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Control Strategies for Non-zero Set-point Regulation of
Linear Impulsive Systems
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Abstract—Despite its potential use in several meaningful problems
linear impulsive systems have not been extensively studied to account for
dynamics in which the equilibria are out of the origin. In this work a novel
characterization of the system equilibria and invariant regions - derived
from the definition of two underlying discrete-time systems - is given, and
based on this characterization, an unconstrained feedback control and a
zone Model Predictive Control strategies are proposed. The controllers
are tested in two drug administration problems: an intravenous bolus
administration of Lithium ions and a nonlinear HIV infection dynamics
under Zidovudine treatment.

Index Terms—Impulsive Systems, non-zero regulation, feedback con-
trol, MPC, drug administration.

I. INTRODUCTION

IMPULSIVE control systems (ICS) have received a great attention
in the last decade, specially in the field of biomedical research.

One central problem has been the scheduling of drug administration
in the treatment of several human diseases, as it was stated in the
Bellman’s seminal work [1]. The dynamics of the human immunod-
eficiency virus (HIV), where the intake of drugs twice or three times
a day can be directly interpreted as an impulsive input, is the most
studied case in the literature (i.e., [3], [15], [20]). Other meaningful
biomedical cases are malaria [4], influenza with co-infections [2],
tumor-bearing [5] and Type I diabetes [12], [19].

Despite its potential use in these important problems, the regulation
to non-zero set-points - which is the case in most applications - has
received little attention in the context of ICS. For instance, in [6],
the regulation problem is approached by using Lyapunov function
methods and sufficient conditions are given for both, the solvability
of the tracking problem and the output-tracking offset-free property.
However, it is assumed that the output reference (an equilibrium) is at
the origin; otherwise, the methodology does not work appropriately.

Recently, a version of model predictive control (MPC) for ICS
has been developed in [21], with an application to the dosing of
intravenous bolus of Lithium ions upon oral intake described in
[8]. The strategy also covers the problem to steer a linear ICS
(LICS) to a zone defined by a ‘therapeutic window’ not including
the origin. Furthermore, it accounts for feasibility at both, impulsive
and continuous time. However, the formulation is based on polytopic
invariant target sets, whose calculation is not a trivial task and could
be difficult to characterize in many applications. In the field of ICS
invariant set characterization, [14] also provides different conditions
for the invariance of nonlinear ICS.

The zone MPC ([9], [10]) is an MPC formulation that is less
general than the one having invariants sets as target sets ([21], [11]),
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but more general than the typical one having equilibrium points as set-
points ([17]). In this framework, the state is steered to an equilibrium
set - instead to an equilibrium point - making no differences between
points inside the set. Furthermore, this control strategy is formulated
in a tracking scenario where the equilibrium set can be far from the
origin. By means of the use of artificial/intermediary variables that are
only forced to lie in the equilibrium space, these kind of controllers
ensure feasibility for any change of the target set. It also provides
an enlarged domain of attraction, given by the controllable set to the
entire equilibrium space, instead of the controllable set to a given
point or invariant terminal set (as it is described in [17]).

The contributions of this paper - which is an extension of [18] that
includes stability results - are in three-fold: first, a novel dynamic
characterization of LICS is developed. Non-zero equilibria are ana-
lyzed and described by means of two underlying linear discrete-time
systems which naturally arise when the time instants before and after
the impulsive time are considered. Second, sufficient conditions to
stabilize the system at the defined equilibrium regions are presented.
Finally, an efficient unconstrained feedback control and a zone MPC
control - which guarantees feasibility and convergence (attractivity)
to the state window target - are proposed. The performance of both
strategies is illustrated by two biomedical applications, lying in the
central problem of scheduling of medicaments.

II. NOTATION

N, R, Rn and Rn×m denote the sets of non-negative integers, reals,
column vectors of length n and n by m matrices, respectively. Given
a matrix M , ρ(M) denotes its spectral radius (see [16]), and R(M)
denotes its range (column space). Given a function f : R → Rn,
f(a+)

∆
= limt→a+ f(t), i.e., f(a+) is the limit of f(t) when t

approaches a from the right. The convex hull of a collection of
sets Vi, i = 1, 2, · · · , k (i.e., the smallest convex set containing
all the sets) is denoted as ch{V1,V2, · · · ,Vk}. Given a nonempty
closed set V , the distance from a point x to V is denoted by
distV(x)

∆
= miny∈V ‖y − x‖, where ‖·‖ is the Euclidean norm.

The angle between subspaces X1 and X2, θX1,X2 , is defined as the
largest principal angle. If the dimension of X1 and X2 is 1, then
θX1,X2

∆
= min{acos

(∣∣x>1 x2

∣∣ / ‖x1‖ ‖x2‖
)

: x1 ∈ X1, x2 ∈ X2}.

III. PRELIMINARIES

The class of dynamic systems of interest in this paper consists in
a set of linear impulsive first-order differential equations of the form

ẋ(t) = Acx(t), x(0) = x0, t 6= τk, (1a)

x(τkT+) = Adx(τk) +Bu(τk), k ∈ N, (1b)

where t ∈ R denotes the time, τk, k ∈ N, denotes the impulse time
instants, x ∈ X ⊆ Rn denotes the (constrained) state vector and
u ∈ U ⊆ Rm denotes the (constrained) impulsive control inputs.
Both constraint sets, X and U , are convex compact sets, containing
the origin in their interior. Matrices Ac ∈ Rn×n and Ad ∈ Rn×n
are the continuous and discrete transition matrices, and B ∈ Rn×m
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is the impulsive input matrix. Furthermore, as part of the system
description, a target state set XTar ⊂ X is defined, which is the
region where the system is desired to be driven to and kept. It is
assumed that (Ac, Ad, B) is controllable ([22]).

Let t0 = 0 be the initial time and T = {0, τ1, · · · , τk, · · · }
a set of time instants, with T

∆
= τk+1 − τk, k ∈ N, being

the fixed time period. Let u be an input sequence of length
N , u = {u(τ1), u(τ2), · · · , u(τN )}, drawn from U , and let τk
be the largest impulse time such that τk ≤ t, with k ≤ N ,
for some t > 0. Then, for τk < t ≤ τk+1 the solution to
(1) is ϕ(t;x0,u) = eAc(t−τk)ϕ(τ+

k ;x0,u), with ϕ(0;x0,u) =

x0, which can also be expressed as x(t) = ϕ(t;x0,u)
∆
=

eAc(t−τk)
(
Mkx0+

∑k
j=1 M

k−jBu(τj)
)

, with M=Ade
AcT .

Let κ(·) be a control law, in such a way that u(τk) = κ(x(τk)),
for k ∈ N. Then, the closed-loop impulsive system is described by:

ẋ(t) = Acx(t), x(0) = x0, t 6= τk, (2a)

x(τ+
k ) = Adx(τk) +Bκ(x(τk)), k ∈ N. (2b)

This way, the closed-loop trajectory is denoted by x(t) =
φcl(t;x0, κ(·)), for t ≥ 0, with φcl(0;x0, κ(·)) = x0.

