = gr B. Then B
is the k-algebra generated by Y, H and X, subject to the relations

HY = qYH, [X, Y] = 0, XH = qHX.

Of course, V ∼= gr V is spanned by X, Y and H, and these elements are k-linearly independent.
We will use frequently the following notation: given a function f of two integer arguments,

and i ∈ N0, we will write
∫
if(s, t) =

∑

s+t+1=i
0≤s,t

f(s, t).

In particular, in such an ”integral” expression, the indices s and t are not free. We note that the
identity

∫
if(s+ 1, t) −

∫
if(s, t+ 1) = f(i, 0) − f(0, i)

holds for all f and i: we will make use of it repeatedly.

Consider now the complex of Be-projective modules over B

0 // B|
∧3 V |B // B|

∧2 V |B
d // B|V |B

d // B|B
µ // // B (2)

with differentials given by

d(1|v|1) = 1|v− v|1, ∀v ∈ V ;

d(1|H∧ X|1) = 1|X|H− qH|X|1− q|H|X+X|H|1;

d(1|Y ∧X|1) = 1|X|Y − Y|X|1− 1|Y|X+X|Y|1−
∑

i

∫
iλiH

s|H|Ht;

d(1|Y ∧H|1) = 1|H|Y − qY|H|1− q|Y|H+H|Y|1;

8



d(1|Y ∧H∧X|1) = 1|H∧ X|Y − qY|H∧ X|1− q|Y ∧ X|H+ qH|Y ∧X|1

+ q|Y ∧H|X−X|Y ∧H|1.

The verification that d2 = 0 is a routine computation.
The filtrations on B and on V determine a filtration on the complex (2), whose associated graded

complex is

0 //B|
∧3 V |B

d //B|
∧2 V |B

d //B|V |B
d //B|B

µ // //B

with Be-linear differentials determined by the conditions

d(1|v|1) = 1|v− v|1, ∀v ∈ V ;

d(1|H∧ X|1) = 1|X|H− qH|X|1− q|H|X+X|H|1;

d(1|Y ∧X|1) = 1|X|Y − Y|X|1− 1|Y|X+X|Y|1;

d(1|Y ∧H|1) = 1|H|Y − qY|H|1− q|Y|H+H|Y|1;

d(1|Y ∧H∧X|1) = 1|H∧ X|Y − qY|H∧ X|1− q|Y ∧ X|H+ qH|Y ∧X|1

+ q|Y ∧H|X−X|Y ∧H|1.

This complex is exact. Indeed, there is a left B-linear contraction given by

s(1) = 1|1;

s(1|Y
i
H

j
X
k
) =

∑
i

∫
iY

s
|Y|Y

t
H

j
X
k
+
∑

i

∫
jY

i
H

s
|H|H

t
X
k
+
∑

i

∫
kY

i
H

j
X
s
|X|X

t
;

s(1|Y|Y
i
H

j
X
k
) = 0;

s(1|H|Y
i
H

j
X
k
) =

∑
i

∫
iq

sY
s
|Y ∧H|Y

t
H

j
X
k
;

s(1|X|Y
i
H

j
X
k
) =

∑
i

∫
iY

s
|Y ∧X|Y

t
H

j
X
k
+
∑

i

∫
jq

sY
i
H

s
|H∧ X|H

t
X
k
;

s(1|H∧ X|Y
i
H

j
X
k
) =

∑
i

∫
iq

sY
s
|Y ∧H∧X|Y

t
H

j
X
k
;

s(1|Y ∧X|Y
i
H

j
X
k
) = 0;

s(1|Y ∧H|Y
i
H

j
X
k
) = 0.

It follows that the complex (2) is a Be-projective resolution of B.

4.2 Bavula algebras

Next we construct a resolution of our Bavula algebra as a bimodule over itself. Let l = σ(a) − a;
then dega ≥ deg l and l =

∑N
i=0 λih

i with λi = (qi− 1)αi. We consider the Smith algebra B = Bl
corresponding to the polynomial l, and the elementΩ = YX−a ∈ B. A simple computation shows
thatΩ = XY−σ(a) and thatΩ is central in B. In particular, BΩ = ΩB is a two-sided ideal of B and
the quotient B/ΩB is isomorphic to A via an isomorphism which sends the classes of Y, H and X
to y, h and x respectively. We will identify Awith the quotient.

9



Let π : B→ A denote the canonical projection. Since Ω is not a zero divisor in B, the complex

0 −→ B
Ω
−→ B

π
−→ A −→ 0 (3)

is a projective resolution of A as a B-module both on the left and on the right; here the first arrow
is simply the multiplication by Ω. On the other hand, by applying the functor (−)⊗B A to the
resolution (2) of B as Be-module given in the previous subsection, we obtain the complex

0 // B|
∧3 V |A

d // B|
∧2 V |A

d // B|V |A
d // B|A

µ // A // 0 (4)

with B⊗Aop-linear differentials given by

d(1|v|1) = 1|v− v|1, ∀v ∈ V ;

d(1|H∧ X|1) = 1|X|h− qH|X|1− q|H|x+X|H|1;

d(1|Y ∧X|1) = 1|X|y− Y|X|1− 1|Y|x+X|Y|1−
∑

i

∫
iλiH

s|H|ht;

d(1|Y ∧H|1) = 1|H|y− qY|H|1− q|Y|h+H|Y|1;

d(1|Y ∧H∧X|1) = 1|H∧ X|y− qY|H∧X|1− q|Y ∧X|h+ qH|Y ∧X|1+ q|Y ∧H|x−X|Y ∧H|1.

The homology of this complex is TorB• (B,A), so that it is in fact acyclic. This means that (4) is a
projective resolution of A as a left B-module.

There exist morphisms between the two resolutions (3) and (4) of the left B-module A lifting
the identity map of A:

0 // B
Ω //

f1
��

B
π // //

f0
��

A

1A

��
· · · // B|V |A

d //

g1

OO

B|A
µ // //

g0

OO

A

1A

OO (5)

given by

f0(1) = 1|1; f1(1) = −Y|X|1− 1|Y|x+
∑

i

∫
iαiH

s|H|ht;

g0(1|y
ihj) = YiHj; g0(1|h

jxk) = HjXk;

g1(1|Y|y
ihj) = 0; g1(1|Y|h

jxk+1) = −q−jHjXk

g1(1|H|y
ihj) = 0; g1(1|H|h

jxk) = 0;

g1(1|X|y
i+1hj) = −YiHj; g1(1|X|h

jxk) = 0.

