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Abstract. In this paper, we address a project scheduling problem that considers
a priority optimization objective for project managers. This objective involves
assigning the most effective set of human resources to each project activity. To
solve the problem, we propose a hybrid evolutionary algorithm. This algorithm
uses adaptive crossover, mutation and simulated annealing processes in order to
improve the performance of the evolutionary search. These processes adapt their
behavior based on the diversity of the evolutionary algorithm population. We
compare the performance of the hybrid evolutionary algorithm with those of the
algorithms previously proposed in the literature for solving the addressed
problem. The obtained results indicate that the hybrid evolutionary algorithm
significantly outperforms the previous algorithms.
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1 Introduction

Project scheduling involves defining feasible start times and feasible human resource
assignments for project activities in such a way that a predefined optimization objective
is reached. To define human resource assignments, it is essential to have knowledge of
the effectiveness of the available human resources in respect of the project activities.
This is because the development and also the results of an activity mainly depend on
the effectiveness of the human resources assigned to it [1, 2].

In the literature, many different kinds of project scheduling problems have been
formally described and addressed. Nevertheless, to the best of our knowledge, only few
project scheduling problems have considered human resources with different levels of
effectiveness [3–6, 10], a fundamental aspect in real project scheduling problems.
These project scheduling problems state different assumptions about the effectiveness
of the human resources.

The project scheduling problem presented in [6] considers that the effectiveness of
a human resource depends on various factors inherent to its work context (i.e., the
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activity to which the resource is assigned, the skill to which the resource is assigned
within the activity, the set of human resources that has been assigned to the activity,
and the attributes of the resource). This is a really significant aspect of the project
scheduling problem presented in [6]. This is because, in real project scheduling
problems, the human resources usually have different effectiveness levels in respect of
different work contexts [1, 2] and, thus, the effectiveness of a human resource needs to
be considered in respect of its work context. To the best of our knowledge, the
influence of the work context on the effectiveness of the human resources has not been
considered in other project scheduling problems. Based on the above-mentioned, we
consider that the project scheduling problem presented in [6] states valuable and novel
assumptions about the effectiveness of the human resources in the context of project
scheduling problems. Besides, this problem considers a priority optimization objective
for managers at the early stage of project scheduling. This objective implies assigning
the most effective set of human resources to each project activity.

The project scheduling problem presented in [6] is considered as a special case of
the RCPSP (Resource Constrained Project Scheduling Problem) [9] and, thus, is an
NP-Hard optimization problem. Because of this, exhaustive search and optimization
algorithms only can solve very small instances of the problem in a reasonable period of
time. Therefore, heuristic search and optimization algorithms have been proposed in
the literature to solve the problem: an evolutionary algorithm was proposed in [6], a
memetic algorithm was proposed in [7] that incorporates a hill-climbing algorithm into
the framework of an evolutionary algorithm, and a hybrid evolutionary algorithm was
proposed in [8] that integrates an adaptive simulated annealing algorithm into the
framework of an evolutionary algorithm. These three algorithms use non-adaptive
crossover and mutation processes to develop the evolutionary search.

In this paper, we address the project scheduling problem presented in [6] with the
aim of proposing a better heuristic search and optimization algorithm to solve it. In this
regards, we propose a hybrid evolutionary algorithm that uses adaptive crossover,
mutation and simulated annealing processes. The behavior of these processes is
adaptive according to the diversity of the evolutionary algorithm population. The
utilization of adaptive crossover, mutation and simulated annealing processes is meant
to improve the performance of the evolutionary search [18–20].

We propose the above-mentioned hybrid evolutionary algorithm because of the
following reason. Evolutionary algorithms with adaptive crossover and mutation pro-
cesses have been proven to be more effective than evolutionary algorithms with
non-adaptive crossover and mutation processes in the resolution of a wide variety of
NP-Hard optimization problems [18–20]. Therefore, we consider that the proposed
hybrid evolutionary algorithm could outperform the heuristic algorithms previously
proposed to solve the problem.

