
A Software Support to Initiate
Systems Engineering Students
in Service-Oriented Computing
CRISTIAN MATEOS, MARCO CRASSO, ALEJANDRO ZUNINO, MARCELO CAMPO

ISISTAN Research Institute, UNICEN University, Campus Universitario, Tandil B7001BBO, Buenos Aires, Argentina

Received 31 August 2010; accepted 1 April 2011

ABSTRACT: An evolutionary process that is currently taking place in the software industry is the shift from

developing applications from scratch to discovering and assembling services published in the Internet. This

has given birth to a new computing paradigm called service-oriented computing (SOC). We investigated

whether simplifying and automating tasks inherent to SOC-based development, while exploiting systems

engineering students’ experience in earlier paradigms, namely object orientation, reduce the cognitive effort

needed to learn SOC. The study involved 38 undergraduate students plus 7 postgraduate students from 4

universities, which attended a course about SOC development models and technologies. Then, they were asked

to develop a real-life service-oriented application using two alternatives, namely existing SOC libraries and

a software support of our own named EasySOC. EasySOC promotes using common object-oriented design

patterns to structure service-oriented applications, facilitates service discovery, and hides many technological

details from users. The students were surveyed about their perception on both alternatives using a Likert-

based questionnaire. Results show that the students, who had no previous experience in service-oriented

notions before the experiment, perceived that EasySOC allows focusing on essential aspects of the

paradigm while concealing accidental aspects, and provides adequate support and guidance to bridge the

gap. � 2011 Wiley Periodicals, Inc. Comput Appl Eng Educ View this article online at wileyonlinelibrary.com/

journal/cae; DOI 10.1002/cae.20551

Keywords: service-oriented computing; teaching/learning strategies; programming and programming

languages; authoring tools and methods

MOTIVATION AND PROBLEM STATEMENT

A computing paradigm refers to the set of concepts, principles,

and methods for expressing computation that allows a human to

command, through a software application, a computer to per-

form a set of given tasks. Service-oriented computing (SOC) is

a contemporary computing paradigm that supports the develop-

ment of applications that are built by composing existing dis-

tributed pieces of functionalities termed services [1]. Services,

in turn, are published and accessed through network-aware pro-

tocols. From a software engineering standpoint, SOC is an

interesting paradigm for application development, since it

heavily promotes service reuse to rapidly construct end user

applications [2]. In other words, the core idea is not to

manually implement applications from scratch but partially rely

on and invoke already implemented, network-accessible

external pieces of software. From a technological perspective,

SOC is not only interesting, but also challenging since it

requires the handshaking between user applications and services

to be distributed and interoperable. In SOC terminology, ‘‘inter-

operable’’ refers to the ability of a third-party service to be

effortlessly used from different applications and software

platforms.

Certainly, SOC is not simply another way of designing

and developing applications, but it is conceived as a revolution-

ary paradigm together with those paradigms that have histori-

cally predominated in software development and therefore

computer science education up to now [3]. Such paradigms

include imperative programming, which was developed in the

1950s, procedural programming, which became particularly

popular during the 1970/1980s, and object-oriented program-

ming, whose inception took place in the 1980s.

The high complexity of today’s software systems has

made the SOC paradigm one of the most valuable tools for

software engineers and practitioners. Many software vendors

have already embraced SOC for building applications and its

popularity is relentlessly gaining momentum. In the academia,

there is a great consensus about the fundamental role that SOC

concepts must play in the CV of computer science students [4].

These two facts have motivated the inception of SOC courses

Correspondence to C. Mateos (cmateos@conicet.gov.ar).

�2011 Wiley Periodicals Inc.

1

in universities worldwide, and even high schools [3,5], which

constitutes an effort to meet the ever-increasing demand for

higher and continuous education in software engineering.

Unfortunately, though most of the time adopting a new comput-

ing paradigm comes at the expense of a very costly ‘‘paradigm

shift,’’ little attention has been paid to such a new reality in the

academia from a pure educational perspective. Plainly, para-

digm shift means the act of radically changing the way the con-

stituent elements of software systems are combined and

organized [6].