IV. DYNAMIC CHARACTERIZATION OF IMPULSIVE SYSTEMS

It is known that advanced control strategies make an explicit
use of the characterization of the system under control (equilibria,
controllable sets, etc.). However, the dynamic characterization of non-
zero equilibria has not received enough attention in the ICS literature,
with the remarkable exception of [21]. In that work general invariant
sets are defined, but they are in general difficult to compute (they
are the fixed points of an iterative procedure). Here, a simpler form
to obtain these kind of invariant sets is presented by defining two
underlying discrete-time subsystems, which basically describe the
ICS at times τk, and t→ τ+

k , for k ∈ N.

A. Underlying discrete-time subsystems

The idea now is to define two underlying discrete-time subsystems
(denoted as primary and secondary UDS, respectively) as follows:

x•(j + 1) = A•x•(j) +B•u•(j), x•(0)=x(τ0), (3a)

x◦(j + 1) = A◦x◦(j) +B◦u◦(j), x◦(0)=x(τ+
0 ), (3b)

where A• ∆
= eAcTAd, A◦ ∆

= Ade
AcT , B• ∆

= eAcTB and B◦ ∆
= B,

and u◦(j + 1) = u•(j), for j ∈ N.
The primary UDS (3a) is enough to characterize the ICS (1), at

sampling times τk, because it takes into account both, the jumps and
the free continuous-time evolution between the sampling times. In
fact, the continuous-time response of the ICS (1), for a period t ∈
(τk, τk+1], and a given state x(τk) and input u(τk), can be described
by x(t) = φ(t;x(τk), u(τk)) = A•(t)x(τk)+B•(t)u(τk), for t ∈
(0, T ], where A•(t) ∆

= eActAd and B•(t) ∆
= eActB. The secondary

UDS (3b) is useful to characterize the equilibrium region, as it can
be seen in section IV-C.

B. Impulsive System Equilibrium Set Characterization

If matrices Ac and B are assumed to be full rank, the only formal
equilibrium point of the ICS (1) is given by (us, xs) = (0, 0), which
is the only pair verifying ẋ = 0 and x(τ+

k ) = x(τk). However,
by abstracting the general concept of equilibrium (invariance) and
taking into account the ICS only at times τk, it is possible to find
some generalization that accounts for equilibrium entities out of the
origin [21].

Definition 1: (Generalized control equilibrium set of ICS) Consider
a ICS (1), a period T and a non-empty convex set Ω. A set Xs ∈ X
is a generalized control equilibrium set with respect to Ω if for each
xs ∈ Xs there exists an input us = us(xs) ∈ U such that

φ(T ;xs, us(xs)) ∈ Xs, (4)

os(xs, us(xs)) ⊆ Ω, (5)

where os(xs, us)
∆
= {φ(t;xs, us), t ∈ (0, T ]}. The set {us(xs) ∈

U : xs ∈ Xs} is denoted as Us(Xs).
The state trajectory in a period T , φ(t;xs, us), for t ∈ (0, T ],

uniquely defines an orbit os. More precisely, the orbit is given by the
free response after the jump, φ(t;xs, us) = eAct(Adxs +Bus), t ∈
(0, T ]. The orbits os(xs, us), with xs ∈ Xs, are called equilibrium
orbits. Fig. 1 shows a schematic plot of some equilibrium orbits.

Given that os is non-convex, a better characterization of the
generalized equilibrium can be done by defining its convex hull.

Definition 2: (Equilibrium orbits set of ICS) Consider a ICS (1)
and a generalized control equilibrium set Xs, together with the
equilibrium input set Us(Xs). Then, the equilibrium orbits set of
ICS, XOs(Xs) = XOs(Xs,Us(Xs)), is given by

XOs(Xs)
∆
= ch {φ(t;xs, us(xs)), t ∈ [0, T ], ∀xs ∈ Xs}
= ch {os(xs, us(xs)), ∀xs ∈ Xs} . (6)

Now, according to Definitions 1 and 2, it is clear that each equilibrium
set of the primary underlying subsystem (3a), X •s , is a (particular)
generalized control equilibrium set.

Property 1: Let X •s ⊆ X be a set of states x•s ∈ X for which
there exists an input us = us(x

•
s) ∈ U such that x•s = A•x•s +

B•us(x
•
s). Then X •s is a generalized control equilibrium set of ICS

with respect to the associated equilibrium orbit set, XOs(X •s ) =
XOs(X •s ,Us(X •s )), where Us(X •s ) = {us(x•s) ∈ U : x•s ∈ X •s }.

Proof: It is easy to see that for each x•s ∈ X •s ,
φ(T ;x•s , us(x

•
s)) = A•(T )x•s + B•(T )us(x

•
s) = x•s ∈ X •s and

os(x
•
s , us(x

•
s))⊆XOs({x•s}, {us(x•s)}) ⊆ XOs(X •s ).

Condition x•s = A•x•s +B•us(x
•
s) implies that there is a state x◦s =

x◦s(x
•
s)

∆
= Adx

•
s +Bus(x

•
s), such that x◦s = A◦x◦s +B◦us(x

•
s) (i.e.,

x◦s is an equilibrium of (3b) associated to the same us(x•s)).
Let us now introduce the counterpart of the generalized control

equilibrium set, for the closed-loop ICS (2):
Definition 3: (Generalized equilibrium set of ICS) A set Xs is

a generalized equilibrium set, with respect to Ω̄, for the closed-loop
system (2), if Xs is a generalized control equilibrium set, with respect
to Ω̄, for the open-loop system (1), with u = κ(x).

C. Jump Set

The case Ad = In in the ICS (1) is of particular interest in many
practical applications as, for instance, drug administration problems.
In this case, (1) can be viewed as a continuous-time system, ẋ(t) =
Acx(t) +Bu(t), controlled by impulsive inputs. Let now X •s be the
maximal equilibrium set of the UDS (3a) contained in X . Given that
system (1) is assumed to be controllable both UDS, (3a) and (3b)
are also controllable. Then X •s and X ◦s (X •s )

∆
= {x◦s ∈ X : x◦s =

x•s +Bus(x
•
s)} (the equilibrium set of UDS (3b), corresponding to

X •s ) are compact sets contained in subspaces of dimension m of Rn,
and it is possible to define:

Definition 4: (Jump set of ICS) The jump set of ICS (1) is given
by the convex hull:

Xs(X •s )
∆
= ch {X •s ,X ◦s (X •s )} ⊆ Rn. (7)

Next, the main property of Xs(X •s ) is presented.
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Property 2: Xs(X •s ) (and any subset of Xs(X •s ) containing X •s ) is
a generalized control equilibrium set with respect to XOs(Xs(X •s )),
for system (1).

Proof: It will be shown that any state xs ∈ Xs(X •s ) can be
feasibly steered to a state x◦s(x•s) ∈ X ◦s (X •s ) in a jump, and then,
after the free response, it reaches a state x•s ∈ X •s ⊆ Xs(X •s ).
By Definition 4, every state xs ∈ Xs(X •s ) - not lying in R(B))
- can be expressed as xs = αx•s + (1 − α)x◦s(x

•
s), for some

x•s ∈ X •s and some α ∈ R (not necessarily positive). Furthermore,
since Xs(X •s ) is bounded (given that X •s and X ◦s are bounded),
α ∈ [α, α], for bounded minimal and maximal values, α and α. So,
if input û ∆

= αus(x
•
s) is injected to the system, then φ(T ;xs, û) =

eAcT (xs +Bû) = eAcT (αx•s + (1− α)x◦s(x
•
s) + αBus(x

•
s)) =

eAcT ((1− α)x◦s(x
•
s) + αx◦s(x

•
s)) = eAcTx◦s(x

•
s) = x•s ∈ Xs(X •s ),

where the equalities follow from the facts that x◦s(x•s) = x•s +
Bus(x

•
s) and eAcTx◦s(x

•
s) = A•x◦s(x

•
s) = x•s . û = αus(x

•
s) is

feasible, for α ∈ [α, α], because of the convexity of U and Xs(X •s ).
Finally, it is trivial that the trajectories starting in xs ∈ Xs(X •s ) will
remain in XOs(Xs(X •s )).