The remainder of the paper is organized as follows. In Sect. 2, we give a brief
review of published works that describe project scheduling problems in which the
effectiveness of human resources is considered. In Sect. 3, we describe the problem
addressed in this paper. In Sect. 4, we present the proposed hybrid evolutionary
algorithm. In Sect. 5, we present the computational experiments carried out to evaluate
the performance of the hybrid evolutionary algorithm and an analysis of the results
obtained. Finally, in Sect. 6 we present the conclusions of the present work.
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2 Related Works

In the literature, different project scheduling problems that consider the effectiveness of
human resources have been described. Nevertheless, these project scheduling problems
state different assumptions about the effectiveness of human resources. In this regards,
only few project scheduling problems consider human resources with different levels of
effectiveness [3–6, 10], a fundamental aspect in real project scheduling problems. In
this section, we focus the attention on analyzing the way in which the effectiveness of
human resources is considered in project scheduling problems described in the
literature.

In [12–17], multi-skill project scheduling problems are described. In these prob-
lems, each project activity requires specific skills and a given number of human
resources (employees) for each required skill. Each available employee masters one or
several skills, and all the employees that master a given skill have the same effec-
tiveness level in relation to the skill (homogeneous levels of effectiveness in relation to
each skill).

In [3], a multi-skill project scheduling problem with hierarchical levels of skills is
described. In this problem, given a skill, for each employee that masters the skill, an
effectiveness level is defined in relation to the skill. Therefore, the employees that
master a given skill have different levels of effectiveness in relation to the skill (het-
erogeneous levels of effectiveness in relation to each skill). Then, each project activity
requires one or several skills, a minimum effectiveness level for each skill, and a
number of employees for each pair skill-level. This work considers that all sets of
employees that can be assigned to a given activity have the same effectiveness on the
development of the activity. Specifically, with respect to effectiveness, such sets are
merely treated as unary resources with homogeneous levels of effectiveness.

In [4, 5], multi-skill project scheduling problems are described. In these problems,
most activities require only one employee with a particular skill, and each available
employee masters different skills. Besides, the employees that master a given skill have
different levels of effectiveness in relation to the skill. Then, the effectiveness of an
employee in a given activity is defined by considering only the effectiveness level of
the employee in relation to the skill required for the activity.

Unlike the above-mentioned problems, the project scheduling problem presented in
[6] considers that the effectiveness of a human resource depends on various factors
inherent to its work context. Thus, for each human resource, it is possible to define
different effectiveness levels in relation to different work contexts. This is a really
significant aspect of the project scheduling problem presented in [6]. This is because, in
real project scheduling problems, the human resources have different effectiveness
levels in respect of different work contexts [1, 2] and, thus, the effectiveness of a human
resource needs to be considered in respect of its work context. Taking into account the
above-mentioned, we consider that the project scheduling problem presented in [6]
states valuable assumptions regarding the effectiveness of human resources in the
context of project scheduling problems.
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3 Problem Description

In this paper, we address the project scheduling problem described in [6]. We present
below a description of this problem.

A project contains a set A of N activities, A = {1, …, N}, to be scheduled (i.e., the
starting time and the human resources of each activity have to be defined). The
duration, precedence relations and resource requirements of each activity are known.

The duration of each activity j is notated as dj. Moreover, it is considered that
pre-emption of activities is not allowed (i.e., the dj periods of time must be
consecutive).

Among some project activities, there are precedence relations. The precedence
relations establish that each activity j cannot start until all its immediate predecessors,
given by the set Pj, have completely finished.

Project activities require human resources – employees – skilled in different
knowledge areas. Specifically, each activity requires one or several skills as well as a
given number of employees for each skill.

It is considered that organizations and companies have a qualified workforce to
develop their projects. This workforce is made up of a number of employees, and each
employee masters one or several skills.

Considering a given project, set SK represents the K skills required to develop the
project, SK = {1, …, K}, and set ARk represents the available employees with skill
k. Then, the term rj,k represents the number of employees with skill k required for
activity j of the project. The values of the terms rj,k are known for each project activity.

It is considered that an employee cannot take over more than one skill within a
given activity. In addition, an employee cannot be assigned more than one activity at
the same time.

