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Abstract. We study the manipulation of quantum entanglement by periodic external fields. As an entan-
glement measure we compute numerically the concurrence of two coupled superconducting qubits both
driven by a dc + ac external control parameter. We show that when the driving term of the Hamiltonian
commutes with the qubit–qubit interaction term, it is possible to create or destroy entanglement in a con-
trolled way by tuning the system at or near multiphoton resonances. On the other hand, when the driving
does not commute with the qubit–qubit interaction, the control and generation of entanglement induced
by the driving field is more robust and extended in parameter space, beyond the multiphoton resonances.

1 Introduction

The control and manipulation of entanglement is one of
the central prerequisites of quantum computing architec-
tures in order to exploit the non local quantum corre-
lations. Today, entanglement has been demonstrated in
a large variety of physical systems like ultracold atomic
ensembles [1,2], ion traps [3,4] and cavity quantum elec-
trodynamics devices based on superconducting qubits
[5–8]. Among these, solid state superconducting circuits
based on Josephson junctions are promising due to their
microfabrication techniques and downscalability [9–13].
In these devices, the generation and control of entangle-
ment have been tested under various schemes [14–17]. For
instance, pulse sequences have been implemented for sev-
eral superconducting qubits with fixed interaction energies
[18,19], and tunable coupling schemes have been pro-
posed [13,20–22]. Alternatively, engineering selection rules
of transitions among different energy levels is a possi-
ble strategy for coupling and decoupling superconducting
qubits [23,24].

The sensitivity of the energy levels of superconduct-
ing qubits driven by an external magnetic flux (ac + dc)
has been extensively studied in recent years [25–31].
Microwave fields has become a tool to analize quantum
coherence and to access the multilevel structure of these
artificial atoms under strong driving [32–37].

Profiting from these ideas, in this work we study the
manipulation of entanglement between two superconduct-
ing qubits by external driving fields of variable amplitude
and fixed frequency. In particular we analyze how the
strength and the kind of coupling between the two qubits
affect the dynamics and the entanglement, considering
different static couplings for a given microwave driving

a e-mail: majo@cab.cnea.gov.ar

field configuration. Entanglement generation in ac-driven
systems has been amply investigated in the literature, but
mostly in the case of one and two photon resonances and
for low ac amplitudes. Here we will investigate entangle-
ment control and generation near multiphoton resonances
and for large ac amplitudes, in the context of Landau–
Zener–Stuckelberg interferometry [26,32–34,36,37].

The system of work consists in two coupled supercon-
ducting qubits driven by (the same) microwave field. As
usual, each qubit is represented by a two level system
[38–40] and we focus here on qubits with large decoherence
times such that the effects of dissipation and/or interac-
tion with the environment are negligible. For flux qubits
[9,32], the natural interaction is between the magnetic
fluxes, providing a coupling through their mutual induc-
tance [9,17,32]. On the other hand, for phase or charge
qubits the dominant coupling is essentially capacitive
[13,19,41].

As a measure of entanglement we choose the concur-
rence [42] which vanishes for non entangled states and
reaches its maximum value 1, for maximally entangled
states. Using state tomography, in reference [43] the full
density matrix of a two qubit system has been measured
and the concurrence and the fidelity of the generated state
determined, providing an experimental proof of entangle-
ment. Recently, the ability to perform time-continuous
measurements has enabled to observe the dynamics of
the emergence of entanglement for two qubits separated
by macroscopic distances [44,45]. Additionally there are
other proposals based on the measurement of the ground
state population of two copies of a bipartite system [46],
that could give direct access to the concurrence for pure
states.

In this work we calculate the concurrence in terms of
Floquet states and quasienergies, providing an analytical
expression for a lower bound of the concurrence.

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2017-80563-y
mailto:majo@cab.cnea.gov.ar


Page 2 of 10 Eur. Phys. J. B (2017) 90: 255

We take into account different types of coupling between
the two qubits, longitudinal (i.e. commuting) and trans-
verse (non-commuting) with respect to the driving term,
and study the dependence of the concurrence on the
parameters of the microwave field and the coupling
strengths. We analyse the conditions for control and gen-
eration of entanglement, finding very different behaviours
mainly determined by the commutability of the driving
term with the qubit–qubit interaction.