An exhaustive literature review yielded as a result that, to

date, just a few approaches aimed at teaching SOC in Systems

Engineering programs have been proposed, being Water [7] and

WSEXP [8] the most representatives. Moreover, the weak point

of these two specific approaches is that they only capture an

incomplete fraction of the fundamental elements of the para-

digm. Roughly, they mostly focus on teaching service-oriented

technologies by paying little or even no attention to essential

aspects of SOC design that relate to the activities of consuming

services from within applications as well as exposing services

to other applications. Consuming a service is the task of includ-

ing explicit calls to a service within a user application, which

in a broad sense is similar to importing existing code libraries

and performing invocation to their functions. Exposing a ser-

vice, on the other hand, refers to the task of publishing or mak-

ing a service accessible through a network so that other

applications can consume it. Furthermore, there are related

efforts, such as the work by Wu et al. [9,10], who use SOC

technologies for building educational software; however this

software is not designed to teach SOC but to assist students in

learning mechanical and electronic engineering concepts. A

similar approach is taken by GridFoRCE [11], a software plat-

form for teaching Grid Computing [12] that is implemented via

service-oriented technologies.

To sum up, as far as we know there is a lack of approaches

to effectively teach the above-mentioned aspects. Then, we are

facing as teachers the need of newer and more integral tools to

convey the fundamentals of this contemporary paradigm. How-

ever, one of the most challenging issues associated with learning

and teaching SOC is the plethora of software technologies

surrounding and materializing the paradigm, which often eclipse

the simplicity of the concepts underpinning it. This also applies,

to some extent, when teaching traditional Web programming and

development. Therefore, by just relying on a subset of such tech-

nologies, one cannot guarantee that all the essential aspects of

SOC design are made explicit and exercised.

The rest of the article is organized as follows: The next

section gives an overview of our approach to teaching SOC and

its associated software materialization called EasySOC. In

addition, the section briefly describes the research hypothesis

that arises as a consequence of our approach and the method-

ology used to provide experimental evidence about its validity.

Then, the Designing and Developing Service-Oriented Appli-

cations With EasySOC Section presents the EasySOC software

in detail. The section explains the principles underpinning

EasySOC, discusses some implementations issues, and illus-

trates its usage with a case study. Later, the Evaluation of Easy-

SOC Section reports the experimental evaluation of our

approach from an experience with the aforementioned students

and the EasySOC tool in the context of a real SOC course.

Finally, the lost section concludes the article and points out

lessons learned.

APPROACH AND RESEARCH HYPOTHESIS

Nowadays, an SOC application is thought as a collection of

Web Services [13], distributed programs with well-defined

interfaces that can be located and invoked via popular Web

protocols such as HTTP, FTP, or more recently SOAP [14].

Upon reusing a Web Service in a user application, a developer

first retrieves the services he needs from a public registry,

and then uses the associated protocol-specific libraries for

calling the operations or functions of these services. One

illustrative example is the Google’s Search Web Service [15], a

service-based interface to the same search functionality an end

user can access by using a regular Web browser. The service

offers for instance operations for googling the Web or spell

checking text from within any kind of application apart from

the browser.

The architectural model underlying Web Services encom-

passes three elements: service providers, service requesters, and

service registries. Basically, a service provider creates a Web

Service description by employing WSDL (http://www.w3.

org/TR/wsdl), a language for describing the interface—i.e., the

offered operations—of Web Services, and publishes it in a ser-

vice registry using UDDI (http://uddi.xml.org), a standard ser-

vice repository for publishing and discovering services. Service

requesters, or application developers, use the registry to find

Web Services that match their functional needs, and then use

the corresponding WSDL descriptions to invoke operations. As

a consequence, developers do not re-implement existing serv-

ices but reuse these latter instead.