Based on the previous assumptions, an employee can be assigned different activ-
ities but not at the same time, can take over different skills required for an activity but
not simultaneously, and can belong to different possible sets of employees for each
activity.

As a result, it is possible to define different work contexts for each available
employee. It is considered that the work context of an employee r, denoted as Cr,j,k,g, is
made up of four main components. The first component refers to the activity j which
r is assigned (i.e., the complexity of j, its domain, etc.). The second component refers to
the skill k which r is assigned within activity j (i.e., the tasks associated to k within j).
The third component is the set of employees g that has been assigned j and that
includes r (i.e., r must work in collaboration with the other employees assigned to j).
The fourth component refers to the attributes of r (i.e., his or her experience level in
relation to different tasks and domains, the kind of labor relation between r and the
other employees of g, his or her educational level in relation to different knowledge
areas, his or her level with respect to different skills, etc.). It is considered that the
attributes of r could be quantified from available information about r (e.g., curriculum
vitae of r, results of evaluations made to r, information about the participation of r in
already executed projects, etc.).
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The four components described above are considered the main factors that deter-
mine the effectiveness level of an employee. For this reason, it is assumed that the
effectiveness of an employee depends on all the components of his or her work context.
Then, for each employee, it is possible to consider different effectiveness levels in
relation to different work contexts.

The effectiveness level of an employee r, in relation to a possible context Cr,j,k,g for
r, is notated as erCr,j,k,g. The term erCr,j,k,g represents how well r can handle, within
activity j, the tasks associated to skill k, considering that r must work in collaboration
with the other employees of set g. The mentioned term erCr,j,k,g takes a real value over
the range [0, 1]. The values of the terms erCr,j,k,g inherent to each employee available
for the project are known. It is considered that these values could be obtained from
available information about the participation of the employees in already executed
projects.

The problem of scheduling a project entails defining feasible start times (i.e., the
precedence relations between the activities must not be violated) and feasible human
resource assignments (i.e., the human resource requirements must be met) for project
activities in such a way that the optimization objective is reached. In this sense, a
priority objective is considered for project managers at the early stage of the project
schedule design. The objective is that the most effective set of employees be assigned
each project activity. This objective is modeled by Formulas (1) and (2).

Formula (1) maximizes the effectiveness of the sets of employees assigned to the
N activities of a given project. In this formula, set S contains all the feasible schedules
for the project in question. The term e(s) represents the effectiveness level of the sets of
employees assigned to project activities by schedule s. Then, R(j,s) is the set of
employees assigned to activity j by schedule s, and the term eR(j,s) represents the
effectiveness level corresponding to R(j,s).

Formula (2) estimates the effectiveness level of the set of employees R(j,s). This
effectiveness level is estimated calculating the mean effectiveness level of the
employees belonging to R(j,s).

For a more detailed discussion of Formulas (1) and (2), we refer to [6].

max
8s2S

eðsÞ ¼
XN
j¼1

eRðj;sÞ

 !
ð1Þ

eRðj;sÞ ¼
PRðj;sÞj j

r¼1
erCr;j;kðr;j;sÞ;Rðj;sÞ

Rðj; sÞj j ð2Þ

4 Hybrid Evolutionary Algorithm

To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses
adaptive crossover, mutation and simulated annealing processes. The behavior of these
processes is adaptive according to the diversity of the evolutionary algorithm
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population. The utilization of adaptive crossover, mutation and simulated annealing
processes is meant to improve the performance of the evolutionary search in both
exploration and exploitation [18–20].

The general behavior of the hybrid evolutionary algorithm is described as follows.
Considering a given project to be scheduled, the algorithm starts the evolution from a
random initial population of solutions in which each solution codifies a feasible project
schedule. Then, each solution of the population is decoded (i.e., the related schedule is
built), and evaluated according to the optimization objective of the problem by a fitness
function. As explained in Sect. 3, the objective is to maximize the effectiveness of the
sets of employees assigned to project activities. In respect of this objective, the fitness
function evaluates the assignments of each solution based on knowledge about the
effectiveness of the employees involved in the solution.