2 Concurrence for the two coupled qubits
model

The dynamics of two coupled superconducting qubits can
be described by the global Hamiltonian [13]

Ĥ = −1

2

2∑
i=1

(
εiσ

(i)
z +∆iσ

(i)
x

)
+ Ĥ12 + V (t), (1)

where εi is the detuning energy (which can be controlled
with a magnetic flux in the case of flux qubits, or with
gate voltages in the case of charge qubits), ∆i is the

tunnel splitting energy and σ
(i)
z , σ

(i)
x the Pauli matrices,

with i = 1, 2 the index of each qubit. Ĥ12 is the coupling
Hamiltonian, which in general can be written as:

Ĥ12 = −J
z

2
σ(1)
z σ(2)

z

−J
c

2

(
(1− p)σ(1)

x σ(2)
x + pσ(1)

y σ(2)
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)
, (2)

with Jz and Jc the correspondent coupling constants. Dif-
ferent physical coupling schemes between superconducting
qubits are represented by this Hamiltonian. For example,
the case Jc = 0 and Jz 6= 0 corresponds to flux qubits with
inductive coupling [17] and charge qubits with capacitive
coupling; the case Jz = 0, Jc 6= 0, p = 0.5 corresponds to
charge qubits connected via a Josephson junction and to
phase qubits with a capacitive coupling, Jz = 0, Jc 6= 0,
p = 1 corresponds to charge qubits connected through a
common LC oscillator; Jz = 0, Jc 6= 0, p = 0 corresponds
to charge-phase qubits coupled by connecting loops with
a Josephson junction in the common link, etc. (see for
example [13] for a review).

In the presence of driving fields we have the term [47]

V (t) = −1

2

2∑
i=1

vi(t)σ
(i)
z , (3)

where vi(t) = Ai cos(ωt − ϕ0) is the driving microwave
field of amplitude Ai and frequency ω applied to each
qubit.

The resulting Hamiltonian is thus periodic in time,
Ĥ(t) = Ĥ(t + T ) with period T = 2π/ω. According
to the Floquet theorem [35,38,39], the solution of the
Schrödinger equation can be spanned in the Floquet basis
{|uα(t)〉} as |Ψ(t)〉 =

∑
α aα(t0)e−iγαt/~|uα(t)〉, with γα

the quasienergies and α the index labeling the eigenstates

of the time independent problem. For an initial condi-
tion |Ψ(t0)〉 at time t0, we define the coefficients aα(t0) =
〈uα(t0)|Ψ(t0)〉. The time-evolution for Floquet states is
given by (H(t) − i~ ∂

∂t )|uα(t)〉 = γα|uα(t)〉, and they sat-
isfy |uα(t + T )〉 = |uα(t)〉. Therefore after expanding the
time periodic Floquet states in the Fourier basis, |uα(t)〉 =∑
k e

ikωt|uα(k)〉 the time-dependent problem is reduced to
a time-independent eigenvalue problem.

An entanglement measure quantifies the degree of quan-
tum correlations present in a given quantum state. In
the case of pure states |Ψ(t)〉 a useful quantity is the
concurrence [42],

C(t, t0) = |〈Ψ(t)|∗σ(1)
y ⊗ σ(2)

y |Ψ(t)〉|, (4)

that goes from 0 for non-entangled states, to 1 for maxi-
mally entangled states. Notice that equation (4) depends
implicitly on the initial time t0 through |Ψ(t)〉.

Using the extended Floquet basis in Fourier space
{|uα(k)〉} with k ∈ Z, equation (4) can be written as

C(t, t0) = |
∑

αβkk′qq′

C̃αβ(k, k′)

×fαβ(q, q′)e−iϕ
kk′qq′
αβ (t,t0)|, (5)

where ϕkk
′qq′

αβ (t, t0) = (γβ + γα − (k′ + k)ω)t− (γβ + γα −
(q′ + q)ω)t0, with γα

β
the quasienergies, C̃αβ(k, k′) =

〈uα(k)|∗σ(1)
y ⊗ σ(2)

y |uβ(k′)〉 and fαβ(q, q′) = aα(q)aβ(q′),
with aα

β
(qq′) = 〈uα

β
(qq′)|Ψ(t0)〉 (see Appendix A). It is use-

ful to characterize the typical concurrence of a time
dependent system with the average:

C = lim
t′→∞

1

t′

∫ t′

0

dt
1

T

∫ T

0

dt0 C(t, t0). (6)

The average over initial time t0 corresponds to an average
over an unknown initial phase ϕ0 = ωt0 of the microwave
fields vi(t) = Ai cos(ωt − ϕ0), while the average over t
gives a typical value of the concurrence through the
duration of the drive.

3 Results

To solve the dynamics we compute numerically the Flo-
quet states and quasienergies, and we calculate the con-
currence using equation (5) with the averages over t0 and
t given in equation (6). Along this work, we fix εi = ε0,
∀i = 1, 2, and choose ∆1/ω = 0.1 and ∆2/ω = 0.15. We
take ~ = 1 and energy scales are normalized by ω.