Using (3), the computation of TorB• (A,A) is immediate because the only relevant differential
vanishes, and we see that

TorBp(A,A) =






A⊗B B, p = 0;

A⊗B B, p = 1;

0, p ≥ 2.

(6)
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Since TorB• (A,A) can be calculated from any resolution of A as left B-module, the complex ob-
tained by applying the functor A⊗B (−) to the resolution (4), that is

0 //A|
∧3 V |A

d //A|
∧2 V |A

d //A|V |A
d //A|A (7)

with Ae-linear differential:

d(1|v|1) = 1|π(v) − π(v)|1, ∀v ∈ V ;

d(1|H∧ X|1) = 1|X|h− qh|X|1− q|H|x+ x|H|1;

d(1|Y ∧X|1) = 1|X|y− y|X|1− 1|Y|x+ x|Y|1−
∑

i

∫
iλih

s|H|ht;

d(1|Y ∧H|1) = 1|H|y− qy|H|1− q|Y|h+ h|Y|1;

d(1|Y ∧H∧X|1) = 1|H∧ X|y− qy|H∧X|1− q|Y ∧ X|h+ qh|Y ∧ X|1+ q|Y ∧H|x− x|Y ∧H|1,

has homology isomorphic to TorB• (A,A). Using the morphisms f• and g• from (5), we see that
the homology of the complex (7) is freely generated as left A-module by the classes of the cycles
1|1 ∈ A⊗A and

y|X|1+ 1|Y|x−
∑

i

∫
iαih

s|H|ht ∈ A⊗ V ⊗A,

of degrees 0 and 1, respectively.

4.3 The resolution

Next we consider the third-quadrant double complex X•,• depicted in the following diagram

0 // A|
∧3 V |A

d // A|
∧2 V |A

d // A|V |A
d // A|A

0 // A|
∧3 V |A

d //

OO

A|
∧2 V |A

d //

δ

OO

A|V |A
d //

δ

OO

A|A

δ

OO

. .
.

. .
.

OO

. .
.

δ

OO

. .
.

δ

OO

. .
.

δ

OO

so that Xp,q = A|
∧p−q V |A if q ≥ 0 and Xp,q = 0 otherwise, with horizontal Ae-linear differ-

entials d, of bidegree (−1, 0), given as in (7), and vertical differentials δ, of bidegree (0, 1), given
by

δ(1|1) = y|X|1+ 1|Y|x−
∑

i

∫
iαih

s|H|ht;

δ(1|Y|1) = −y|Y ∧ X|1+
∑

i

∫
iαiq

ths|Y ∧H|ht;

δ(1|H|1) = 1|Y ∧H|x− y|H∧ X|1;

δ(1|X|1) = 1|Y ∧ X|x−
∑

i

∫
iαiq

shs|H∧X|ht;

δ(1|Y ∧H|1) = y|Y ∧H∧X|1;

11



δ(1|Y ∧ X|1) =
∑

i

∫
iαiq

i−1hs|Y ∧H∧ X|ht;

δ(1|H∧X|1) = 1|Y ∧H∧X|x.

A direct computation shows that it is indeed a complex with anti-commuting differentials.
To compute the homology of the total complex TotX•,• we use the spectral sequence E which

arises from the filtration by rows. The differential on the first page E0 of this spectral sequence is
the horizontal differential d on X•,•, and we have essentially computed the corresponding homol-
ogy in (6): we see from this that the second page E1 of E is, up to isomorphism, as in the following
diagram:

0 0 A A

0 0 A A

d1

OO

0 0 A A

d1

OO

. .
.

. .
.

. .
.

. .
.

Consequently, the only components of the differential d1 which can possibly be non zero are the
maps d1p,p : E1p,p → E1p,p−1, with p ≥ 1, and they are induced by the vertical differentials δ
in X•,•. We know that E1p,p and E1p,p−1 are free leftA-modules on the horizontal homology classes
of 1|1 ∈ Xp,p and ω = y|X|1 + 1|Y|x −

∑
i

∫
iαih

s|H|ht ∈ Xp,p−1, respectively. In view of the
definition of δ, d1([1|1]) = [ω], and, since d1 is A-linear, this shows that all components of d1

which are not trivially zero are isomorphisms.
It follows that the complex TotX•,• is acyclic over A, with augmentation given by the multipli-

cation map µ : X0,0 = A⊗A → A and, since its components are free Ae-modules, it is in fact a
projective resolution of A as Ae-module.

We consider the grading V such that Y, H and X are homogeneous of degrees 1, 0 and −1,
respectively. This, together with the grading of A by weights, induces a grading on the complex
X•,• such the differentials are homogeneous. It follows that the complexes obtained by applying
the functors A⊗Ae (−) and homAe(−,A) below will also be graded by weights in a natural way.

5 Hochschild homology

In this section we will compute the Hochschild homology of A using the resolution described in
the previous section and a spectral sequence argument.

Applying the functor A⊗Ae − to X•,• and identifying A⊗Ae (A⊗∧pV ⊗A) with A⊗∧pV in
the natural way, we get a double complex such that the homology of its total complex is HH∗(A),

12



the Hochschild homology of A with coefficients in itself. This double complex is

0 // A|
∧3 V

d // A|
∧2 V

d // A|V
d // A

0 // A|
∧3 V

d //

δ

OO

A|
∧2 V

d //

δ

OO

A|V
d //

δ

OO

A

δ

OO

. .
.

. .
.

δ

OO

. .
.

δ

OO

. .
.

δ

OO

. .
.

δ

OO

with differentials given by

d(u|Y) = [y,u], (8a)

d(u|H) = [h,u], (8b)

d(u|X) = [x,u], (8c)

d(u|Y ∧H) = [y,u]q|H+ [u,h]q|Y, (8d)

d(u|Y ∧X) = [y,u]|X+ [u, x]|Y −
∑

iλi
∫
ih

tuhs|H, (8e)

d(u|H∧ X) = [h,u]q|X+ [u, x]q|H, (8f)

d(u|Y ∧H∧X) = [y,u]q|H∧X+ q[u,h]|Y ∧ X− [u, x]q|Y ∧H, (8g)

and

δ(u) = uy|X+ xu|Y −
∑

iαi
∫
ih

tuhs|H, (9a)

δ(u|Y) = −uy|Y ∧ X+
∑

iαi
∫
iq

thtuhs|Y ∧H, (9b)

δ(u|H) = xu|Y ∧H− uy|H∧ X, (9c)

δ(u|X) = xu|Y ∧X−
∑

iαi
∫
iq

shtuhs|H∧ X, (9d)

δ(u|Y ∧H) = uy|Y ∧H∧X, (9e)

δ(u|Y ∧ X) =
∑

iαi
∫
iq

i−1htuhs|Y ∧H∧ X, (9f)

δ(u|H∧X) = xu|Y ∧H∧X. (9g)

We will use the filtration by columns on this complex and denote E the corresponding spectral
sequence, which, as the complex A⊗Ae X•,• itself, is graded by weights. We are going to write
HH•(A)

(r) and E(r) the components of weight r in HH•(A) = H(A⊗Ae X•,•) and E.