Once the solutions of the population are evaluated, a parent selection process is
used to decide which solutions of the population will compose the mating pool. The
solutions with the highest fitness values will have more probability of being selected.
After the mating pool is composed, the solutions in the mating pool are paired. Then, a
crossover process is applied to each pair of solutions with an adaptive probability Pc to
generate new feasible ones. Then, a mutation process is applied to each solution
generated by the crossover process, with an adaptive probability Pm. Then, a survival
selection process is applied in order to define which solutions from the solutions in the
population and the solutions generated from the mating pool will compose the new
population. Finally, an adaptive simulated annealing algorithm is applied to the solu-
tions of the new population.

This process is repeated until a predetermined number of iterations is reached.

4.1 Encoding of Solutions and Fitness Function

To encode the solutions, we used the representation proposed in [6]. Each solution is
represented by two lists having as many positions as activities in the project. The first
list is a standard activity list. This list is a feasible precedence list of the activities
involved in the project (i.e., each activity j can appear on the list in any position higher
than the positions of all its predecessors). The activity list describes the order in which
activities shall be added to the schedule.

The second list is an assigned resources list. This list contains information about the
employees assigned to each activity of the project. Specifically, position j on this list
details the employees of every skill k assigned to activity j.

To build the schedule related to the representation, we used the serial schedule
generation method proposed in [6]. In this method, each activity j is scheduled at the
earliest possible time.

In order to evaluate a given encoded solution, we used a fitness function. This
function decodes the schedule s related to the solution by using the serial method
above-mentioned. Then, the function calculates the value of the term e(s) corre-
sponding to s (Formulas (1) and (2)). This value determines the fitness level of the
solution. The term e(s) takes a real value over [0, …, N].
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To calculate the term e(s), the function uses the values of the terms erCr,j,k,g inherent
to s (Formula 2). As mentioned in Sect. 3, the values of the terms erCr,j,k,g inherent to
each available employee r are known.

4.2 Parent Selection, Adaptive Crossover, Adaptive Mutation,
and Survival Selection

In order to develop the parent selection, we applied the traditional roulette wheel
selection process [18].

To develop the crossover and the mutation, we applied feasible processes for the
representation of the solutions. The crossover process contains a feasible crossover
operation for activity lists and a feasible crossover operation for assigned resources
lists. For activity lists, we used the two-point crossover proposed by Hartmann [21].
For assigned resources lists, we used the traditional uniform crossover [18].

The mutation process contains a feasible mutation operation for activity lists and a
feasible mutation operation for assigned resources lists. For activity lists, we used the
adjacent pairwise interchange operator described in [21]. For assigned resources lists,
we used the traditional random resetting [18].

The crossover and mutation processes are applied with adaptive probabilities Pc

and Pm, respectively. In this regards, we used the well-known adaptive probabilities
proposed by Srinivas [11, 18]. These probabilities are calculated as detailed in For-
mulas (3) and (4), where fmax is the maximal fitness into the population, favg is the
average fitness of the population, and (fmax − favg) is used as a measure of the diversity
of the population. In Formula (3), f ′ is the higher fitness of the two solutions to be
crossed, and Pc1 and Pc2 are predetermined values for the crossover probability, con-
sidering 0 ≤ Pc1, Pc2 ≤ 1. In Formula (4), f ″ is the fitness of the solution to be mutated,
and Pm1 and Pm2 are predetermined values for the mutation probability, considering
0 ≤ Pm1, Pm2 ≤ 1.

By Formulas (3) and (4), when the diversity of the population decreases, Pc and Pm

are increased to promote the exploration of unvisited regions of the search space and
thus to prevent the premature convergence of the evolutionary search. When the
population is diverse, Pc and Pm are decreased to promote the exploitation of visited
regions of the search space. Thus, probabilities Pc and Pm are adaptive to promote
either the exploration or exploitation according to the diversity of the population.