Remark 1: (Computation of XOs(Xs(X •s ))) In practical scenarios
set XOs(Xs(X •s )) can be approximated by sampling in t the map
S(t)

∆
= eActX ◦s (X •s ). Also, it can be exactly over-approximated by

a polytopic set, following methods as the one proposed in [7], which
avoids the problem of selecting a sampling time.

D. Effect of the time period T

In order to better characterize the whole behavior of the equilibria
of system (1), some properties that describe how the sets X •s ,
X ◦s (X •s ), Xs(X •s ) and XOs(Xs(X •s )) behave as functions of T are
presented.

Property 3: Let E•s and E◦s be the smallest affine sets containing
X •s and X ◦s (X •s ), respectively (i.e., given that X •s and X ◦s (X •s )
contain the origin, the subspaces where these sets lie in). Let X cs
be the maximum equilibrium set of the continuous-time system
ẋ(t) = Acx(t) + Bu(t) (which does not depend on T ). Then, (i)
the angle between E•s and E◦s is an increasing function of T ; i.e.,
π/2 ≥ θE•s ,E◦s (T2) > θE•s ,E◦s (T1) ≥ 0, for T2 > T1 and furthermore,
limT→0 θE•s ,E◦s (T ) = 0; (ii) limT→0 X •s = limT→0 X ◦s (X •s ) = X cs ,
which means that Xs(X •s ), also tends to X cs as T → 0; (iii)
limT→0 XOs(Xs(X •s )) = X cs .

Proof: (i) For every x•s ∈ E•s , x◦s ∈ E◦s , x•s = eAcTx◦s(x
•
s)

(free response of the unconstrained system). Then,
considering m = 1 (and denoting x◦s(x

•
s) = x◦s) for

simplicity, θE•s ,E◦s (T2) = acos
(∣∣∣x•′s x◦s∣∣∣ / ‖x•s‖ ‖x◦s‖) =

acos
(∣∣∣x◦′s e(AcT2)′x◦s

∣∣∣ /∥∥eAcT2x◦s
∥∥ ‖x◦s‖) <

acos
(∣∣∣x◦′s e(AcT1)′x◦s

∣∣∣ /∥∥eAcT1x◦s
∥∥ ‖x◦s‖) =

θE•s ,E◦s (T1), for all T2 > T1. Furthermore,
limT→0

(∣∣∣x◦′s e(AcT )′x◦s

∣∣∣ / ∥∥eAcTx◦s
∥∥ ‖x◦s‖) = 1, which implies

that limT→0 θE•s ,E◦s (T ) = 0.
(ii) The fact that limT→0 X •s = limT→0 X ◦s (X •s ) follows from

the fact that for every x•s ∈ X •s , x◦s ∈ X ◦s (X •s ), x•s = eAcTx◦s(x
•
s).

Now, assuming without loss of generality that Ac is invertible, the
maximal equilibrium set X •s is spanned by G• ∆

= (In−A•)−1B• =
(In − eAcT )−1eAcTB. Then, as (In − eAcT )−1eAcTB approaches
(AcT )−1B, as T → 0, being A−1

c B
∆
= G the matrix span-

ning the continuous-time equilibrium set X cs , and T a scalar, then
limT→0 X •s = X cs . The same happens with X ◦s (X •s ), which implies
that limT→0 Xs(X •s ) = X cs .

(iii) limT→0 XOs(Xs(X •s )) = X cs follows from the fact that, for
T → 0, the impulsive system (1) tends to the continuous-time system,

Fig. 1. State equilibrium orbit set, OTar
s , state target set, XTar, and state

equilibrium sets for the UDS X ◦Ts and X •Ts . Each individual trajectory (in
red) represents the equilibrium orbit os. Sets Xs, X ◦s and X •s are also shown.

ẋ(t) = Acx(t)+Bu(t) (from the sampling theory), and furthermore,
by (ii), limT→0 Xs(X •s ) = X cs .

E. Target equilibrium sets for control purposes

The control goal is to steer a LICS (1) to an arbitrary nonempty
target set XTar ⊆ X , and once the system reaches this set, to keep it
there indefinitely. To accomplish this, it is necessary to define the so-
called target counterpart of the equilibrium sets of subsection IV-B.
This way, X •Tar

s is defined as the maximal equilibrium set of UDS
(3a) such that XTar

Os
(XTar

s (X •Tar
s )) ⊆ XTar, where XTar

s (X •Tar
s )

∆
=

ch
{
X •Tar
s ,X ◦Tar

s (X •Tar
s )

}
, X ◦s (X •Tar

s ) = {x◦s(x•s) ∈ Rn : x•s ∈
X •Tar
s } and UTar

s = {us(x•s) ∈ Rm : x•s ∈ X •Tar
s }.

Remark 2: Notice that, according to Property 3, the parameter that
decides if there exists a set XTar

Os
(XTar

s (X •Tar
s )) ⊆ XTar is the time

interval T . Given that the size of XTar
Os

(XTar
s (X •Tar

s )) increases
when T increases, it could exist a maximal T , Tmax, for which
the condition holds. Furthermore, Tmin is usually given by practical
restrictions (since maximal frequency of impulses is determined by
the control problem itself), and so this minimum time interval should
be checked to be smaller than Tmax; otherwise, the zone control
problem would not be properly stated.

The procedure to compute X •Tar
s and to find Tmax is as follows:

(1) Compute the maximal set X •Tar
s ⊆ XTar, for T = Tmin (Tmin

is assumed to be given), such that XTar
Os

(XTar
s (X •Tar

s )) ⊆ XTar. (2)
If the set X •Tar

s is empty, then, the control problem is not properly
formulated, and the target set XTar must be enlarged or Tmin reduced.
(3) If X •Tar

s is not empty, then, increase T up to a value such that
the condition does not hold anymore. This value defines Tmax for
the given target XTar. (4) The selected period T must be Tmin <
T < Tmax. See Fig. 1 for a schematic plot of the orbit set, XTar

Os
,

the target set, XTar, and X •Tar
s in R3.

F. Attractivity of the equilibrium sets

Once the equilibrium sets are characterized, the next step is to
establish some stability definitions. Based on [21], the attractivity of
sets that not necessarily contain the origin will be discussed.

Definition 5: (Attractive sets) A nonempty, closed and convex set
X1 ⊆ X is attractive for the closed-loop system (2), with respect to a
(nonempty, closed and convex) set X2 ⊇ X1, with X ⊇ X2, if there
exists a vicinity of X1 such that limk→∞ distX1 (φ(τk;x0, κ(·))) =
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0, and limt→∞ distX2 (φ(t;x0, κ(·))) = 0, for all x0 in such vicinity.
If X2 ≡ Rn, then X1 is called weakly attractive.