5.1 First Page

Let X be the complex

0 // A
δ // A|V

δ // A|
∧2 V

δ // A|
∧3 V // 0 (10)

graded so that A and A|
∧3 V are in degrees 0 and 3, respectively, and with differentials as in (9a)–

(9g). It is clear that E1p,q = Hp−q(X) for all q > 0 and that the E1p,0 can be seen as cokernels of the
differentials of X.
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For each r ∈ Z, let X(r) be the homogeneous component of weight r. In this subsection, we
compute H•(X) =

⊕

r∈ZH•(X
(r)).

Proposition 5.1. If r ∈ Z is non zero, then the complex X(r) is exact. On the other hand, there are

isomorphisms of S-modules

Hp(X
(0)) ∼=

{
k[h]/(c), if 2 ≤ p ≤ 3;

0, otherwise.

Proof. One way to organize the computation is as follows:
• If u = p ∈ X

(0)
0 , with p ∈ k[h], then

δ(u) = yσ(p)|X+ σ(p)x|Y − a ′p|H. (11)

As A is a domain, it follows immediately that δ is a monomorphism and that H0(X
(0)) = 0.

• Let u = p1x|Y + p2|H+ yp3|X ∈ X
(0)
1 , with p1, p2, p3 ∈ k[h]. We know that

δ(u) = (p1σ(a
′)+ σ(p2))x|Y∧H+σ(a)(p3 −p1)|Y∧X− y(p3σ(a

′)+ σ(p2))|H∧X. (12)

Since A is a domain, we see that δ(u) = 0 if and only if p1 = p3 and p2 = −σ−1(p1)a
′. This

description of cyles together with the expression (11) of boundaries imply thatH1(X
(0)) = 0.

• Let u = p1x|Y ∧H+ p2|Y ∧X+ yp3|H∧ X ∈ X
(0)
2 . A computation shows that

δ(u) = (p1σ(a) + p2σ(a
′) + σ(a)p3)|Y ∧H∧X. (13)

Suppose that u ∈ ker δ, so p1σ(a) + p2σ(a ′) + σ(a)p3 = 0. It follows immediately from this
that σ(ac )(p1 + p3) = −σ(a

′

c )p2. Since a/c and a ′/c are coprime, there exists g ∈ k[h] such
that p1 + p3 = −σ(a

′

c )g and p2 = σ(ac )g. If v, r ∈ k[h] are such that g = vσ(c) + r and
deg r < deg c, then u is homologous to

u− δ(σ−1(p1)|H+ yv|X) = rσ(ac )|Y ∧X− yrσ(a
′

c )|H∧X.

It follows from this that every homology class of degree 2 in X(0) is represented by a cycle
of the form rσ(ac )|Y ∧ X− yrσ(a

′

c )|H∧ X with r ∈ k[h] with deg r < deg c = M. In view of
the formula (12), one of these cycles is a boundary if and only if it is zero, and we can then
conclude that H2(X

(0)) ∼= k[h]/(σ(c)) ∼= k[h]/(c).
• It follows immediately from (13) that δ(X(0)

2 ) = σ(c)k[h]|Y ∧H∧ X, so H3(X
(0)) ∼= k[h]/(c).

We fix now r > 0, and show that X(r) is exact.

• Let u ∈ X
(r)
0 , so that u = yrp for some p ∈ k[h]. Then

δ(u) = yr−1σr(a)p|Y − yrp
∑

iαi[i]qrhi−1|H+ yr+1σ(p)|X, (14)

and we see immediately that this is zero if and only if p = 0, so H0(X
(r)) = 0.
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• Let u = yr−1p1|Y + y
rp2|H+ yr+1p3|X ∈ X

(r)
1 with p1, p2, p3 ∈ k[h]. As

δ(u) = yr−1
(

p1
∑

iαi[i]qrhi−1 + σr(a)p2
)

|Y ∧H+ yr(−σ(p1) + σ
r+1(a)p3)|Y ∧ X

− yr+1
(

σ(p2) + p3
∑

iαiq
i−1[i]qrhi−1

)

|H∧ X,

we have that u is a cycle if and only if

p1
∑

iαi[i]qrhi−1 + σr(a)p2 = 0,

σr+1(a)p3 = σ(p1),

σ(p2) + p3
∑

iαiq
i−1[i]qrhi−1 = 0.

The first one follows from the other two, so we can drop it, and we can replace the remaining
ones by

p2 = −σ−1(p3)
∑

iαi[i]qrhi−1,

p1 = σr(a)σ−1(p3).

We thus obtain a description of all 1-cycles in X(r) and comparing it with (14), we see that
they are all boundaries: it follows that H1(X

(r)) = 0.

• For u = yr−1p1|Y ∧H+ yrp2|Y ∧X+ yr+1p3|H∧X ∈ X
(r)
2 with p1, p2, p3 ∈ k[h], we have

δ(u) = yr
(

σ(p1) + p2
∑

iαiq
i−1[i]qrhi−1 + σr+1(a)p3

)

|Y ∧H∧X.

If u is a cycle, then p1 = −σ−1(p2
∑

i αiq
i−1[i]qrhi−1 + σr+1(a)p3) so that, in fact,

u = −δ(yr−1σ−1(p2)|Y + y
rσ−1(p3)|H).

It follows from this that H2(X
(r)) = 0.

• For each p ∈ k[h], we have that δ(yr−1σ−1(p)|Y ∧H) = yrp|Y ∧H∧ X. This means that
δ(Xr

2) = Xr
3, so H3(X

(r)) = 0.

At this point, we know most of the second page of our spectral sequence:

Corollary 5.2. Let r ∈ Z a weight. The dimensions of the vector spaces appearing in the homogeneous

component of weight r of E1 are

M ? ? ?