Pc ¼
Pc2ðfmax�f 0Þ
ðfmax�favgÞ f 0 � favg
Pc1 f 0\favg

(
ð3Þ

Pm ¼
Pm2ðfmax�f 00Þ
ðfmax�favgÞ f 00 � favg
Pm1 f 00\favg

(
ð4Þ

In order to develop the survival selection, we applied the traditional fitness-based
steady-state selection scheme [18]. In this scheme, the worst λ solutions of the current
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population are replaced by the best λ solutions generated from the mating pool. This
scheme preserves the best solutions found by the hybrid evolutionary algorithm [18].

4.3 Adaptive Simulated Annealing Algorithm

Once obtained a new population by the survival selection process, we applied an
adaptive simulated annealing algorithm to each solution of this population, except to
the best solution of this population which is maintained. This adaptive simulated
annealing algorithm is a variant of the one proposed in [8], and is described below.

The adaptive simulated annealing algorithm is an iterative process which starts
from a given encoded solution s for the problem, considering a given initial value T0 for
a parameter called temperature. In each iteration, a new solution s′ is generated from the
current solution s by a move operator. When the new solution s′ is better than the
current solution s (i.e., the fitness value of s’ is higher than the fitness value of s), the
current solution s is replaced by s′. Otherwise, when the new solution s′ is worse than
the current solution s, the current solution s is replaced by s′ with a probability equal to
exp(−delta/T), where T is the current temperature value and delta is the difference
between the fitness value of s and the fitness value of s′. Thus, the probability of
accepting a new solution s′ that is worse than the current solution s mainly depends on
the temperature value. If the temperature is high, the acceptance probability is also
high, and vice versa. The temperature value is decreased by a cooling factor at the end
of each iteration. The described process is repeated until a predefined number of
iterations is reached.

The initial temperature value T0 is defined before applying the simulated annealing
algorithm to the solutions of the population. In this case, T0 is inversely proportional to
the diversity of the population, and is calculated as follows: T0 ¼ 1= fmax � favg

� �
,

where (fmax − favg) is used as a measure of the diversity of the population. Therefore,
when the population is diverse, the value of T0 is low, and thus the simulated annealing
algorithm behaves like an exploitation process, fine-tuning the solutions of the popu-
lation. When the diversity of the population decreases, the value of T0 rises, and thus,
the simulated annealing algorithm changes its behavior from exploitation to exploration
in order to introduce diversity in the population and therefore to prevent the premature
convergence of the evolutionary search. Thus, the behavior of the simulated annealing
algorithm is adaptive to either an exploitation or exploration behavior according to the
diversity of the population.

In respect of the move operator applied by the simulated annealing algorithm to
generate a new solution from the current solution, we used a feasible move operator for
the representation of the solutions. The move operator contains a feasible move
operation for activity lists and a feasible move operation for assigned resources lists.
For activity lists, we used a move operator called simple shift [21]. For assigned
resources lists, we used a move operator which is a variant of the traditional random
resetting [18]. This variant modifies only one randomly selected position of the list.
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5 Computational Experiments

In order to develop the experiments, we utilized the six instance sets presented in [7].
The main characteristics of these instance sets are shown in Table 1. Each instance of
these instance sets contains information about a number of activities to be scheduled,
and information about a number of available employees to develop the activities. For a
detailed description of these six instance sets, we refer to [7].

Each instance of these instance sets has a known optimal solution with a fitness
level e(s) equal to N (N refers to the number of activities in the instance). The known
optimal solutions of the instances are considered here as references.

The hybrid evolutionary algorithm was run 30 times on each instance of the six
instance sets. To carry out these runs, the algorithm parameters were set with the values
detailed in Table 2. The algorithm parameters were set based on preliminary experi-
ments that showed that these values led to the best and most stable results.

Table 3 presents the results obtained by the experiments. Column 2 presents the
average percentage deviation from the optimal solution (Dev. (%)) for each instance
set. Column 3 presents the percentage of instances for which the value of the optimal
solution is achieved at least once among the 30 generated solutions (Opt. (%)).

The results obtained by the algorithm for j30_5, j30_10, j60_5 and j60_10 indicate
that the algorithm has found an optimal solution in each of the 30 runs carried out on
each instance of these sets.