The main ingredient in the discussion of our results
will be the commutator between the driving V (t) and the
qubit–qubit coupling term:

[V (t), Ĥ12] = i
Jc(v1 + v2)(1− 2p)

4

(
σ(1)
y σ(2)

x + σ(1)
x σ(2)

y

)
+i
Jc(v1 − v2)

4

(
σ(1)
y σ(2)

x − σ(1)
x σ(2)

y

)
. (7)
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Fig. 1. Eigenenergies Ei in the absence of driving, A/ω = 0
(red lines) and quasienergies for A/ω = 3.8 (black lines) as
a function of ε0/ω, for the coupling strength Jz/ω = −3.
Parameters are ∆1/ω = 0.1 and ∆2/ω = 0.15. The two panels
at the right show enhanced plots of avoided crossings of the
eigenenergies.

We will call “longitudinal coupling” the case when the
coupling commutes with the driving term (when Jc = 0),
and “transverse coupling” the case when the coupling does
not commute with the driving term (when Jc 6= 0). To
further simplify the analysis we will consider here the
same driving in both qubits v1(t) = v2(t), in which case

[V (t), Ĥ12] ∝ Jc(1− 2p).

3.1 Longitudinal coupling

We start with the results for the “longitudinal coupling”
case, with Jz 6= 0 and Jc = 0, for which driving and
coupling commute: [V (t), Ĥ12] = 0. This is the situation
typically realized in flux qubits, where the qubit–qubit
coupling is inductive and the driving is through a time
dependent magnetic flux [17,47].

Figure 1 shows as a function of the detuning ε0/ω
and Jz/ω = −3, the eigenenergies Ei, i = 0, . . . , 3 for
the time independent Hamiltonian (red lines), and in
black the quasienergies for the driven Hamiltonian for
A/ω = 3.8. We work with the (antiferromagnetic) cou-
pling Jz < 0, which reduces the energy of states |01〉, |10〉
while it increases the energy of states |00〉, |11〉, with
E = {|00〉, |01〉, |10〉, |11〉} the computational basis in the
product space of the two qubits.

The quasienergies display avoided crossings (quaside-
generacies), where the Floquet states are strongly mixed.
These quasidegeneracies will play a central role in the
structure of the concurrence as we will discuss in the
following.

For the present case of longitudinal coupling, the quasi-
energies of the two qubit system can be computed ana-
lytically in the limit ∆i/ω → 0 using the Van Vleck
nearly degenerate perturbation theory [38]. We obtain
γα ∼ ±ε0 + Jz/2 + mω and the (quasi) degenerate pair
−Jz/2 + mω with m ∈ Z. As the driving V (t) and the
static coupling Hamiltonian are both proportional to σz,
the location of the quasi crossings in the spectrum of
quasienergies are replicas (in ±mω) of the quasi crossings
of the static spectrum (see Fig. 1). The resonance condi-
tions, γα−γβ = nω (n ∈ Z), are thus satisfied respectively

Fig. 2. (a) Plots of C versus ε0/ω for A/ω = 0 (black line)

and A/ω = 3.8 (red line). (b) Colour map of C versus ε0/ω
and A/ω. In both plots the initial condition corresponds to
the ground state for the correspondent ε0/ω. Jz/ω = −3 is the
coupling strength and other qubits parameters are the same as
in Figure 1.

for 2ε0 ∼ nω and ε0 ± Jz ∼ nω. They correspond to mul-
tiphoton processes where the population probability is
modulated by the zeros of the Bessel functions of order
n, Jn(A/ω) = 0 [38,47]. Notice that while the first res-
onance condition gives half integer and integer values of
ε0/ω, the second one depends on Jz/ω. For integer values
of Jz/ω the quasidegeneracies are located at integer val-
ues of ε0/ω, as is clearly seen in Figure 1. However, for
arbitrary Jz/ω, quasi degeneracies also appear for values
of ε0/ω which are neither integer nor half integers.

We will study here the cases where the system is pre-
pared initially in the ground state and later at t0 the ac
drive is turned on. Therefore the initial state |Ψ(t0)〉 is the
ground state for the corresponding ε0/ω, and we keep the
same values than in Figure 1 for the other parameters. In

Figure 2a we show the calculated C as a function of ε0/ω.