M M 0 0

M M 0 0

. .
.

. .
.

. .
.

. .
.

or

0 ? ? ?

0 0 0 0

0 0 0 0

. .
.

. .
.

. .
.

. .
.

depending on whether r = 0 or not. The question marks denote vector spaces for which we still do not know

the dimension.
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5.2 Second page

In view of the shape of E1, we have E∞ = E2. The following proposition takes care of the latter,
except for its first row, and the rest of this section will be devoted to the computation of the few
remaining vector spaces.

Proposition 5.3. For each p ≥ 0, the differential d1p+3,p : E1p+3,p → E1p+2,p vanishes. In consequence,

except for the vector spaces denoted with question marks in the diagrams of Corollary 5.2, the E∞ page

coincides with the page E1.

Proof. A simple computation shows that if f ∈ k[h] then

d(f|Y ∧H∧X) = y(1− qσ)(f)|H∧ X− (1− qσ)(f)x|Y ∧H

= δ((q− σ−1)(f)|H).
(15)

It follows that all the differentials d2p+3,p are zero, as claimed, and the computation of E∞ is im-
mediate except for E∞0,0, E∞1,0 and E∞2,0.

Corollary 5.4. For all p ≥ 3 and all r ∈ Z there are isomorphisms of S-modules

HHp(A)(r)
∼=

{
k[h]/(c) if r = 0;

0 if r 6= 0.

Notice that this result is independent of q.

Proof. According to the proposition and in view of the shape of the E1 page of the spectral se-
quence, this is a consequence of convergence.

To finish the computation, we need to take care of the spots in the spectral sequence tagged with
question marks in the diagrams of Corollary 5.2. We do this in the following two propositions, first
for weight zero and then for the remaining ones.

Proposition 5.5. When q is a root of unity, we have isomorphisms of S-modules

HHp(A)
(0) ∼= E

2(0)
p,0

∼=






kη(a), if p = 0;

S ⊕ S ⊕ kη(c), if p = 1;

S ⊕ k[h]/(c), if p = 2;

with η(f) = N− 1
e degN (f) for f ∈ k[h] as in Lemma 2.3. On the other hand, if q is of infinite order we

have isomorphisms

HHp(A)
(0) ∼= E

2(0)
p,0

∼=






kN, if p = 0;

kM, if p = 1;

kM, if p = 2.

Proof. We write E1p,0 instead of E1(0)p,0 throughout this proof, to lighten the notation.
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Homology at E12,0. Suppose u = p1x|Y∧H+ p2|Y∧X+ yp3|H∧X ∈ E02,0, with p1, p2, p3 ∈ k[h],
lives to E2, so that there exists an f ∈ k[h] such that d(u) = δ(f). This means that

(1− σ)(p2) = σ(f),

aσ−1(p1 + p3) − qσ(a)(p1 + p3) − p2(qσ(a
′) − a ′) = −a ′f.

Since σ is a automorphism, we can eliminate f obtaining the equivalent equation

aσ−1(p1 + p3) − qσ(a)(p1 + p3) − p2(qσ(a
′) − a ′) = −a ′σ−1((1− σ)(p2)),

which we can rewrite more compactly as

(1− qσ)(aσ−1(p1 + p3) + a
′σ−1(p2)) = 0. (16)

It will be necessary to treat two cases separately, since the result depends on whether q is a root of
unity or not.

• Suppose first that q is not a root of 1. In this case, the map 1− qσ is a monomorphism, so (16)
is the same as

aσ−1(p1 + p3) + a
′σ−1(p2) = 0.

From this it follows that there exists g ∈ k[h] such that

p2 = −σ(ac )g, p1 + p3 = σ(a
′

c )g.

Let b, r ∈ k[h] be such that g = bσ(c) + r with deg r < deg c. Then u is homologous to

u+ δ
(

yb|X− σ−1(p1)|H
)

= σ(ac )r|Y ∧X+ yσ(a
′

c )r|H∧ X,

and we see that every homology class in E22,0 is represented by a cycle of the form

σ(ac )r|Y ∧X+ yσ(a
′

c )r|H∧X (17)

with r ∈ k[h] with deg r < M = deg c. Conversely, each element of this form lives to E2.
Using (15) we see that the image of d contains the image of δ. On the other hand, the

coefficient of Y ∧ X in every non zero element of δ(X(0)
1 ) is multiple of σ(a), so in particular

it has degree at least N: comparing with (17) we see that u is not in the image of δ. We can
therefore conclude that these elements are non zero in E2, so that dimE22,0 =M.

• Suppose now that q is a root of 1. In this case the condition (16) is equivalent to the existence
of a singular polynomial s ∈ S such that

aσ−1(p1 + p3) + a
′σ−1(p2) = h

e−1s. (18)

As a(0) 6= 0, c divides s and it follows from Proposition 2.1(ii) that there exists s1 ∈ S such
that s = N (c)s1.

Let α, β ∈ k[h] be such that a
cα+ a ′

c β = 1; each solution of the equation (18) is of the form

p3 = σ
(

he−1cs1α+ a ′

c g
)

− p1,

17



p2 = σ
(

he−1cs1β− a
c g

)

for some g ∈ k[h]. Let b, r ∈ k[h] be such g = bc+ r and deg r < M. Without changing its
class in E2, we can replace u by u− δ(σ−1(p1)|H− yσ(b)|X), and then we see that we may
assume that

u = σ(he−1cs1β− a
c r)|Y ∧X+ yσ(he−1cs1α+ a ′

c r)|H∧X. (19)

If u represents the zero class in E1, then there exist v1, v2, v3 ∈ k[h] such that

u = δ(v1x|Y + v2|H+ yv3|X)

= (v1σ(a
′) + σ(v2))x|Y ∧H+ σ(a)(v3 − v1)|Y ∧ X− y(v3σ(a

′) + σ(v2)|H∧ X.

Equating coefficients and eliminating v2, we see that

aσ−1(v3 − v1) = h
e−1c̄s1β− a

c r,

−a ′σ−1(v3 − v1) = h
e−1c̄s1α+ a ′

c r.

Solving now for s1 and then for r, we see that umust be zero.
Let us show now u represents a non zero element of E2. Indeed, if there exists a p ∈ k[h]

such that

u = d(p|Y ∧H∧ X) = y(1− qσ)(p)|H∧ X− (1− qσ)(p)x|Y ∧H,

then we must have (1− qσ)(p) = 0 and

a
c r = h

e−1cs1β,
a ′

c r = −he−1cs1α.