Weak attractivity only accounts for the closed-loop system (2)
at the impulsive times, while attractivity also specifies a second
set where the continuous-time trajectories between jumps converge.
This makes sense given that the trajectories between jumps are free
responses (nothing can be done up to the next jump time) and they
could escape. An asymptotic stability definition is also presented
in [21], which basically requires the uniform boundedness of the
solution trajectories. However, in this work only the attractivity of
the control strategy will be considered. Next, some results regarding
the attractivity of the generalized equilibrium sets are presented

Theorem 1: Let X •Tar
s be an attractive equilibrium set - in the

usual sense of attractivity of discrete-time systems - for the closed-
loop UDS (3a), x•(k+1) = A•x•(k)+B•κ(x•(k)), where κ(x) is
assumed to be continuous in x. Then, the generalized equilibrium set
XTar
s (X •Tar

s ) is attractive for the closed-loop system (2), controlled
by κ(·), with respect to XTar

Os
(X •Tar

s ).
Proof: Given that X •Tar

s is an attractive equilibrium set for
the UDS (3a), controlled by κ(·), then there exists a vicinity of
this set such that limk→∞ x

•(k) = x•s , for some x•s ∈ X •Tar
s ,

and κ(x•s) = us(x
•
s). Then, given that x•(k)

∆
= φ(τk;x0, κ(·)),

with x•(0) = φ(0;x0, κ(·)) = x0, and X •Tar
s ⊆ XTar

s (X •Tar
s ),

it follows that limk→∞ distXTar
s (X•Tar

s ) (φ(τk;x0, κ(·))) = 0. On

the other hand, consider the sequence of trajectories trk(t)
∆
=

φ(t;x•(k), κ(x•(k))) = eAct (x•(k) +Bκ(x•(k))), with t ∈
(τk, τk+1], and k ∈ N. These trajectories are continuous with
respect to x•(k), for every k ∈ N (note that κ(·) is assumed to be
continuous). Then, as limk→∞ x

•(k) = x•s for some x•s ∈ X •Tar
s ,

it follows that os(t)
∆
= φ(t;x•s , κ(x•s)) = eAct (x•s +Bu•s), t ∈

(τk, τk+1]. Finally, by the definition of the equilibrium orbit set
XTar
Os

(X •Tar
s ), os(x•s , us(x•s)) ⊆ XTar

Os
(X •Tar

s ) for every x•s ∈ X •s ,
which means that limt→∞ distXTar

Os
(X•Tar

s ) (φ(t;x0, κ(·))) = 0, and

so XTar
s (X •Tar

s ) is attractive with respect to XTar
Os

(X •Tar
s ) for the

closed-loop system (2).
This result permits a flexible design of the controllers, since

steering the UDS (3a) to its corresponding equilibrium region, X •Tar,
implies to steer the ICS (1) to XTar

Os
(X •Tar

s ) ⊆ XTar.

V. CONTROL STRATEGIES

In this Section two control strategies are presented. The first one
is a standard unconstrained feedback control adapted to the non-
zero regulation problem, whose main advantage is its simplicity. The
second one is an MPC, which is designed with an entire set as a target
(zone MPC, [9]), and explicitly considers input and state constraints.

A. Affine feedback control for unconstrained systems

The control objective here is to steer the impulsive system (2) to
a non-zero equilibrium inside the target set XTar.

Theorem 2: Consider an equilibrium x◦s ∈ X ◦Tar
s ⊆ XTar, and

assume that there exist parameters K and ζ such that ρ(F ) < 1 and
Bζ = (I − F )x◦s , with F = (Ad −BK)eAcT . Then, x◦s ∈ XTar

s is
attractive for system (2), with respect to XTar

Os
and κ(x) = −Kx+ζ.

Proof: Consider an equilibrium sate x◦s and the control law
κ(x) = −Kx+ζ, and define F ∆

= (Ad−BK)eAcT . Then, the evolu-
tion of system (1a) from an initial state x0 can be written as x(τ+

k ) =
F kx0 +

(
F k−1 + F k−2 + · · ·+ F + I

)
Bζ. If K is chosen such

that ρ(F ) < 1, the geometric series
(
F k−1 + F k−2 + · · ·+ F + I

)
converges to (I−F k)(I−F )−1. Then, the system evolution becomes
x(τ+

k ) = F kx0 + (I −F k)(I −F )−1Bζ. Then, limk→∞ |x(τ+
k )−

x◦s | = |F kx0 + (I − F k)(I − F )−1Bζ − x◦s |

= |(I−F )−1Bζ−x◦s |, where the last equality follows from the fact
that F k → 0 as k →∞. If ζ is chosen to verify Bζ = (I − F )x◦s ,
then limk→∞ |x(τ+

k ) − x◦s | = 0, which implies that x•(k) =
eAcTx(τ+

k ) converges to eAcTx◦s = x•s ∈ X •Tar
s , or in other words,

X •Tar
s is attractive for x•(k + 1) = A•x•(k) + B•κ(x•(k)), with

κ(x) = −Kx+ζ. Now, since κ(x) is continuous w.r.t. x, by Theorem
1, XTar

s is attractive for the closed-loop system with respect to XTar
Os

.

Notice that according to [22], the controllability of the pair
(Ac, B) implies that there exists a feedback K such the closed-
loop system eigenvalues can be placed in arbitrary locations. Besides,
by the standard methods, if the underlying discrete system (1b) is
considered, such an eigenvalue placement problem can be solved if
the rank of [λI −A•, B•] is n, for all λ ∈ C.

B. Zone model predictive control

In this subsection a zone MPC formulation which steers the impul-
sive system to an equilibrium target set defined by XTar

s ⊂ XTar is
described. The strategy is an extension of [9] to the impulsive case.
In contrast to the feedback controller, this strategy takes the whole set
XTar
s as a target and takes into account state and input constraints.

The cost of the optimization problem that the MPC solves on-line is
given by:

VN (x,X •Tar
s ,UTar

s ;u, ua, xa)

= Vdyn(x;u, ua, xa) + Vf (X •Tar
s ,UTar

s ;ua, xa), (8)

where Vdyn(x;u, ua, xa)=
∑N−1
j=0 ‖x(j)−xa‖2Q+‖u(j)−ua‖2R, with

Q > 0 and R > 0, is a term devoted to steer the system to a certain
artificial open-loop equilibrium given by (ua, xa) ∈ Us × X •s ; and
Vf (X •Tar

s ,UTar
s ;ua, xa) = p

(
distX•Tar

s
(xa)+distUTar

s
(ua)

)
, with

p > 0, is a terminal cost devoted to steer xa to the whole sets
X •Tar
s and ua to UTar

s , respectively. Notice that in the latter cost, the
current state x and the sets X •Tar

s and UTar
s are parameters, while

u = {u(0), u(1), · · · , u(N − 1)}, ua and xa are the optimization
variables (N being the control horizon).

The optimization problem to be solved at time k by the MPC is
given by PMPC(x,X •Tar

s ,UTar
s ):

min
u,ua,xa

VN (x,X •Tar
s ,UTar

s ;u, ua, xa)

s.t.
x(0) = x,
x(j + 1) = A•x(j) +B•u(j), j ∈ I0:N−1

x(j) ∈ X , u(j) ∈ U , j ∈ I0:N−1

x(N) = xa,
A•xa +B•ua = xa (xa ∈ X •s , ua ∈ Us) .