The Dev. (%) obtained by the algorithm for j120_5 and j120_10 is greater than
0 %. Considering that the instances of j120_5 and j120_10 have known optimal
solutions with a fitness level e(s) equal to 120, we analyzed the meaning of the average
deviation obtained for each one of these sets. In the case of j120_5 and j120_10,
average deviations equal to 0.1 % and 0.36 % indicate that the average value of the
solutions obtained by the algorithm is 119.88 and 119.57 respectively. Thus, we may
state that the algorithm has obtained very high quality solutions for the instances of
j120_5 and j120_10. Besides, the Opt. (%) obtained by the algorithm for j120_5 and
j120_10 is 100 %. These results indicate that the algorithm has found an optimal
solution in at least one of the 30 runs carried out on each instance of the sets.

Table 1. Characteristics of instance sets

Instance set Activities per instance Possible sets of employees per activity Instances
j30_5 30 1 to 5 40
j30_10 30 1 to 10 40
j60_5 60 1 to 5 40
j60_10 60 1 to 10 40
j120_5 120 1 to 5 40
j120_10 120 1 to 10 40
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5.1 Comparison with a Competing Algorithm

To the best of our knowledge, three algorithms have been previously proposed to solve
the addressed problem: a classical evolutionary algorithm [6], a classical memetic
algorithm [7] that incorporates a hill-climbing algorithm into the framework of an
evolutionary algorithm, and a hybrid evolutionary algorithm [8] that integrates an
adaptive simulated annealing algorithm into the framework of an evolutionary algo-
rithm. These three algorithms use non-adaptive crossover and mutation processes to
develop the evolutionary search.

According to the experiments reported in [7, 8], the three algorithms have been
evaluated on the six instance sets presented in Table 1 and have obtained the results
that are shown in Table 4. Based on these results, the algorithm proposed in [8] is the
best of the three algorithms. Below, we compare the performance of this algorithm with
that of the hybrid evolutionary algorithm proposed here. For simplicity, we will refer to
the algorithm proposed in [8] as algorithm H.

The results in Tables 3 and 4 indicate that the hybrid evolutionary algorithm
proposed here and the algorithm H have reached the same effectiveness level (i.e., an
optimal effectiveness level) on the first four instance sets (i.e., the less complex sets).

Table 2. Parameter values of the hybrid evolutionary algorithm

Parameter Value
Population size 90
Number of generations 300
Crossover process
Pc1 0.9
Pc2 0.6

Mutation process
Pm1 0.1
Pm2 0.05

Survival selection process
λ 45

Simulated annealing algorithm
Number of iterations 25
Cooling factor 0.9

Table 3. Results obtained by the computational experiments

Instance set Dev. (%) Opt. (%)
j30_5 0 100
j30_10 0 100
j60_5 0 100
j60_10 0 100
j120_5 0.1 100
j120_10 0.36 100
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However, the effectiveness level reached by the hybrid evolutionary algorithm on the
last two instance sets (i.e., the more complex sets) is higher than the effectiveness level
reached by the algorithm H on these sets. Thus, the performance of the hybrid evo-
lutionary algorithm on the two more complex instance sets is better than that of the
algorithm H. The main reason for this is that, in contrast with the algorithm H, the
hybrid evolutionary algorithm uses adaptive crossover and mutation processes, and
these processes adapt their behavior to promote either exploration or exploitation of the
search space according to the diversity of the population. Thus, the hybrid evolutionary
algorithm can reach better solutions than algorithm H on the more complex instance
sets.

6 Conclusions

In this paper, we have proposed a hybrid evolutionary algorithm to solve the project
scheduling problem presented in [6]. This algorithm uses adaptive crossover, mutation
and simulated annealing processes in order to improve the performance of the evolu-
tionary search. These processes adapt their behavior to promote either exploration or
exploitation of the search space according to the diversity of the evolutionary algorithm
population. The computational experiments developed indicate that the performance of
the hybrid evolutionary algorithm on the used instance sets is better than those of the
algorithms previously proposed for solving the problem.

In future works, we will evaluate other adaptive crossover and mutation processes,
and other selection processes. Moreover, we will evaluate the incorporation of other
search and optimization techniques into the framework of the evolutionary algorithm.
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