Solving these equations for s1 and r, recalling the way α and β were chosen, and using that
he−1c̄ 6= 0, we see that s1 = r = 0.

We conclude in this way that every element of E22,0 is represented uniquely by a cycle of
the form (19). In particular, we have a vector space isomorphism E22,0

∼= S ⊕ k[h]/(c).

Homology at E11,0. Let u = p1x|Y+p2|H+yp3|X ∈ E01,0, with p1, p2, p3 ∈ k[h], an element which
survives to E2. As u is homologous to u− δ(σ−1(p1)) = (p2 + a ′σ−1(p1))|H+ y(p3 − p1)|X, we
can suppose that p1 = 0.

If u is a boundary, so that u = d(f1x|Y ∧H+ f2|Y ∧ X+ yf3|H∧X) + δ(f4), for some fi ∈ k[h],
looking at the coefficient of Y on both sides of this equality we find that (1− σ)(f2) + σ(p4) = 0.
This implies that p3 = 0 and that p2 ∈ (1− qσ)((c)). On the other hand, since

d(u) = σ(a)p3 − aσ−1(p3) = (σ− 1)(aσ−1(p3)) = 0, (20)

we see that aσ−1(p3) ∈ S .
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• Suppose first that q is a root of 1. Then p3 = σ(a)s for some s ∈ S , according to Proposition 2.1,
and thus we have u = p2|H + yσ(a)s|X. In view of the description given above for the
boundaries, we conclude that

E21,0
∼=

k[h]

(1− qσ)((c))
|H⊕ yσ(ā)S |X.

Using Lemma 2.3 we see that the first summand is isomorphic to kη(c) ⊕ S.
• Suppose next that q is not a root of 1. In this case, since a is not constant, equation (20) implies

that p3 = 0. Using again the description of boundaries, we have

E21,0
∼=

k[h]

(1− qσ)((c))
|H,

a vector space of dimension M.
Homology at E10,0. We have to compute the cokernel of the map d : A|V → A. One sees at once
that its image coincides with the image of the map ψa,0 : f ∈ k[h] 7→ (σ− 1)(af) ∈ k[h] from
Lemma 2.3. If q is not a root of unity, it is immediate that the classes of 1, . . . , hN−1 freely span
cokerψa,0, so that dimE20,0 = N. On the other hand, if q is a root of unity, then Lemma 2.3 tells us
that the dimension of the cokernel of ψa,0, equal to that of E20,0, is η(a) = N− 1

e degN (a).

Proposition 5.6. Let r 6= 0. According to whether r is regular or not, there are isomorphisms of S-modules

HHp(A)
(r) ∼= E

2(r)
p,0

∼=






S , if p = 0;

k, if p = 1;

0, if p = 2.

or

HHp(A)
(r) ∼= E

2(r)
p,0

∼=






S , if p = 0;

S ⊕ S , if p = 1;

S , if p = 2.

Proof. By symmetry, we can consider just the case where r > 0.

Homology at E
1(r)
2,0 . Let u ∈ E

0(r)
2,0 be an element representing a cycle in E1. It follows that u =

yr−1p1|Y ∧H+ yrp2|Y ∧X+ yr+1p3|H∧X with p1, p2, p3 ∈ k[h]. Without loss of generality, we
can assume that p2 = p3 = 0; if that is not the case, we can replace u by

u+ δ
(

yr−1σ−1(p2)|Y + y
rσ−1(p3)|H

)

without changing the class of u in E1. Computing, we find then that

d(u) = yr−1(1− qr)p1h|Y + y
r(p1 − qσ(p1))|H. (21)

Comparing with equation (9a) we see that, since d(u) is in the image of δ, (1 − qr)p1 = 0 and

p1 − qσ(p1) = 0. If r is a regular weight, it follows that p1 = 0, so E2(r)2,0 = 0. On the other
hand, if r is singular, these equations are satisfied if and only if p1 ∈ he−1S : in this case we have
E
2(r)
2,0

∼= he−1S .
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Homology at E
1(r)
1,0 . Let u = yr−1p1|Y + yrp2|H+ yr+1p3|X ∈ E

0(r)
1,0 , with p1, p2, p3 ∈ k[h], an

element which lives to E2. Up to replacing u by u− δ(yrσ−1(p3)), we can assume that p3 = 0, so
that

d(u) = yr(p1 − σ(p1) + (qr − 1)hp2) = 0. (22)

Assume that r is singular. It follows that p1 ∈ S ; moreover, in view of formula (21), we can
reduce p2 modulo the image of 1− qσ, so that we can suppose that p2 ∈ he−1S . From equations
(8d), (8e), (8f) and (9a) we see then that u is not a boundary and we conclude that E2(r)1,0

∼= S ⊕ S

in this case, freely generated as a S-module by the classes of yr−1|Y and yrhe−1|H.
Finally, let us assume that r is regular. Using again (21), we see that we can now replace u by

an homologous element of the same form but now with p1 ∈ k and then, because of (22), we must
have p2 = 0. In this way, we see that u must be a scalar multiple of yr−1|Y. If such an element is
a boundary, looking at the constant term in the formulas (8d), (8e), (8f) and (9a), we infer that u is
zero, therefore E2(r)1,0 is one-dimensional.

Homology at E
1(r)
0,0 . Let u = yrp ∈ E

0(r)
0,0 . We can add to u elements in the image of d without

changing its homology class; doing so, we can assume that p ∈ S. Moreover, u itself is then not in
the image of d: this means that E1(r)0,0

∼= S, freely generated by the class of 1.

6 Hochschild cohomology

In this section we compute the Hochschild cohomology of A using, as before, a spectral sequence.
Write V̂ = homk(V , k), and let {Ŷ, Ĥ, X̂} be the basis of V̂ dual to {Y,H,X}. We identify in the usual
way homk(

∧p V , k) with
∧p V̂ . Applying the functor homAe(−,A) to the resolution constructed

in 4.3 we obtain a double complex whose cohomology is the Hochschild cohomologyHH•(A) ofA.
After we identify homAe(A|

∧p V |A,A) with A|
∧p V̂ in the natural way, this double complex is

0

δ

��

A|
∧3 V̂

doo

δ

��

A|
∧2 V̂

doo

δ

��

A|V̂
doo

δ

��

A
doo

0

δ

��

A|
∧3 V̂

doo

δ

��

A|
∧2 V̂

doo

δ

��

A|V̂
doo

δ

��

A
doo

. .
.