In the absence of driving, A/ω = 0 (black line), C gives
directly the concurrence of the ground state. We see that
the ground state is entangled for detuning energies sat-
isfying |ε0/ω| . |Jz/ω| = 3, where the concurrence takes
values close to 1. In particular, for ε0 = 0, the ground
state is the Bell’s state (|01〉+ |10〉)/

√
2, which is known

to be a maximally entangled state [42]. On the other hand,
for values |ε0/ω| > |Jz/ω| = 3 the ground state is almost
disentangled, i.e. for large values of ε0 the ground state
is asymptotically a separable state of the computational
basis, corresponding to |00〉 for ε0 � 0 and |11〉 for ε0 � 0,
see Figure 1.
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Fig. 3. Colour map of C versus Jz/ω and ε0/ω for A/ω = 0 (a) and A/ω = 3.8 (b) respectively.

When the driving is turned on (A/ω = 3.8), C displays a
pattern of resonance where entanglement is either created
or destroyed. For |ε0/ω| > |Jz/ω| = 3, where the initial
condition corresponds to a separable state, we see that
it is possible to generate entanglement in a controlled
way around a given resonance. Otherwise entanglement
is reduced. Notice that the positions of the resonances

in C are determined from the already mentioned condi-
tions: 2ε0/ω ∼ n and ε0/ω + Jz/ω ∼ n, with n ∈ Z. In
the present case, the resonances in Figure 2a are located at
integer and half integer values of ε0/ω, since Jz/ω = −3.
Therefore, is around a (quasi) degeneracy where the Flo-
quet states are strongly mixed, given rise to significant
deviations in the behaviour of the concurrence compared
to the undriven case.

In Figure 2b we plot C as a function of ε0/ω and
A/ω, for Jz/ω = −3. For each particular multiphoton
resonance, the concurrence is modulated by the driving
amplitude, where full (or partial) recovery of the ini-
tial entanglement is possible. A related phenomenon has
been already observed in single superconducting qubits,
where Landau–Zener–Stuckelberg (LZS) interference pat-
terns studied as a function of detuning ε0 and amplitude
A, display multiphoton resonances modulated by the
coherent destruction of tunneling at certain amplitudes
[32,33]. Additionally LZS interference patterns of driven
coupled qubits (in the longitudinal case) have been anal-
ized [47]. In Figure 2b, we see how the LZS interference
patterns show up also in the entanglement.

So far, we have studied the entanglement for a fixed
value of the coupling strength. However in several prac-
tical implementations, the intensity of the coupling can
be controlled. Thus it is interesting to analyze whether a
different static coupling would induce qualitative changes
in the above description, taking into account that the
spectrum of quasienergies is sensitive to this change (see

Fig. 1). In Figure 3 we plot a map of C versus Jz/ω and
ε0/ω for A/ω = 0 and 3.8, respectively, taking as the
initial state the ground state for the corresponding ε0/ω
and Jz/ω.

In the absence of the microwave field (see Fig. 3a)
two well separated behaviours are observed, correspond-
ing to positive and negative values of Jz respectively. For
Jz < 0 (antiferromagnetic coupling) the ground state is

Fig. 4. Energy levels E′
i for A/ω = 0 (red lines) and quasiener-

gies for A/ω = 3.8 (black lines) as a function of ε0/ω for
Jc/ω = −3 and p = 0. The qubits parameters are the same
as in previous figures.

entangled for |ε0| < |Jz| as we already described, given rise

to the triangular shaped region in C. On the other hand,
for the ferromagnetic coupling Jz > 0, which increases
the energy of states |01〉, |10〉 and decreases the energy
of states |00〉, |11〉, the ground state is entangled only
for values ε0 ∼ 0, being approximately the Bell’s state

(|00〉 + |11〉)/
√

2. When the microwave field is on, C
exhibits the structure of resonances where the entangle-
ment is created or destroyed in a well controlled way (see
Fig. 3b) with resonances located at half integer or integer
values of ε0/ω and others located at positions determined
by the values of Jz/ω, as we already mentioned. For inte-
ger values of Jz/ω the resonances are at integers ε0/ω,
while for arbitrary real values of Jz/ω they are respec-
tively shifted to non integer values of ε0/ω (notice the
straight lines forming the >-shaped pattern).