Constraint x(N) = xa is a terminal constraint that forces the state
at the end of the control horizon N to reach the artificial equilibrium
state xa, while the last constraint forces the artificial variable to be
an equilibrium pair in X •s × Us. The control law, derived from the
application of a receding horizon control policy (RHC), is given
by κMPC(x,X •Tar

s ,UTar
s ) = u0(0;x), where u0(0;x) is the first

element of the solution sequence u0(x). The domain of attraction
of the closed-loop is given by the controllable set in N steps to
the maximum equilibrium set X •s , X •N (X •s ) (because constraints
x(N) = xa and A•xa + B•ua = xa force the current state x
to reach any equilibrium in N time steps).

Remark 3: An approximate version of a continuous-time constraint
of the form A•(t)x(j) + B•(t)u(j) ∈ X , t ∈ (0, T ], j ∈ I0:N−1,
can be included in Problem PMPC, to ensure that the free response
of system (1) remains in X . This can be done by sampling in t
the evolution A•(t)x(j) + B•(t)u(j), with a sampling time small
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enough to account for large escapes. Furthermore, in this case, an
extra assumption is necessary to ensure that (at least) an input exists,
for every x ∈ X •N , such that the condition is fulfilled.

Next, the main Theorem regarding the feasibility and attractivity
of the proposed MPC is presented.

Theorem 3: Suppose that XTar
s (X •Tar

s ) is a generalized equilib-
rium set with respect to XTar

Os
(X •Tar

s ), for the open loop system (1),
as the one defined in Section IV-E. Then, (i) the MPC controller is
recursively feasible, (ii) set XTar

s (X •Tar
s ) is a generalized equilibrium

set for system (1) controlled by the MPC, with respect to XTar
Os

, and
(iii) set XTar

s (X •Tar
s ) is attractive for system (1), with respect to

XTar
Os

(X •Tar
s ).

Proof: (i) Given that any state x ∈ X •N could be steered to
X •s fulfilling the constraint in the path, it is possible to follow the
usual steps to show feasibility in MPC, and construct a feasible input
sequence for the optimization problem at time step k+1, by shifting
one time ahead the optimal solution to the same problem at time step
k, and adding to the tail of the sequence the artificial input value ([9]).

(ii) Assume that the ICS is placed at some xs ∈ XTar
s (X •Tar

s ) ⊆
Xs, at time k = 0. Given that XTar

s (X •Tar
s ) is a generalized

equilibrium set with respect to XTar
Os

(X •Tar
s ), for system (1), then,

there exists a feasible input sequence û = {u(0), . . . , u(N − 1)},
with u(0) = αus(x

•
s) and u(j) = us(x

•
s) ∈ UTar

s , for j ∈ I1:N−1,
for a particular value of α ∈ [α, α] (see the Proof of Property 2),
which produces a sequence of states x(j) = x•s , for j ∈ I1:N ,
that belongs to X •Tar

s ⊆ XTar
s . Furthermore, by the MPC cost

function definition (8), this input sequence, together with the artificial
variables ua = us(x

•
s) and xa = x•s , are the optimal solution

to MPC optimization problem, since they produce a null dynamic
and terminal cost (any input sequence different from the proposed
one produces a positive cost). Then, given that u(0) = αus(x

•
s) is

injected to the ICS (1), φ(T ;x•s , us(x
•
s)) = x•s ∈ XTar

s (X •Tar
s ). In

addition, the free trajectory corresponding to x•s , os(x•s , us(x•s)) =
ch{φ(t;x•s , us(x

•
s)), t ∈ [0, T ]}, is clearly in XTar

Os
(X •Tar

s ).
(iii) Consider a state x ∈ XN\XTar

s , at a given
time k. Consider also the optimal solution for this state,
u0(x) =

{
u0(0;x), · · · , u0(N − 1;x)

}
, u0

a(x) and x0
a(x), and the

corresponding state sequence x0(x) =
{
x0(0;x), · · · , x0(N ;x)

}
,

where x0(0;x) = x and x0(N ;x) = x0
a ∈ X •s . The cost function

of Problem PMPC(x,X •Tar
s ,UTar

s ), corresponding to u0(x),

u0
a(x) and x0

a(x) is given by V 0
N (x)

∆
=
N−1∑
j=0

(
∥∥x0(j;x)−x0

a(x)
∥∥2

Q
+∥∥u0(j;x)−u0

a(x)
∥∥2

R
) + Vf (X •Tar

s ,UTar
s ;u0

a(x), x0
a(x)). Now,

consider the successor state x+ = A•x+B•u0(0;x), at time k+ 1,
which is obtained by applying the control law κMPC(x) = u0(0;x),
and define the following input sequence and artificial variables
candidates: û =

{
u0(1;x), · · · , u0(N − 1;x), u0

a(x)
}

, ûa = u0
a(x)

and x̂a = x0
a(x), where u0

a(x) and x0
a(x) are the optimal

artificial variables at time step k. Since no model mismatch
is considered for predictions, the successor states x+ is equal
to x0(1;x). Solution (û, ûa, x̂a) has then an associated state
sequence x̂ =

{
x0(1;x), · · · , x0(N ;x), x0

a(x)
}

. By the terminal
constraint in Problem PMPC , is x0(N ;x) = x0

a(x), which
means that x0

a(x) fulfills x0
a(x) = A•x0(N ;x) + B•u0

a(x).
Furthermore, given that u0(x) and u0

a(x) are part of a feasible
solution to Problem PMPC at time step k, then û is feasible for
Problem PMPC at time step k + 1. The cost function of Problem
PMPC(x+,X •Tar

s ,UTar
s ), at k + 1, for the solution (û, ûa, x̂a),

is given by V̂N (x+)
∆
= VN (x+,X •Tar

s ,UTar
s ; û, ûa, x̂a) =

N−1∑
j=0

(‖x̂(j)− x̂a‖2Q +
∥∥u0(j)− ûa

∥∥2

R
) + Vf (X •Tar

s ,UTar
s ; ûa, x̂a),

where x+ = x0(1;x). So, this cost can be written as

a function of x: V̂N (x+) =
N−1∑
j=1

(
∥∥x0(j;x)−x0

a(x)
∥∥2

Q
+∥∥u0(j;x)−u0

a(x)
∥∥2

R
) +

∥∥x0(N ;x+)− x0
a(x)

∥∥2

Q
+∥∥u0

a(x)− u0
a(x)

∥∥2

R
+ Vf (X •Tar

s ,UTar
s ;u0

a(x), x0
a(x)) (where

the second term of the right hand side is null). If the proposed
feasible cost at time k + 1 is compared with the optimal one at
time k, it is obtained V̂N (x+)−V 0

N (x) =−
∥∥x0(0;x)−x0

a(x)
∥∥2

Q
−∥∥u0(0;x)−u0

a(x)
∥∥2

R
. Now, by optimality of the solution to

Problem PMPC(x+,X •Tar
s ,UTar

s ), at k + 1, it follows that the
optimal cost function V 0

N (x+) fulfils V 0
N (x+) ≤ V̂N (x+), and so

V 0
N (x+) − V 0

N (x) ≤ −
∥∥x0(0;x)−x0

a(x)
∥∥2

Q
−
∥∥u0(0;x)−u0

a(x)
∥∥2

R
.