. .
.

. .
.

. .
.

. .
.

with differentials given by

d(u) = [u,y]|Ŷ + [u,h]|Ĥ+ [u, x]|X̂; (23a)

d(u|Ŷ) = [h,u]q|Ŷ ∧ Ĥ− [u, x]|Ŷ ∧ X̂; (23b)

d(u|Ĥ) = [x,u]q|Ĥ∧ X̂−
∑

iλi
∫
ih

suht|Ŷ ∧ X̂+ [u,y]q|Ŷ ∧ Ĥ; (23c)

d(u|X̂) = [u,h]q|Ĥ∧ X̂+ [u,y]|Ŷ ∧ X̂; (23d)
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d(u|Ŷ ∧ Ĥ) = −[x,u]q|Ŷ ∧ Ĥ∧ X̂; (23e)

d(u|Ŷ ∧ X̂) = q[h,u]|Ŷ ∧ Ĥ∧ X̂; (23f)

d(u|Ĥ∧ X̂) = [u,y]q|Ŷ ∧ Ĥ∧ X̂; (23g)

and

δ(u|Ŷ) = ux; (24a)

δ(u|Ĥ) = −
∑

iαi
∫
ih

suht; (24b)

δ(u|X̂) = yu; (24c)

δ(u|Ŷ ∧ Ĥ) =
∑

iαi
∫
iq

thsuht|Ŷ + ux|Ĥ; (24d)

δ(u|Ŷ ∧ X̂) = ux|X̂− yu|Ŷ; (24e)

δ(u|Ĥ∧ X̂) = −yu|Ĥ−
∑

iαi
∫
iq

shsuht|X̂; (24f)

δ(u|Ŷ ∧ Ĥ∧ X̂) = ux|Ĥ∧ X̂+
∑

iαi
∫
iq

i−1hsuht|Ŷ ∧ X̂+ yu|Ŷ ∧ Ĥ; (24g)

We consider the spectral sequence E which arises from the filtration of this double complex by
columns.

6.1 First Page

In this section we deal with the first page of the spectral sequence. Let Y be the complex

0 // A|
∧3 V̂

δ // A|
∧2 V̂

δ // A|V̂
δ // A (25)

with differentials as in (24a)–(24g). As before, we have Ep,q
1

∼= Hp−q(Y) for all q > 0 and the
vector spaces Ep,0

1 are isomorphic to the kernels of the differentials of Y. For each r ∈ Z we denote
Y(r) the component of weight r in Y, and extend this notation to related objects.

Proposition 6.1. If r ∈ Z is non zero, then the complex Y(r) is exact. On the other hand, there are

S-module isomorphisms

Hp(Y(0))
∼=

{
k[h]/(c), if 0 ≤ p ≤ 1;

0, otherwise.

Proof. We prove this by computing the relevant homology groups:
• If u = p|Ŷ ∧ Ĥ∧ X̂ ∈ Y3

(0)
with p ∈ k[h], then

δ(u) = px|Ĥ∧ X̂+ pσ(a ′)|Ŷ ∧ X̂+ yp|Ŷ ∧ Ĥ. (26)

It is clear then that H3(Y(0)) = 0.
• Let u = yp1|Ŷ ∧ Ĥ+ p2|Ŷ ∧ X̂+ p3x|Ĥ∧ X̂ ∈ Y2

(0)
with p1, p2, p3 ∈ k[h]. One can see that

δ(u) = y(p1σ(a
′) − p2)|Ŷ + (aσ−1(p1 − p3))|Ĥ+ (−p3σ(a

′) + p2)x|X̂. (27)

In particular, if u is a cycle, p2 = σ(a ′)p1 and p3 = p1. Comparing with the expression (26)
for 2-boundaries in Y, we see at once that H2(Y(0)) = 0.
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• Finally, let u = yp1|Ŷ + p2|Ĥ+ p3x|X̂ ∈ Y1
(0)

, with p1, p2, p3 ∈ k[h], a 1-cycle. Since we can

replace u for u+ δ(p1|Ĥ), without changing the homology class it represents, we can assume
that p1 = 0, and then δ(u) = aσ−1(p3) − p2a

′ = 0. It follows that there exists g ∈ k[h] such
that p3 = σ(a

′

c g) and p2 = a
c g. Let b, r ∈ k[h] such that g = bc+ r and deg r < M. Then

u+ δ(σ(b)x|Ĥ∧ X̂) = a
c r|Ĥ+ σ(a

′

c r)x|X̂

This means that all classes in H1(Y(0)) can be represented by a element of the form a
c r|Ĥ+

σ(a
′

c r)x|X̂ with r ∈ k[h] and deg r < M and, moreover, such an element represents the zero
class only when it is itself zero: this can be seen by looking at the degree of the coefficient
of Ĥ appearing the formula (27) for 1-boundaries. Conversely, every such element is a cycle.
We conclude that H1(Y(0))

∼= k[h]/(c).
• If u = yp1|Ŷ + p2|Ĥ+ p3x|X̂ ∈ Y1

(0)
, with p1, p2, p3 ∈ k[h], then δ(u) = aσ−1(p1 + p3) −

p2a
′, so H0(Y(0))

∼= k[h]/(c).
It remains to check, in these last two items, that the obtained isomorphisms are S-linear: this

is just a matter of following the computation, and we omit the details.
Let us now fix r > 0.

• If u = yrp|Ŷ ∧ Ĥ∧ X̂ ∈ Y3
(r)

, with p ∈ k[h], then

δ(u) = yr+1p|Ŷ ∧ Ĥ+ yrp
∑

iαiq
i−1[i]qrhi−1|Ŷ ∧ X̂+ yr−1aσ−1(p)|Ĥ∧ X̂. (28)

Looking at the coefficient of Ŷ ∧ Ĥ we see that u is a cycle if and only if u is zero, so
H3(Y(r)) = 0.

• Let u = yr+1p1|Ŷ ∧ Ĥ+ yrp2|Ŷ ∧ X̂+ yr−1p3|Ĥ∧ X̂ ∈ Y2
(r)

, with p1, p2, p3 ∈ k[h]. Since

δ(u) = yr+1(p1
∑

iαiq
i−1[i]qrhi−1 − p2)|Ŷ + y

r(aσ−1(p1) − p3)|Ĥ

+ yr−1(aσ−1(p2) − p3
∑

iαi[i]qrhi−1)|X̂,

it is easy to see that u is a cycle if and only if

p2 = p1
∑

i

αiq
i−1[i]qrhi−1,

p3 = aσ−1(p1),

and in that case, according to (28), we have u = δ(yrp1|Ŷ ∧ Ĥ ∧ X̂). We conclude that
H2(Y(r)) = 0.