We have obtained a lower bound CI for the averaged

concurrence C (see Appendix B), that reads:

CI = |
∑
α

C̃αα(t)
∑
q

|aα(q)|2| < C, (8)

where aα(q) = 〈uα(q)|Ψ(t0)〉 has been already defined and

C̃αα(t) is the time average of a Floquet preconcurrence

C̃αα(t) ≡ 〈uα(t)|∗σ(1)
y ⊗ σ(2)

y |uα(t)〉. To obtain the above
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Fig. 5. Colour map of C in the case of transverse coupling, as a function of ε0/ω and p for Jc/ω = −3.

expression for CI we have performed a rotating wave
approximation disregarding fast oscillating terms in the
concurrence, so we only consider the quasienergies that
fulfilled the relation γα + γβ = nω, n ∈ Z. In this way CI
is mainly governed by the Floquet preconcurrences, each
one weighted by the projection of the Floquet states on
the initial condition. It should be noted that this expres-
sion is useful when the initial state is non entangled, since
CI determines the minimal creation of entanglement. For
the case of weakly interacting qubits, the generation of
entanglement at multiphoton resonances in the average
concurrence of Floquet states, |Cαα(t)|, was studied [48].
The lower bound CI shows explicitely how the enhance-
ment of |Cαα(t)| at the multiphoton resonances leads to an

enhancement of C in the general case. Since Floquet states
are not accessible experimentally, one has to consider the
full expression equation (8) in general situations. Further-
more, our results apply beyond the weak interaction case.

3.2 Transverse coupling

In this section we focus on the “transverse coupling” case
Jz = 0, Jc 6= 0, for which [V (t), Ĥ12] ∝ Jc(1− 2p).

Figure 4 shows the eigenenergies E′i, i = 0, . . . , 3, as a
function of ε0/ω for the static Hamiltonian for Jc/ω = −3

and p = 0. For p = 0 the coupling Hamiltonian is Ĥc
12 =

−Jc/2σ(1)
x σ

(2)
x . In this case the coupling breaks the degen-

eracy between |01〉, |10〉 but also mixes the states |00〉 and
|11〉, given rise to the exhibited spectrum. Additionally we
plot the quasienergies for the driven Hamiltonian in black
lines, for the amplitude A/ω = 3.8.

For the p = 0 case under consideration, we get the
analytical expressions γα ∼ ±

√
ε20 + (Jc/2)2 + mω and

±Jc/2 + mω for the quasienergies, assuming ∆i/ω → 0
and A/ω → 0. Thus, the resonance conditions are ful-
filled for Jc/ω ∼ n (independent of the detuning), for
values satisfying (2ε0/ω)2 +(Jc/ω)2 ∼ n2 and for Jc/2ω±√

(ε0/ω)2 + (Jc/2ω)2 ∼ n. The two latter conditions give
rise to an intricate pattern of quasidegeneracies in the
spectrum of Figure 4, that will induce a non trivial
behaviour in the concurrence, as we show below.

It is interesting to analyze the dependence of C on ε0/ω
and on p. Notice that by changing p, one get different

values of the commutator [V (t), Ĥ12] ∝ Jc(1− 2p). (Addi-
tionally, in experimental implementations it could be
possible to control the magnitude of [V (t), Ĥ12] by driv-
ing the qubits with different amplitudes A instead of
changing p, see equation (6)). Figure 5a shows the results
without driving for Jc/ω = −3. Two well defined regions
exhibiting a qualitative change in the behavior of the con-
currence of the ground state are observed. For 0 < p < 0.5

the coupling Jc/2σ
(1)
x ⊗ σ(2)

x is the dominant term in the

Hamiltonian Ĥ12. In this case, for ε0 ∼ 0 the ground state
is separable corresponding to the singlet states |s1〉|s2〉,
but as p increases it also does the term Jc/2σ

(1)
y σ

(2)
y ,

and the ground state becomes entangled. For the region

0.5 < p < 1 the dominant term is Jc/2σ
(1)
y ⊗ σ(2)

y and in
this case the ground state remains maximally entangled
near ε0 ∼ 0 as p decreases. In Figure 5b we present the
results for driving amplitude A/ω = 3.8. For p = 0.5 the
commutator vanishes and the entanglement resonances
are well defined. When departing from p = 0.5, the res-
onances start to spread as a function of |1 − 2p|. An
important creation of entanglement, with a rich (and non
trivial) pattern of wide resonances, is clearly observed in
an ample range of p 6= 0.5. In the extreme case of p = 0
(and similarly for p = 1) the entanglement is created in a
broad range of ε0/ω, specially near ε0 = 0, where the ini-
tial state is a separable state (corresponding to a singlet
state). For larger values of ε0/ω we observe in both cases
a quite similar pattern, with the creation of entanglement
due to the driving, but with wider and overlapping res-
onances compared to the p = 0.5 case. This behavior is
concomitant with the landscape of avoided crossings in
the quasienergies spectrum, as a consequence of the non
commutation of the static Hamiltonian with the driving
field. The wide resonances generate a region where entan-
glement is quite robust to changes in the detuning. This
could be a tool to stabilize the entanglement created by
the driving field.