Since the stage cost is a positive definite function, by definition,
this implies that x0(0;x) tends to x0

a(x) and u0(0;x) tends to
u0
a(x) as k → ∞. Now, by Lemma 1 in the Appendix, the fact

that (u(k), x(k))
∆
= (u0(0;x), x0(0;x)) → (u0

a(x), x0
a(x))

∆
=

(ua(k), xa(k)), as k → ∞ implies that x0(0;x) tends to X •Tar
s

and u0(0;x) tends to UTar
s as k → ∞, which means that X •Tar

s is
an attractive set for the UDS (3a), controlled by the MPC. So, given
that the control law κMPC(x,X •Tar

s ,UTar
s ) is continuous w.r.t. x,

by Theorem 1, XTar
s is attractive, with respect to XTar

Os
(X •Tar

s ), for
the ICS (1) controlled by the MPC.

VI. NUMERICAL EXAMPLES

A. Example 1: Lithium ions distribution in the human body

In [8] a physiological pharmacokinetic model based on experi-
mental data, which describes the distribution of Lithium ions in the
human body upon oral administration, is provided. The system state
vector is given by x(t) = [CP (t) CRBC(t) CM (t)]>, where CP (t)
is the concentration of plasma (P), CRBC(t) is the concentration of
the red blood cells (RBC), and CM (t) is the concentration of muscle
cells (M). All these concentrations are given in nmol/L. The input u is
given by the amount of the dose, in nmol. The administration period
is initially fixed in T = 3 h. The dynamics of the drug distribution
is described by an ICS as in (1), characterized by the matrices

Ac=

 −0.6137 0.1835 0.2406
1.2644 −0.8 0
0.2054 0 −0.19

 , B=

 10.9
0
0

 , (9)

and Ad = I2x2. The state and input constraints are given by X =
{x : [0 0 0]> ≤ x ≤ [2 1.2 1.2]>} and U = {u : 0 ≤ u ≤ 5.95},
respectively. The state window target is defined by XTar = {x :
[0.4 0.6 0.5]> ≤ x ≤ [0.6 0.9 0.8]>}, as it is described in [8], [21].
The drug’s concentration within the boundaries of X guarantees the
effectiveness of the therapy.

According to the methodology proposed in Section IV-E, the
maximal intake period T for the given therapeutic window XTar,
is given by Tmax = 6 h. In fact, for larger periods the set containing
all the orbits starting at X •Tar

s , XTar
Os

(X •Tar
s ), is not contained in

XTar. This analysis provides a practical way to find the maximal
value of T , according to control system specifications. The intake
period was then selected to be T = 3 h.

1) Affine Feedback Control: To implement the feedback control
through Theorem 2, it is necessary to find K and ζ. K was
chosen by a standard eigenvalue placement problem, and its
value is K =

[
0.05 0.01 0.02

]
. The spectral radius was

approximately 0.6807. The value ζ ≈ 0.0513 was computed from
Bζ = (I − F )x◦s , with x◦s =

[
0.57 0.78 0.55

]
. The control

equilibrium is us = 0.89. The state and input time evolutions are
shown in Fig. 2 (blue circles and dotted line). For this application,
the performance of this strategy was good and the constraints in
states and control were not violated. Its main advantage is, clearly,
its simplicity. However, as it is shown in the second example,
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Fig. 2. State time evolution. Feedback control, dotted line; MPC, solid line

Fig. 3. State evolution in the state space, for the MPC controller.

constraints satisfaction cannot be ensured.

2) Zone MPC Control: The MPC controller is tuned as: N = 5,
Q = diag([1 1 1]), R = 2 and p = 100. Notice that in contrast to
the control horizon used in [21], which is N = 15, a reduced one is
used here, because of the enlarged domain of attraction. Fig. 2 (black
stars and solid line) shows the state and input time evolutions. As it is
desired, each state is steered to its corresponding therapeutic window
relatively fast. Besides, the input makes the main effort first and, after
its settling time, it remains constant at the desired equilibrium value
us. Notice that both, states and inputs, are feasible at any time. Fig.
3 shows the portrait phase in the state space for the evolution plotted
in Fig. 2. As it can be seen, the state trajectory moves away from
Xs(X •s ) and X •Tar

s first and then it converges to X •Tar
s . Notice that

the state trajectory enters XTar
s (and XTar) from below, since the

controller cost penalizes only the distance from the state trajectory
to the entire set. In fact, no matter what state equilibrium x•s ∈ X •Tar

s

the system reaches, the controller objective will be null.

B. Example 2: HIV infection dynamics with treatment
This second example is ‘3D HIV model’ (taken from [20]) which

describes the virus infection dynamics and incorporates the interac-
tion of the intake of drugs (w, u) ([13]). The complete impulsive
model is given by:

Ṫc(t) = s− δTc(t)− βTc(t)z(t),
ẏ(t) = βTc(t)z(t)− µy(t),
ż(t) = (1− w(t)

w(t)+w50
)ky(t)− cz(t),

ẇ(t) = −Kww(t),
w(τ+

k ) = w(τk) + u(τk), k ∈ N,

(10)

where Tc represents the concentration of healthy CD4 cells (cell/mm3)
which are produced from the thymus at a constant rate s (cell mm−3

day−1) and die with a half life time equal to 1
δ

(day). The healthy
cells are infected by the virus at a rate proportional to the product
of their population and the amount of free virus particles. Constant
β (ml copies−1 day−1) indicates the effectiveness of the infection
process. The infected CD4+ cells (y) result from the infection of
healthy CD4 cells and die at a rate µ (day−1). Free virus particles
(z) are produced from infected CD4 cells at a rate k (copies cells−1

mm−3 ml−1 day−1) and die within a half life time equal to 1
c

(day). The pharmacokinetics and pharmacodynamics phases of the
drug administration are related to w (the amount of drug in the
body at time t) and η = w(t)

w(t)+w50
(the efficacy of an anti-HIV

treatment, where w50 is the concentration of drug that lowers the
viral load by 50%). Although a cocktail of drugs is generally used,
only Zidovudine therapies will be considered. The parameters of the
model are: s = 9, δ = 0.009, β = 4 · 10−6, µ = 0.3, k = 80,
c = 0.6, Kw = 8.4 (day), w50 = 89.6 (mg). The in vivo parameters
for Zidovudine given in [13] are used. For more details see [20].

This model has two equilibria, the first one (or
the ‘healthy’ equilibrium) characterized by the absence
of virus, i.e. (Tch, yh, zh, wh) =

(
s
δ
, 0, 0, 0

)
, and

the second one (or the ‘endemic’ equilibrium) dom-
inated by a virus concentration (Tce, ye, ze, we) =(

(ue+w50Kw)µc
βκw50Kw

, s−δTce
µ

, w50Kwκye
c(ue+w50Kw)

, ue/Kw

)
. Notice that

for ue = 0 (equilibrium control), the maximum virus concentration
is achieved. To design both impulsive control strategies, the system
is linearized around the endemic equilibrium. The resulting matrices
Ac and B are:

Ac=


−δze 0 −βTce 0

βze −µ βTce 0

0 kw50
we+w50

−c −kw50ye
(we+w50)2

0 0 0 −Kw

 , B=


0

0
0

1

 .

The selected intake period is T = 0.5 day. The state and input
constraints are imposed as X = {x : [0 0 0 0]> ≤ x ≤
[1000 20 1500 100]>} and U = {u : 0 ≤ u ≤ 600}, respectively.
The state window target is defined by XTar = {x : [900 0 0 0]> ≤
x ≤ [1000 5 250 60]>}. As it is described in [20], the control goal
is to steer the system from the endemic equilibrium to a healthy
zone defined by XTar. Besides, the anti-HIV treatment is considered
successful if z is below the threshold of 50 copies/ml.