• Let u = yr+1p1|Ŷ + yrp2|Ĥ + yr−1p3|X̂ ∈ Y1
(r)

, with p1, p2, p3 ∈ k[h] a cycle. Without

changing its homology class, we can replace u by u+ δ(yrp1|Ŷ ∧ X̂+ yr−1p2|Ĥ∧ X̂), and
hence we can suppose that p1 = p2 = 0. In that case δ(u) = yrp3, and we see that u = 0. It
follows that H1(Y(r)) = 0.

• Finally, for each p ∈ k[h], δ(yr−1p|X̂) = yrp, so that δ(Y1
(r)

) = Y0
(r)

and H0(Y(r)) = 0.
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Corollary 6.2. If r ∈ Z, the dimensions of the vector spaces appearing in the component E1(r) of E1 are

0 ? ? ?

0 0 M M

0 0 M M

..
.

. .
.

. .
.

. .
.

or

0 ? ? ?

0 0 0 0

0 0 0 0

. .
.

. .
.

. .
.

. .
.

if r = 0 or r 6= 0, respectively. The question marks denote vector spaces for which we still do not know the

dimension.

Proof. This follows from the proposition and the isomorphisms Ep,q
1(r)

∼= Hp−q(Y(r)).

6.2 The second page

Proposition 6.3. For each p ≥ 0, the differential dp,p
1 : E

p,p
1 → E

p+1,p
1 vanishes. The page E∞ then

coincides with E1, except at the places marked with question marks in the diagrams of Corollary 6.2, and we

have

HHp(A)(r)
∼=

{
k[h]/(c), if r = 0;

0, if r 6= 0.

Proof. The set of homology classes of the elements of {hl : 0 ≤ l < M} is a basis of the space Ep,p
1 ,

and

d(hl) = (ql − 1)yhl|Ŷ − (ql − 1)hlx|X̂ = δ(−(ql − 1)hl|Ŷ ∧ X̂).

It follows that dp,p
1 is indeed zero, as claimed. The rest of the proposition is then a consequence of

the fact that the spectral sequence E converges to HH•(A).

Proposition 6.4. If q is a root of unity, then

E
p,0
2(0)

∼=






S , if p = 0;

S ⊕ S , if p = 1;

S ⊕ kη(a/c), if p = 2,

where, as in Lemma 2.3, η(a/c) = N−M− degN (a/c)/e, and if q has infinite order,

E
p,0
2(0)

∼=






k, if p = 0;

k, if p = 1;

kN−M, if p = 2.

Proof. We write, during this proof, Ep,q
r instead of Ep,q

r(0)
for simplicity.
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Homology at E0,0
1 . If u = p ∈ E0,0

1 , so that in fact p ∈ k[h], we have

d(p) = y(σ(p) − p)|Ŷ − (σ(p) − p)x|X̂. (29)

It follows that E0,0
1 = ker(σ− 1) = S .

Homology at E1,0
1 . If u ∈ E1,0

1 , there exist p1, p2 ∈ k[h] such that u = yp1|Ŷ+
a
dp2|Ĥ+(σ(a

′

d p2)−

p1)x|X̂; this is a consequence of the formulas (24a), (24b) and (24c) using the same reasoning as in
the third step of the proof of Proposition 6.1. Moreover, there exist s1 ∈ S and b ∈ k[h] such
that p1 = s1 + (σ − 1)(b) and we can replace u by u− d(b) so, in the end, we can assume that
p1 = s1 ∈ S . In that case, u is boundary only if it zero: this follows by comparing with the
coefficient of Ŷ in (29). Computing, we find that

d(u) = (σ− q)(ac p2)x|Ĥ∧ X̂+ y(σ− q)(ac p2)|Ŷ ∧ Ĥ

+
(

(σ− 1)(aa
′

c p2) −
a
cp2(qσ(a

′) − a ′)
)

|Ŷ ∧ X̂.

If d(u) = 0, then (σ− q)(ac p2) = 0 and a
cp2 ∈ hS ; conversely, if a

cp2 ∈ hS , then u is a cycle. we
treat separately two cases, according to whether q is a root of unity or not.

• Suppose first that q is not a root of 1. As a
c p2 ∈ hS and S = k, then p2 ∈ k. Evaluating a

cp2
at zero, and using the hypothesis that a(0) 6= 0, we see that p2 = 0. In this case, then, u is a
scalar multiple of y|Ŷ − x|X̂. Since all such non zero multiples are cycles and not boundaries,
we conclude that E1,0

2 is one dimensional, generated by the class of y|Ŷ − x|X̂.
• Suppose now that q is a root of 1. As h ∤ a, we must have h | p2 and a

c
p2
h ∈ S . There

exists then, by Proposition 2.1(i), s2 ∈ S such that p2 = hs2
(

a
c

)

. This gives us a description
of homology: it is the free S-module of rank 2 generated by the classes of y|Ŷ − x|X̂ and
N (ac )h|Ĥ+ σ(a

′

c
a
c h)x|X̂.

Homology at E2,0
1 . Let u ∈ E2,0

1 , so in fact u ∈ E2,0
0 and δ(u) = 0. In view of (27), there exists

p ∈ k[h] such that u = yp|Ŷ ∧ Ĥ+ pσ(a ′)|Ŷ ∧ X̂+ px|Ĥ∧ X̂.
The element u is a boundary if there exist f1, f2 ∈ k[h] such that u = d(yf1|Ŷ + a

c f2|Ĥ +

(σ(a
′

c f2) − f1)x|X̂) or, making this explicit,

p = (σ− q)(ac f2),

σ(a ′)p = Dq(
aa ′

c f2) −
a
c f2(qσ(a

′) − a ′).

The second equation follows from the first, and we conclude that u is a boundary if and only if
p ∈ imψa/c,1 with ψa/c,1 defined as in Lemma 2.3. In other words, there is an isomorphism
E2,0
2

∼= cokerψa/c,1. We have two cases:
• First, suppose that q is not a root of 1. If deg(ac ) > 1, then degψa/c,1(f) = deg(ac ) + deg(f)

for f ∈ k[h] \ 0. It follows then that cokerψa/c,1 is freely spanned by the classes of 1, h, . . . ,
hN−M−1, because imψa/c,1 is spanned by a set of polynomials of each degree greater or
equal to N−M. We conclude that dim(coker(ψa/c,1)) = N−M.