Besides changing the dominant interaction in the cou-
pling Hamiltonian, one can analyze the sensitivity of the
concurrence with the coupling strength for a fix value of
p. As an example we focus on the p = 0 case. The pat-
tern displayed in Figure 6a in the absence of driving is
consistent with the resonant conditions obtained previ-
ously for (∆i, A) → 0. In particular notice the regions

https://epjb.epj.org/
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Fig. 6. Colour map of C versus Jc/ω and ε0/ω for transverse coupling with p = 0.

where the quasi linear behaviour with Jc/ω dominates
for ε0/ω ∼ 0, turning into parabolic ones in the plane
(ε0/ω, J

c/ω), for larger values of detuning. The concur-
rence takes different values along these regions, even for
a fixed Jc/ω. When the driving is turned on, for weak

coupling Jc ∼ 0, we see well defined resonances in C.
However, when |Jc/ω| & 1 the driving induces a drastic
change in this behaviour. Unlike the longitudinal coupling,
or the weak transverse coupling, where the behavior with
Jc/ω for finite driving was quite predictable, we observe
non trivial features in the strong transverse coupling case.
Among others, is the generation of an important amount
of homogeneous entanglement for a wide range of detuning
and static coupling strength. Additionally the concurrence
exhibits a quite symmetric pattern for Jc/ω ≶ 0.

4 Conclusions

In this work we have shown that entanglement can be
manipulated by external periodic driving fields. In par-
ticular we presented extensive numerical and analytical
results for the concurrence of a system composed by two
coupled qubits driven by an external ac magnetic flux,
neglecting the effect of dissipation. Our results apply to
the case of highly coherent qubits [49], when the driving
is on for time scales smaller than the decoherence time
T2 and such that ωT2 � 1. For time scales t < T2 the
entanglement generated will be stable. Currently, super-
conducting qubits are fabricated with decoherence times
as large as T2 ∼ 100µs [49] and therefore the entanglement
generated by the ac drive can be maintained coherently
for several driving periods for typical rf frequencies. The

average concurrence C defined in equation (6) has been
used here as a theoretical tool to characterize the typi-
cal expected degree of entanglement in a time dependent
state. Of course, this quantity as given in the mathemati-
cal expression of equation (6), is not directly accessible in
the experiment. The concurrence C(t) can be measured in
superconducting qubits by quatum state tomography for
a finite time interval [44]. The generation of entanglement
described here will be shown in this type of protocols as
a difference in the measured C(t) with and without the
applied ac drive.

Under the above mentioned condition, ωT2 � 1, there
are different behaviours in the concurrence, depending on
the commutability of the driving term with the qubit–
qubit interaction term. In the special cases when the
driving term and the interaction term in the Hamiltonian
commute (longitudinal coupling), the control of entangle-
ment is almost complete within a narrow range of the
multiphoton resonances. The advantage of this scenario is
that (a) when the initial state is disentangled, it can be
driven towards a highly entangled state, and (b) when
the initial state is entangled, one can strongly reduce
entanglement with the driving.

In view of entanglement manipulation, our more impor-
tant result is for the transverse coupling between the
qubits, when the driving Hamiltonian and the interac-
tion Hamiltonian do not commute. In this case, we find
that the multiphoton resonances in the concurrence, as
seen in terms of an entanglement measure, are spread and
overlap. In the {ε0, Jc} plane in Figure 6b this shows
as broad regions where entanglement can be enhanced
starting from a disentangled initial condition, even away
from a resonance. Therefore the control of entanglement
is robust in parameter space, being a more convenient sit-
uation for practical implementations of driving induced
entanglement.
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(P 06/C455) and ANPCyT (PICT2014-1382).
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Appendix A: Calculation of concurrence in
Floquet basis

We calculate the concurrence C(t, t0) = |〈Ψ(t)|∗|σ(1)
y ⊗

σ
(2)
y |Ψ(t)〉| [42] using the expansion of |Ψ(t)〉 in the Floquet
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Fig. A.1. Plots of the concurrence C(t, t0) for ε0/ω = 4 and
A/ω = 3.8, as a function of the normalized time t/T for 300
different initial times t0/T , represented on the vertical colour

bar. The initial state is |Ψ(t0)〉. In black line C(t) is plotted

and in dashed magenta, its average C. The inset show the plot
in the range t/T ∈ [0, 500], while the main figure shows a detail
in the interval t/T ∈ [480, 500]. Results correspond to longitu-
dinal coupling with Jz/ω = −3. Parameters are ∆1/ω = 0.1
and ∆2/ω = 0.15.

basis [35]:

C(t, t0) = |
∑
αβ

aα(t0)aβ(t0)

×e−i(γα+γβ)(t−t0)C̃αβ(t)|, (A.1)

with aα
β

(t0) = 〈uα
β

(t0)|Ψ(t0)〉, |uα
β

(t)〉 the Floquet states

and γα
β

the quasienergies. The initial condition is |Ψ(t0)〉
and C̃αβ(t) = 〈uα(t)|∗σy ⊗ σy|uβ(t)〉.