Even when this model may appear intuitive at first sight,

mastering it is indeed more challenging compared to learning

well-established programming paradigms such as object orien-

tation, which in turn also reuse concepts from even older para-

digms. Particularly, any object-oriented application consists of a

number of objects that communicate between each other via

regular method (i.e., functions) calls. By drawing a parallel

with SOC, a service-oriented application also comprises a num-

ber of components that interact between each other via message

exchange. However, SOC applications present a number of dis-

tinctive characteristics regarding component/application con-

struction and message handling, namely:

� Unlike classes, in which having interfaces explicitly

declared for them is totally optional, a single service

always has at least two artifacts associated: an interface

specification in WSDL and its implementation, which

conforms to this specification, in a conventional program-

ming language. In this sense, building SOC applications

consuming services requires to understand yet another

interface specification language and data type system.
� By nature, an SOC application is distributed, since some

components may perform calls to services that physically

reside on different machines. Most object-oriented appli-

cations, on the other hand, comprise objects that are

installed in the same machine, which makes common

development tasks such as application testing and debug-

ging location-unaware and hence simpler.
� Related to the previous issue, services must be contacted

by using remote messaging protocols. Moreover, the spec-

trum of protocols and technologies implementing them is

rather wide, and so are the specifics of each choice, which

must be apprehended. With object orientation, on the

2 MATEOS ET AL.

other hand, there is no need of remote protocols since

application objects communicate via traditional, local

method calls.
� Class (and object) assembling upon building an appli-

cation is mostly done at development time by selecting

the specific set of classes that will be used to implement

the desired behavior. Moreover, some of these classes are

usually implemented from scratch, while others are reused

by importing external class libraries. In SOC applications,

Web Services play the role of ‘‘class libraries’’ that can be

used as building blocks for new applications. However,

public Web Services live in an inherently massively dis-

tributed environment, and as such there are many services

providing similar behavior. In this sense, users must

browse huge service registries before finding the specific

services they need for their applications, which apart from

requiring more efforts, can be counterintuitive for an

adopting user.

In this light, we claim that for SOC teaching to become

more effective, there is a need for a new tool that allows stu-

dents to capture the three elements of the Web Services model

while still learning the main technologies materializing this

model at the correct level of abstraction. Indeed, using intuitive

and rich GUIs has proven to be a viable and effective approach

to teaching in engineering educational environments [16].

Moreover, the idea has been particularly successfully applied in

teaching object-oriented programming [17–19]. Therefore, our

goal is not come out with yet another graphical tool for teach-

ing object orientation, but reusing this approach for teaching

the SOC paradigm.

Similarly to the aforementioned past studies about tools

for learning the object-oriented paradigm, the new tool should

hide to some extent the SOC paradigm challenges listed above

as much as possible from users. We propose EasySOC, a Java-

based software tool to simplify the construction of SOC appli-

cations by hiding many technological details behind an intuitive

development environment. Unlike related efforts, EasySOC

takes an application-centric approach to SOC that allows stu-

dents to gradually explore the process of reusing external serv-

ices. In addition, EasySOC supports the easy creation of Web

Services and the administration of registry-related information.

Moreover, EasySOC has been implemented as a plug-in of

Eclipse (http://www.eclipse.org), a very popular development

environment. Eclipse was originally created by IBM in

November 2001, but it became open-source in 2004. From that

moment on, Eclipse has gained much popularity among users

because it constitutes a free software platform comprising

extensible tools for building, deploying, and managing appli-

cations. This feature makes EasySOC not only an educational

tool for SOC courses, but also a potential development platform

supporting the SOC paradigm, which eventually may be

adopted by software engineers to manage the life cycle of SOC

applications. EasySOC can be downloaded from http://sites.

google.com/site/easysoc.

We have assessed the benefits of EasySOC through a con-

trolled learning scenario in the context of an SOC course with

45 participants including 38 last-year systems engineering stu-

dents, and 7 postgraduate students (PhD candidates in Com-

puter Science with Systems Engineering background) from 4

different universities of Argentina. These students were

involved in the elaboration of a two-phase homework, which

consisted on developing the same SOC application by using

both traditional Web Service development software libraries of

their choice and EasySOC. Then, we asked all the students to

complete an online survey (http://grid.isistan.exa.unicen.

edu.ar:8080/encuestaSOC, in Spanish) so as to collect their

opinions about the whole experience.