On the other hand, if deg(ac ) = 1, we have degψa/c,1(f) = 1+deg(f) for all non-constant
f ∈ k[h] and degψa/c,1(f) = 0 for f ∈ k \ 0, so that the cokernel is freely spanned by the class
of h. In particular, dim coker(ψa/c,1) = 1 = N−M.
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• Suppose now that q is a root of 1. We computed the dimension of cokerψa/c,1 in Lemma 2.3,
so that the the dimension of E2,0

2(0)
is η(a/c), as claimed in the statement of the proposition.

Corollary 6.5. If q is a root of unity, then there are isomorphisms of S-modules

HHp(A)(0)
∼=






S , if p = 0;

S ⊕ S , if p = 1;

S ⊕ kη(a/c) ⊕ k[h]/(c), if p = 2.

If, on the other hand, q has infinite order,

HHp(A)(0)
∼=






k, if p = 0;

k, if p = 1;

kN−M ⊕ kM, if p = 2.

Proof. This follows from the proposition and the convergence of the spectral sequence.

Remark 6.6. In the computation of the Hochschild cohomology the fact that a(0) 6= 0 is only used in
the proof of the Proposition 6.4. In the case when q is not a root of 1, using an analogous reasoning
one can prove that if a(0) = 0 and a 6= hN then the same result holds. If instead a = hN then

E
p,0
2(0)

∼=






k, if p = 0;

k2, if p = 1;

kN−M+1, if p = 2.

On the other hand, if q is a root of 1 then

E
p,0
2(0)

∼=






S , if p = 0;

S ⊕ S , if p = 1;

S ⊕ kη(a/(ch))+1 if p = 2.

This difference is to be expected because, for example, when a = hN we have gradings on A such
that degh = 1 and deg x+ degy = N. The eulerian derivation induced by one of these gradings
is a non zero class in HH1(A), which is not cohomologous to the induced by the weight.

Proposition 6.7. Let r 6= 0. According to whether r is regular or not, there are isomorphisms of S-modules

E
p,0
2(r)

∼=






0, if p = 0;

0, if p = 1;

0, if p = 2.

or

E
p,0
2(r)

∼=






S , if p = 0;

S ⊕ S , if p = 1;

S , if p = 2.
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Proof. Homology at E0,0
1(r)

. Let u ∈ E0,0
0(r)

, so that u = yrp for some p ∈ k[h]. Since

d(u) = yr+1(σ(p) − p)|Ŷ + (1− qr)ph|Ĥ+ yr−1(aσ−1(p) − σr(a)p)|X̂, (30)

u is a non zero cycle if and only if r is a singular weight and p ∈ S .
Homology at E1,0

1(r)
. If u ∈ E1,0

1(r)
, then there exist p1, p2, p3 ∈ k[h] such that u = yr+1p1|Ŷ +

yrp2|Ĥ+yr−1p3|X̂ and δ(u) = 0. This condition implies immediately, using (24a), (24b) and (24c),
that p3 = p2

∑
i αi[i]qrhi−1 − aσ−1(p1). Let us suppose now that d(u) = 0.

• If r is regular, we can replace u by u− d((1− qr)−1yr(p2 − p2(0))/h) without changing its
homology class, and this amounts to assuming initially that p2 ∈ k. In that case, it is easy
to see that the coefficient of Ŷ ∧ Ĥ in d(u) is yr+1(q(qr − 1)hp1 + (1− q)p2) = 0 and, then,
p1 = p2 = 0. Similarly, looking at the coefficient of Ĥ∧ X̂, we can conclude that p3 = 0.

• If r is singular, there exist b ∈ k[h] and s1 ∈ S such that p1 = σ(b) − b+ s1; by replacing u by
u− d(yrb), which we may do as it does not change the homology class, we may assume that
p1 = s1 ∈ S. Computing, we find that

d(u) = yr+1(σ−q)(p2)|Ŷ∧ Ĥ+yrσ(a ′)(σ−q)(p2)|Ŷ∧ X̂+yr−1a(σ−q)(σ−1(p2))|Ĥ∧ X̂,

and it is clear that this vanishes exactly when p2 ∈ hS . We see that every element of E1,0
2(r)

is
represented by an element in the S-submodule generated by the elements

yr+1|Ŷ − yr−1a|X̂ yrh|Ĥ+ yr−1a ′h|X̂.

Comparing with (30), it is easy to see that this submodule does not contain non zero bound-
aries, so E1,0

2(r)
is S-free of rank 2.

Homology at E2,0
1(r)

. Let u = yr+1p1|Ŷ ∧ Ĥ+ yrp2|Ŷ ∧ X̂+ yr−1p3|Ĥ∧ X̂ ∈ E2,0
1(r)

.

• If r is regular, let bi = (pi − pi(0))(q(q
r − 1)h)−1 for i ∈ {1, 3}. We may replace u by u−

d(b1|Ŷ + b3|X̂), and a computation using (23b) and (23d) shows that this means that we can
assume that p1, p3 ∈ k. Using now (24d), (24e) and (24f), we easily see that δ(u) = 0 if and
only if u = 0. It follows that in this case E2,0

2(r)
= 0.

• To finish, suppose next that r is singular. Since

δ(u) = yr+1(σ(a ′)p1 − p2)|Ŷ + y
r(aσ−1(p1) − p3)|Ĥ+ yr−1(aσ−1(p2) − a

′p3)|X̂ = 0,

we see that p3 = aσ−1(p1) and p2 = σ(a ′)p1. If b ∈ k[h] and s ∈ S are such that p1 =

σ(b) − qb+ hs, we can replace u by u− d(yrb|Ĥ+ yr−1ba ′|X̂), which is

yr+1hs1|Ŷ ∧ Ĥ+ yrσ(a ′)hs1|Ŷ ∧ X̂+ yr−1q−1ahs1|Ĥ∧ X̂

without changing its class in E2,0
2(r)

. No element of this form is in the image of d, as one can see

by looking at the coefficient of Ŷ∧ Ĥ in (23b), (23c) and (23d), so we can conclude that E2,0
2(r)

is

a free S-module generated by the class of yr+1h|Ŷ∧ Ĥ+yrσ(a ′)h|Ŷ∧ X̂+yr−1q−1ah|Ĥ∧ X̂.
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