Employing the extended Fourier basis |uα(t)〉 =
∑
k

e−ikωt|uα(k)〉 and 〈uα(t0)| =
∑
q e

iqωt〈uα(q)|, the

equation (A.1) reads

C(t, t0) = |
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′)

×e−iϕ
kk′qq′
αβ (t,t0)|, (A.2)

where ϕkk
′qq′

αβ (t, t0) = (γβ + γα − (k′ + k)ω)t− (γβ + γα −
(q′ + q)ω)t0, C̃αβ(k, k′) = 〈uα(k)|∗σy ⊗ σy|uβ(k′)〉 and
fαβ(q, q′) = aα(q)aβ(q′), with aα

β
(qq′) = 〈uα

β
(qq′)|Ψ(t0)〉.

Under general conditions, the initial time should be
averaged out, thus we compute the time-averaged con-
currence over t0,

C(t) =
1

T

∫ T

0

dt0 C(t, t0),

with T = 2π/ω the driving period. It is useful to charac-
terize the typical concurrence of a time dependent system
with an aditional average

C = lim
T→∞

1

T

∫ T

0

dtC(t).

Figure A.1 displays the concurrence C(t, t0) as a func-
tion of the normalized time t/T calculated for the initial
condition |Ψ(t0)〉 = e−iE0t0 |E0〉, which was chosen as the
ground state of the time independent Hamiltonian (with
eigenvalue E0) for detuning energy ε0/ω = 4 and static
coupling strength Jz/ω = −3, corresponding to the lon-
gitudinal coupling case. The driving amplitude chosen is
A/ω = 3.8. C(t, t0) was computed for around 300 different
initial times with t0/T ∈ [0, 1]. Notice that due to the dif-
ferent initial times, that induce a different initial phase in
the microwave field, the curves are shifted. After averaging
over t0, C(t), turns out to be a smoother function whose

time average C, results independent on time as expected.

Appendix B: Lower bound for time-averaged
concurrence

Here we calculate a lower bound for C, the averaged con-
currence over (t, t0). First we expand the equation (A.2)
as

C(t, t0) = |
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′) cos(ϕkk
′qq′

αβ (t, t0)

+i
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′)

× sin(ϕkk
′qq′

αβ (t, t0))|, (B.1)

where we separate the real (Re) and imaginarie (Im) part.
Using the relations |z| ≥ |Re(z)|, |Im(z)| for a complex
number z ∈ C, from equation (B.1) we get

C(t, t0) ≥ |
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′) cos(ϕkk
′qq′

αβ (t, t0)|,

C(t, t0) ≥ |
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′) sin(ϕkk
′qq′

αβ (t, t0))|.

(B.2)

Now we apply the inequality
∫ b
a
|f(x)|dx ≥ |

∫ b
a
f(x)dx|,

with f(x) : R → R and a < b, to equation
(B.2). After defining the lower bound limit as

C = 1
T

∫ T
0
dt 1T

∫ T
0
dt0C(t, t0), we obtain for equation

(B.2) two lower bounds CI and CII :

CI = |
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′)cos(ϕkk
′qq′

αβ (t, t0)|,

CII = |
∑

αβkk′qq′

C̃αβ(k, k′)fαβ(q, q′)sin(ϕkk
′qq′

αβ (t, t0))|,

(B.3)

satisfying C ≥ CI , CII .
Using the trigonometric identities sin(A − B) =

sin(A) cos(B) − cos(A) sin(B) and cos(A − B) =
cos(A) cos(B) + sin(A) sin(B), and taking the average
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over (t, t0) we obtain

cos(ϕkk
′qq′

αβ (t, t0)) = δγα+γβ−nω,0 δγα+γβ−mω,0

+δγα+γβ−nω,π/(2T ) δγα+γβ−mω,π/(2T ),

sin(ϕkk
′qq′

αβ (t, t0)) = δγα+γβ−nω,π/(2T ) δγα+γβ−mω,0

−δγα+γβ−nω,0 δγα+γβ−mω,π/(2T ),

(B.4)

with n = k+ k′ and m = q+ q′. Replacing T = 2π/ω and
ordering the terms, we get

cos(ϕkk
′qq′

αβ (t, t0)) = δγα+γβ ,nω δγα+γβ ,mω

+δγα+γβ ,(n+1/4)ω δγα+γβ ,(m+1/4)ω,

sin(ϕkk
′qq′

αβ (t, t0)) = δγα+γβ ,(n+1/4)ω δγα+γβ ,mω

−δγα+γβ ,nω δγα+γβ ,(m+1/4)ω. (B.5)