We worked on the hypothesis that EasySOC sharpens the

learning curve needed to build well-structured service-oriented

applications provided students have some basic concepts from

object-oriented programming (i.e., inheritance, composition,

etc.), and the SOC paradigm itself, which were given in a lec-

ture-based style. This hypothesis arises as a consequence of the

principles behind the design goal of EasySOC, which is to raise

the level of abstraction at which the essential elements of SOC

applications are modeled and designed but without losing flexi-

bility to select the associated enabling technologies. The

obtained results from analyzing the students’ opinions suggest

that most of the respondents perceived that EasySOC is indeed

a convenient and an intuitive tool for designing and implement-

ing service-oriented applications. Since the students had very

good programming skills but not much knowledge on SOC

development before the experiment, which is in fact the initial

state of most last-year students of BSc programs and first-year

students of PhD programs, we can reasonably extrapolate

these results to argue that EasySOC may be useful to teach

SOC-based development in similar classroom situations.

The next section presents the EasySOC software support

from a conceptual as well as a technical perspective.

DESIGNING AND DEVELOPING SERVICE-ORIENTED
APPLICATIONS WITH EasySOC

EasySOC is a tool that prescribes an easy methodology to

design service-oriented applications and guide users during the

entire life cycle of their software. Metaphorically, central to

this methodology is to think of service-oriented applications as

special puzzles. Such special puzzles have two types of pieces.

One type of pieces represents the internal components of a ser-

vice-oriented application (the ones implemented by users),

whereas another stands for third-party services (the ones not

implemented but discovered and reused). Hence, service pieces

have some peculiarities. First, they are public and as such they

can be used to solve many puzzles, that is, called from different

applications. Second, there are many service pieces with the

same content, so the puzzle solver—in this case a developer—

should select among the available alternatives. Third, the shape

of service pieces can be slightly modified, or adapted, to fit into

a puzzle without affecting those puzzles already using them.

Here, the shape represents the interface with the operations

offered by a service piece. Figure 1 illustrates this metaphor.

Internal component pieces and service pieces are depicted using

gray and black, respectively.

The approach taken by EasySOC to build these special

puzzles is to start by joining gray pieces. Once the gray parts of

the puzzle are built, the solver should look for every hole in the

‘‘picture,’’ and pick a proper public piece to fill it. This should

be iteratively applied to associate a black piece with each hole

in order to complete the picture. Then, when building a service-

oriented application with EasySOC, a developer thinks of such

an application as a collection of internal components invoking

external ones, that is, services. Having in mind SOC

INTRODUCING SYSTEMS ENGINEERING STUDENTS IN SOC 3

applications as arrangements of internal components and serv-

ices, EasySOC encourages developers to first design, imple-

ment, and test for correctness the internal components of their

applications, and then discover and incorporate services into

them. This is analogous to first arrange gray pieces together,

and in turn fill the holes of the resulting picture using black

ones.

There are, naturally, many similar ways of designing and

implementing the pieces or components of an application. How-

ever, not necessarily all the alternatives to arrange internal com-

ponents and services are viable. For instance, several

researchers have shown that the alternative adopted by common

libraries for invoking Web Services misleads developers to

build service-oriented applications that are rather hard to under-

stand and to maintain [20]. Unlike these libraries, EasySOC

proposes a programming methodology to arrange the com-

ponents and services of an SOC application that facilitates their

maintenance afterward [21]. This is achieved by raising the

level of abstraction by which the necessary plumbing is done.

At design time, users employing EasySOC represent an

individual functionality planned to be delegated to a service as

an abstract interface, which is analogous, for example, to a C

library header and as such specifies the signatures of the oper-

ations needed by a user. In consequence, users produce incom-

plete applications, in which some of their constituent

components are implemented, and those intended to be out-

sourced to services are abstractly represented. In order to com-

plete an application, a user should associate an existing,

concrete service to each defined abstract interface. In this sense,

the user should look for available services in a registry, and

select one candidate.