The initial state was selected to be x0 = [609.9 12 1508 6]>,
and to evaluate the performance of both strategies, at day 200 a
disturbance was included (the drug dose is completely suspended for
36 days, which produces a rebound of the virus load).

1) Affine Feedback Control: According to Theorem 2, K and
ζ can be computed as the impulsive system is controllable. K
is selected by a standard eigenvalue placement problem, and its
value is K =

[
0.0349 −33.8248 −0.8414 0.9876

]
. The spec-

tral radius was approximately 0.92, which ensures attractivity. ζ
is computed from the condition Bζ = (I − F )x◦s , with x◦s =[
968.3053 0.3636 29.5146 52.2726

]
and its value is 600. The
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Fig. 4. State time evolution. Feedback control, dashed line; MPC, solid line

state and input time evolutions are shown in Fig. 4 (blue dashed line).
The controller does not generate a feasible control at the beginning
and after the disturbance; its value is greater than the upper limits of
600 mg of drug (it is around 650-1000 mg), which forces to manually
saturate the dose. This is not a recommended practice, and generates
an undesired viral load rebound.

2) Zone MPC Control: The MPC controller is tuned as: N = 10,
Q = diag([5 0 5 0]), R = 0.1 and p = 5 × 105. Fig. 4 (black
solid line) shows the state and input time evolutions. In contrast
to what happens with the affine feedback, the impulsive zone MPC
ensures that both states and inputs are feasible at any time (no manual
saturation is needed). This example clearly illustrates this well-known
advantage of MPC over the standard methods.

VII. CONCLUSION

The problem of steering a linear impulsive system to a state
window target that does not contain the origin has been tackled.
To this aim, a new generalized equilibrium set is characterized,
based on a discrete-time underlying subsystem. Two control strategies
were proposed: (i) a simple-to-apply unconstrained affine feedback
controller, that however needs additional conditions to fulfill the
system constraints (mainly the positivity constraints), and (ii) a
constrained zone MPC, that exploits the benefits of the use of artifical
optimization variables. In contrast to other strategies ([21]), this
latter MPC formulation only needs to compute a simple generalized
equilibrium set as a target. This is an important benefit, given
that complexity may prevent the use of such MPC strategies in
some specific applications related to drug administration problems.
Furthermore, the controller has an enlarged domain of attraction (for
relatively small control horizons), because of the use of artificial
intermediary variables ([9], [10]). Future works include a more
detailed analysis of feasibility of the continuous-time closed-loop
trajectories between jumps, and a complete stability proof (given that
only attractivity was considered).

VIII. APPENDIX

Lemma 1 (Convergence to X •Tar
s ): Consider the closed-loop sys-

tem obtained by applying the MPC control law, κMPC, presented in
Section V-B. Define the MPC closed loop current input and state as
z(k) = (u(k), x(k))

∆
= (u0(0;x(k)), x0(0;x(k))), and the current

artificial input and state variables as za(k) = (ua(k), xa(k))
∆
=

(u0
a(x(k)), x0

a(x(k))). Then, limk→∞ ‖z(k)− za(k)‖2S = 0, with
S > 0, implies that limk→∞ distX•Tar

s
(x(k)) = 0 and

limk→∞ distUTar
s

(u(k)) = 0.

Proof: The elements z(k)
∆
= (u(k), x(k)), for k ≥ 0, must fulfill

x(k + 1) = A•x(k) + B•u(k), while za(k)
∆
= (ua(k), xa(k)) are

forced to be in Zs
∆
= Us×X •s , for k ≥ 0 (last constraint in PMPC ).

Then, once z(k) reaches za(k) for a large enough value of k both,
z(k) and z(k+1) are in Zs (equilibrium set). This means that x(k) =
A•x(k) +B•u(k) and x(k+ 1) = A•x(k+ 1) +B•u(k+ 1). But,
by the system evolution, it is x(k+ 1) = A•x(k) +B•u(k), which
means that x(k+1)=x(k). Replacing x(k+1) by x(k) in the second
equilibrium equation, it follows that x(k) = A•x(k) +B•u(k+ 1).
Then subtracting both equation of x(k), it is B•(u(k)−u(k+1)) =
0, and assuming that rank(B•) = m, this implies that u(k + 1)=
u(k), and so z(k+1)=z(k). Therefore z(k) reaches za(k) only at an
equilibrium of the closed-loop system. Finally, according to Lemma
2, every closed-loop equilibrium pair of the MPC closed-loop is in
ZTar
s

∆
= UTar

s ×X •Tar
s . This means that limk→∞ distX•Tar

s
(x(k)) =

0 and limk→∞ distUTar
s

(u(k)) = 0.
Lemma 2 (Uniqueness of X •Tar

s as equilibrium set of the MPC
closed-loop): Consider the closed-loop system obtained by ap-
plying the MPC control law, κMPC, presented in Section V-B.
Then, every equilibrium pair zs = (us, xs) is a minimizer of
Vf
(
X •Tar
s ,UTar

s ;u, x
)
. Particularly, if ZTar

s ⊆ Z , then every equi-
librium pair zs = (us, xs) of this closed-loop system is in ZTar

s .
Proof: Assume that zs = (us, xs) is a minimizer of

Vf
(
X •Tar
s ,UTar

s ;u, x
)
, and assume that the closed-loop system

is placed at an equilibrium zi = (ui, xi) 6= (us, xs) = zs. This
means that xi = A•xi + B•ui, ui = κMPC(xi), and so ui =
κMPC(A•xi +B•ui). Now, the solution of PMPC(xi,X •Tar

s ,UTar
s )

is given by: u0 = {u0(0), u0(1), · · · , u0(N − 1)}, u0
a, x0

a, with
u0(0) = ui = κMPC(xi), while the optimal state sequence is
x0 = {x0(0), x0(1), · · · , x0(N − 1), x0(N)}, with x0(j) = xi, for
j ∈ I0:1, and x0(N) = x0

a. The MPC optimal cost is then given by
V 0
N (xi) = VN (xi,X •Tar

s ,UTar
s ;u0, u0

a, x
0
a). As (ui, xi) 6= (us, xs),

then, by Lemma 3, (u0
a, x

0
a) 6= (ui, xi). So, the optimal state

sequence must go from xi to x0
a, in N − 1 time steps.