We assume that the main contribution to the concurrence
is near the resonances condition γα + γβ = nω, which is
equivalent to a rotating wave approximation disregarding
fast oscillating terms. Thus

cos(ϕkk
′qq′

αβ (t, t0)) ∼ δγα+γβ ,nω δγα+γβ ,mω,

sin(ϕkk
′qq′

αβ (t, t0)) ∼ 0. (B.6)

Using the last result we obtain CI ≥ CII = 0, then the
corresponding lower bound expression is

CI ∼ |
∑
αβ
knqm

C̃αβ(k, n− k)fαβ(q,m− q)

×δγα+γβ ,nω δγα+γβ ,mω|. (B.7)

Given equation (B.7), we employ the condition γβ =
−γα + nω on the Floquet quasienergies, obtaining

e−iγβ |uβ(t)〉 = eiγαe−inω|uβ(t)〉,

= eiγαe−inω
∑
k

eikωt|uβ(k)〉

= eiγα
∑
k

ei(k−n)ωt|uβ(k)〉

= eiγα
∑
k

eikωt|uβ(k − n)〉

= eiγα
∑
k

e−ikωt|uβ(n− k)〉. (B.8)

It is straightforward show that

(e−iγα |uα(t)〉)∗ = eiγα |uα(t)〉∗,
= eiγα

∑
k

e−ikωt|uα(k)〉∗

= eiγα
∑
k

e−ikωt|uα(−k)〉. (B.9)

Fig. B.1. Plot of C (black line) and CI (red line) as a function
of ε0/ω. With A/ω = 3.8 and the coupling strength Jz/ω =
−3. The other qubits parameters are the same than in Figure 1.

Then, from equations (B.8) and (B.9), the equivalence
relation is satisfied:

γβ → −γα + nω ⇒ |uβ(n− k)〉 → |uα(−k)〉. (B.10)

Using the equation (B.10) with n = k+k′ and m = q+ q′,
the lower bound in equation (B.7) reads

CI ∼ |
∑
αkq

C̃αα(k,−k)fαα(q,−q)|. (B.11)

From which we identify a contribution of the form

∑
k

C̃αα(k,−k) =
1

T

∫ T

0

dt C̃αα(t) = C̃αα(t), (B.12)

where C̃αα(t) = 〈uα(t)|∗σy ⊗ σy|uα(t)〉 is the Floquet pre-
concurrence. Also, using |uα(−q)〉 = |uα(q)〉∗ we obtain
that

fαα(−q, q) = aα(−q)aα(q) = a∗α(q)aα(q)

= |aα(q)|2, (B.13)

corresponding to the amplitude of the Floquet states
projections over the initial condition.

Finally replacing equations (B.12) and (B.13) in
equation (B.11) we obtain

CI ∼ |
∑
α

C̃αα(t)
∑
q

|aα(q)|2|. (B.14)

This expression is useful for the non-entangled initial state
since it represents the minimal entanglement creation.

In Figure B.1 we plot C and CI for the longitudinal
coupling case, both as a function of ε0/ω. We choose the
initial state |00〉, corresponding to a separable state (of the
computational basis), and work with the driven amplitude
A/ω = 3.8. The coupling strength is Jz/ω = −3. The posi-
tion of the resonances at integer values of ε0/ω are well
captured by the lower bound CI , and the agreement with

C is quite good. Notice however that for half integer values

https://epjb.epj.org/
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of ε0/ω, C also exhibits resonances that are quite attenu-
ated in CI . This behaviour can be understood taking into
account that the stationary phase condition employed to
compute CI involves the sum γα+γβ of pairs of quasiener-
gies, which gives either ε0 or Jz. Therefore for integer
values of Jz/ω and ε0/ω, the resonance conditions and
the stationary phase condition are both satisfied. On the
other hand, for half integer values of ε0/ω the stationary
phase approximation is not fulfilled, and the resonances

displayed in C are dimmed in CI .
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