With EasySOC, associating—also called binding—a third-

party service to an abstract interface requires to add two com-

ponents into an application. First, it is necessary to use the

Proxy object-oriented construct to build a component that pro-

vides to internal components an identical interface to that of the

called service. Such proxy is responsible for forwarding

through the network all operation requests coming from internal

components to the corresponding running Web Service [22].

Then, internal components can invoke a service via a proxy

component regardless of the network location of the associated

service.

One implication of having the functionality of services

represented as abstract interfaces previous to discover them is

that service interfaces and therefore proxy interfaces may differ

from abstract ones. For instance, let us suppose that a proxy

operation getCalendarHolidays, which receives as input an inte-

ger representing a month and returns a list of integers, has been

discovered and selected to fill the ‘‘hole left’’ by an abstract

interface designed to return an array of floats. Under these situ-

ations in which actual and abstract service interfaces differ,

EasySOC proposes to use the Adapter notion from object-ori-

ented programming to build an extra software component that

bridges the differences. An adapter is responsible for perform-

ing type conversions and resolving any operation signature mis-

match found between actual and abstract service interfaces

[22]. This has been shown as a good design practice, since by

decoupling internal components from specific service interfa-

ces, applications can be easily accommodated to support service

replacements. This is the situation, for example, when an appli-

cation using the Google’s Search Web Service is modified to

use a similar service but offered by a different provider (e.g.,

Microsoft’s Bing Web Service, http://msdn.microsoft.com/

en-us/library/cc980922.aspx).

The final step prior to the incorporation of a selected

service into a target application is to fit together the internal

components, proxies, and adapters. To do this, EasySOC uses

another object-oriented design pattern called dependency injec-

tion (DI) [23]. DI is a technique for supplying an external de-

pendency to a software component, in which the process of

obtaining the needed dependency is performed by a special

entity called the DI container. As shown in Ref. 21, an interest-

ing implication of using DI in SOC is that the source code of

the internal components of a service-oriented application can be

isolated from the details for obtaining and invoking services

(e.g., the Web pointer to WSDL documents, invocation proto-

cols, etc.). Then, a user thinks of a third-party service as any

other regular component providing a clear interface to its oper-

ations. To clarify this idea, Figure 2 depicts the anatomy of an

EasySOC-based SOC application, using the UML 2.0 notation

for modeling software components. In short, for developing

SOC applications, EasySOC promotes a decoupled yet ordered

mechanism for assembling components and services together.

Figure 2 shows that when a user wants to call an external

service S with interface IS from within for instance internal

components C0 and C00, at design time a dependency among

these two latter and S is indirectly established via an abstract

interface, which may differ from IS. In this context, S

may be the abovementioned Web Service for returning

calendar holidays, and IS its actual interface with a int[]

Figure 1 Conceptual service-oriented puzzle.

4 MATEOS ET AL.

getCalendarHolidays(int) operation. This kind of dependency is

commonly managed by a DI container that ‘‘injects’’ into C0

and C00 an adapter (let us say AS) that wraps a proxy to S (let us

say PS). Then, at run-time the code of the internal components

will end up calling any of the methods declared in PS through

AS, which transparently invokes the remote service through PS.

We refer as AS to the service adapter that accommodates the

actual interface of S to the interface expected by internal com-

ponents specified early by the programmer, in our example

including a float[] getCalendarHolidays(int) operation.

Interestingly, this mechanism is almost transparent and

does not demand coding effort from the user, as it only requires

associating a configuration file to the SOC application, which is

read by the DI container to determine to which internal com-

ponents adapters should be injected. With the EasySOC devel-

opment model, service-oriented applications are free from code

for configuring and using Web Service protocols, since the code

for contacting the service is isolated beneath the application

layer (see Fig. 2), and the corresponding configuration

parameters are placed on a separate file, which is processed at

run-time by the DI container. This produces a better code in

terms of the level of isolation from SOC-related technologic

details, thus users can rapidly focus on SOC-specific modeling

issues.