A feasible input and artificial variable candidates to
problem PMPC(xi,X •Tar

s ,UTar
s ), which does not correspond

to the closed-loop equilibrium condition of (ui, xi) is as
follows: û = {u0(1), u0(2), · · · , u0(N − 1), u0

a}, u0
a,

x0
a. This solution produces a state sequence given by

x̂ = {x0(1), x0(2), · · · , x0(N − 1), x0(N), x0
a}, where

x0(1) = xi, x0(N) = x0
a and x0

a = A•x0
a + B•u0

a

are the same artificial variables as before. Now, the cost
corresponding to the solution u0, u0

a, x
0
a is compared with the

one corresponding to û, u0
a, x

0
a. The first one is given by V 0

N (xi)
∆
=

VN (xi,X •Tar
s ,UTar

s ;u0, u0
a, x

0
a) =

∥∥xi − x0
a

∥∥2

Q
+
∥∥ui − u0

a

∥∥2

R
+∥∥x0(1)− x0

a

∥∥2

Q
+
∥∥u0(1)− u0

a

∥∥2

R
+ · · · +

∥∥x0(N − 1)− x0
a

∥∥2

Q
+∥∥u0(N − 1)− u0

a

∥∥2

R
+ Vf (X •Tar

s ,UTar
s ;u0

a, x
0
a), while the second

one is given by V̂N (xi)
∆
= VN (xi,X •Tar

s ,UTar
s ; û, u0

a, x
0
a) =∥∥x0(1)− x0

a

∥∥2

Q
+
∥∥u0(1)− u0

a

∥∥2

R
+ · · · +

∥∥x0(N − 1)− x0
a

∥∥2

Q
+∥∥u0(N − 1)− u0

a

∥∥2

R
+

∥∥x0(N)− x0
a

∥∥2

Q
+

∥∥u0
a − u0

a

∥∥2

R
+

Vf (X •Tar
s ,UTar

s ;u0
a, x

0
a). This way, given that (ui, xi) 6= (u0

a, x
0
a),
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it follows that V̂N (xi)−V 0
N (xi)=−(

∥∥xi − x0
a

∥∥2

Q
+
∥∥ui − u0

a

∥∥2

R
) < 0.

This means that the cost corresponding to the candidate solution
is smaller than the optimal one, which is a contradiction, unless
(ui, xi) = (us, xs), in which case every cost is null. So, every MPC
closed-loop equilibrium pair minimize Vf (X •Tar

s ,UTar
s ;u, x), and

the unique equilibrium set is given by X •Tar
s .

Lemma 3: Consider the MPC closed-loop system presented in Sec-
tion V-B. Assume that it is placed at an equilibrium pair, (ui, xi) ∈
Us × X •s = Zs, and (ui, xi) 6= (us, xs), being (us, xs) ∈ Zs any
minimizer of Vf (u, x). Then, (u0

a, x
0
a) 6= (ui, xi).

Proof: The proof proceeds by contradiction. Given that
the system is placed at (ui, xi) ∈ Zs the optimal solution,
(u0, u0

a, x0
a), steers the predicted trajectory from xi to x0

a

in N time steps. Suppose that (u0
a, x

0
a) = (ui, xi). Then, by

convexity of Vdyn, u0 = ui, where ui
∆
= {u0(0), · · · , u0(N − 1)},

u0(j) =ui for j ∈ I0:N−1. This input sequence produces a state
sequence given by xi = {x0(0), · · · , x0(N − 1), x0(N)},
with x0(j) = xi, for j ∈ I0:N . This way the optimal
cost is given by V 0

N
∆
= VN (xi,X •Tar

s ,UTar
s ;ui, ui, xi) =

Vdyn(xi;ui, ui, xi) + Vf (X •Tar
s ,UTar

s ;ui, xi) = Vf (ui, xi).
Consider now the feasible candidate, (u(λ), ua(λ), xa(λ)),
where u(λ)=CO•†N (xs − xi)λ + ui, ua(λ) = (1 − λ)ui + λus =
ui + λ(us − ui), xa(λ) = (1 − λ)xi + λxs = xi + λ(xs − xi),
and CO•j = [A•j−1B• A•j−2B• · · · A•B• B•] is the
extended controllability matrix, † denotes the pseudo-inverse
and λ ∈ (0, 1]. The feasible input and state sequences,
which steer the initial state xi to xa(λ), are given by
u(λ) = CO•†N (xs − xi)λ + ui = {uλ(0), · · · , uλ(N − 1)},
x(λ)=A•Naugxi+B

•N
augu(λ) =A•Naugxi+B

•N
aug[CO

•†
N (xs−xi)λ+ui]=

A•Naugxi + B•NaugCO
•†
N (xs − xi)λ + B•Naugui = B•NaugCO

•†
N (xs −

xi)λ + A•Naugxi + B•Naugui = B•NaugCO
•†
N (xs − xi)λ + xi =

{xλ(0), · · · , xλ(N − 1), xλ(N)}, where xλ(0)=x0
a, xλ(N)=xa(λ)

and B•jaug =


0 · · · 0
B• · · · 0

...
. . .

...
A•j−1B• · · · B•

, A•jaug =


In
A•

...
A•j

.

Given that xa(λ) is a convex combination of xs and xi, which
are equilibria, and X •s is convex, xa(λ) ∈ X •s is also an
equilibrium. Now, consider the cost function of PMPC(xi)
corresponding to the feasible solution u(λ), ua(λ), xa(λ):
VN (λ)

∆
= VN (xi,X •Tar

s ,UTar
s ;u(λ), ua(λ), xa(λ)) =∑N−1

j=0

(
‖xλ(j)− xa(λ)‖2Q + ‖uλ(j)− ua(λ)‖2R

)
+

Vf (ua(λ), xa(λ)). Given the form of u(λ), x(λ), ua(λ)
and xa(λ), the cost can be expressed as VN (λ) =∑N−1
j=0 (

∥∥(Mx
j + xi − xs)λ

∥∥2

Q
+

∥∥(Mu
j + ui − us)λ

∥∥2

R
) +

Vf (ua(λ), xa(λ)) =
∑N−1
j=0 λ2(

∥∥Mx
j + xi − xs

∥∥2

Q
+∥∥Mu

j + ui − us
∥∥2

R
) + Vf (ua(λ), xa(λ)), where matrices Mx

j and
Mu
j depend on the difference (xs − xi) 6= 0, and are given by the

row blocks of B•NaugCO
•†
N (xs−xi) and CO•†N (xs−xi), respectively.

Now, it is shown that VN (λ) is smaller than V 0
N for some small

value of λ. Lets take the derivative of the former w.r.t. λ: ∂VN (λ)
∂λ

=∑N−1
j=0 2λ

(∥∥Mx
j+xi−xs

∥∥2

Q
+
∥∥Mu

j+ui−us
∥∥2

R

)
+

∂Vf (ua(λ),xa(λ))

∂λ
;

and evaluate it for λ = 0: ∂VN (λ)
∂λ

∣∣∣
λ=0

=
∂Vf (ua(λ),xa(λ))

∂λ

∣∣∣
λ=0

. By
convexity, it is Vf (ua(λ), xa(λ)) ≤ (1−λ)Vf (ui, xi)+λVf (us, xs),
and by optimality of (us, xs) 6= (ui, xi), it is Vf (ui, xi) >
Vf (us, xs). Then, Vf (ua(λ), xa(λ)) ≤ (1 − λ)Vf (ui, xi) +
λVf (ui, xi) = Vf (ui, xi), for any λ ∈ [0, 1]. This means that
∂VN (λ)
∂λ

=
∂Vf (ua(λ),xa(λ))

∂λ
<0, for λ=0, and so λ̄ ∈ (0, 1] exists such

that VN (λ̄) < V 0
N or, VN (xi,X •Tar

s ,UTar
s ;u(λ̄), ua(λ̄), xa(λ̄)) <

VN (xi,X •Tar
s ,UTar

s ;ui, ui, xi). Therefore, (u0, u0
a, x

0
a) =

(ui, ui, xi), which is the only solution for which (u0
a, x

0
a)=(ui, xi) is

not the optimal one, contradicting the initial assumption. Therefore,
(u0
a, x

0
a)6=(ui, xi).
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