Despite the positive aspects of the programming method-

ology proposed by EasySOC in terms of decoupling internal

components and Web Services, EasySOC relies on replacing

manual coding by introducing a number of new development

tasks, particularly discovering services, adapting service interfa-

ces, and assembling adapters into internal components. This

might involve, unless properly supported in the tool, a learning

curve for novice SOC users such as students. Even when we

have proved such learning to be steeper than that of traditional

models for SOC programming [20], it nevertheless involves

some knowledge and effort.

To overcome these costs, we have built an Eclipse plug-in

that aims at automatically performing these tasks on behalf of

SOC application programmers. The tool exploits the concept of

Query-By-Example for Web Services described in Ref. 24. This

concept suggests that due to the structure inherent to service-

oriented applications and Web Service descriptions in WSDL,

the ‘‘shape of a service piece’’ or abstract interface can be seen

as an example of what a user is looking for. This is built on the

fact that with the WSDL language, service publishers can

describe their services as object-oriented interfaces, with

methods and arguments as well. Basing on the Query-By-

Example concept, the tool gathers certain information that is

implicitly conveyed in the source code of expected or abstract

service interfaces. Gathered information is preprocessed to

build a refined textual description of users’ needs. Accordingly,

an effective query is generated provided that programmers fol-

lowed documenting and naming best practices in their service-

oriented applications. This is because the query generation heu-

ristic gathers relevant terms from the names and comments of

an interface, its methods and arguments. Finally, the query is

sent to a registry that matches the information gathered from an

abstract interface onto published service interfaces in WSDL,

and returned results are properly presented to the user by the

tool.

Once registry results are displayed, the user should select

a proper candidate. Then, the tool performs three steps to adapt

service interfaces and assemble internal components to it. The

first step refers to build a proxy for the service. Proxy construc-

tion is automatically carried out by the tool. Then, the tool tries

to build an adapter to map the interface of the proxy onto the

abstract interface internal components expect. Finally, the tool

indicates the DI container how to assemble internal components

and adapters. Figure 3 summarizes the steps that are needed to

proxy, adapt, and inject services.

Figure 2 Anatomy of an SOC application produced with EasySOC.

Figure 3 Proxying, adapting, and injecting services with the EasySOC plug-in.

INTRODUCING SYSTEMS ENGINEERING STUDENTS IN SOC 5

The current implementation of EasySOC employs Axis2

[25] for building service proxies and Spring [26] as the DI Con-

tainer. Building a proxy with Axis2 involves giving as input the

interface description of the target service (a WSDL document)

to a command line tool. To setup the DI container, the names

of internal components and services must be written in an XML

file. For adapting external service interfaces to the internal

abstract ones, we have designed an algorithm based on the

work published in Ref. 27.

Our algorithm takes two Java interfaces as input (i.e., an

abstract and an actual service interface) and returns the Java

code of a service adapter. This adapter code commonly contains

sentences relying on Java type castings to adapt the data types

of the two interfaces. To do this, it starts by detecting to which

operations of one interface the operations offered by the other

should be mapped. The algorithm assesses operations similarity

by comparing their names, documentation, and data types and

names of their arguments. Data types similarity is based on a

pre-defined similarity table that assigns similarity values to

pairs of simple data types. Similarity between two complex

data types is calculated in a recursive way. Once a pair of oper-

ations has been chosen, service adapter code is generated. To

do this, the algorithm adapts simple data types by taking

advantage of type hierarchies and performing explicit conver-

sions. Complex data types are resolved recursively as well.

Clearly, not all available mismatches can be covered by the

algorithm. Therefore, users should revise the generated adap-

tation code, which makes this step semi-automatic.

As explained throughout this section, the plug-in presented

performs the specific steps needed to design and implement ser-

vice-oriented applications in accordance with the EasySOC

development model. Besides guiding developers to produce bet-

ter service-oriented applications in terms of maintainability,

while accelerating the discovery process, the EasySOC plug-in

aims at abstracting students from the problems and challenges

that represent understanding the SOC paradigm and the ple-

thora of technologies surrounding it, namely UDDI, WSDL,

SOAP, and the distributed plus heterogeneous nature of SOC

applications. Concretely, the approach to discover external serv-

ices by automatically building queries and retrieving candidate

services connects students to either UDDI or any UDDI-like

service registry painlessly. Moreover, the distribution and plat-

form heterogeneity are two concerns that students transparently

deal with by employing proxy objects, which are built by Easy-

SOC once a student has selected a candidate service. At the

time of invoking a remote service, such proxies convert class

messages into SOAP messages and transport them over the cor-

responding communication channel. Collaterally, such proxies

provide a specification of external service libraries, but in stu-

dents’ preferred programming language instead of in WSDL

and its data type system (i.e., the XSD language). Evaluation of

EasySOC Section presents an evaluation of to which extent the

EasySOC model and plug-in allow for a better level of abstrac-

tion and technology isolation when designing and implementing

service-oriented software.

Using EasySOC: Step-by-Step Example

To understand the implications of modeling SOC applications

with EasySOC, this section describes the design of a service-

based personal agenda. The personal agenda is in charge of

managing a contact list, arranging new meetings, and to notify

these contacts of new planned meetings. The contact list is

modeled as a collection of records with information about indi-

viduals such as name, current address (city, state, country, zip

code, etc.), telephones, email addresses, etc. For the sake of

clarity, we have simplified the functionality for coordinating the

meeting by assuming that the participants being notified always

agree with the arrangement provided by the requesting user.

Below we list the activities carried out by the personal

agenda upon the creation of a new meeting. The text in italics

represents the functionalities that will be not implemented but

delegated to Web Services. We assume that the user of the

personal agenda provides the date, time, participants, and

location of the meeting upon its arrangement. Algorithmically,

creating a new meeting roughly involves:

1. Getting a weather forecast for the meeting place at the

desired date and time.

2. Obtaining the routes (or driving directions) that each

contact participating in the meeting could employ to

travel from their current address to the meeting place.

3. For each participant of the meeting:

a. Creating an email with an appropriate subject, and a

body including the weather report and the obtained

route information.

b. Spell checking the text of the email.

c. Sending the email.

To build the above application, we start by designing its

internal components. First, we define an internal component

called PersonalAgenda, which is at the heart of the applica-

tion and is in charge of coordinating the various services

necessary for arranging a new meeting, and a ContactManager

component representing the contact list. Then, we define four

abstract interfaces used by the PersonalAgenda component,

namely:

� IForecast: Returns a weather report for a given ZIP code.
� IRouteInfo: Supplies driving directions for a given source

and target locations.
� ISpellChecking: Detects spelling mistakes in a given text.
� IEmailSending: Sends an email using a given body text

and address.

At this point, our application consists of two internal com-

ponents and four abstract interfaces, as listed in the left part of

Figure 4. Then, we employ the EasySOC tool support for dis-

covering services that provide a concrete implementation for

the functionality modeled by these abstract interfaces. For

instance, the next abstract interface Java code is used as a query

when looking for spell checking services:

Figure 4 depicts the GUI of our plug-in within the Eclipse

IDE. When discovering and then associating concrete Web

Services instances to an abstract interface, users simply indicate

through a dialog of our own such interface. The dialog shows

how many services and categories are available in the registry

about to be queried. Users are allowed to perform advances

searches, for example, looking for services within an individual

category. Finally, after querying the registry, a candidate list is

presented to the user, as shown in Figure 5 (bottom). For each

candidate Web Service, the offered operations are shown. Users

can further browse and visualize the arguments and results of

each operation in Java as well as WSDL format.

6 MATEOS ET AL.

Figure 4 The EasySOC plug-in: Discovering Web Services. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 5 The EasySOC plug-in: Selecting candidate Web Services. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

INTRODUCING SYSTEMS ENGINEERING STUDENTS IN SOC 7

In our example, we have obtained two candidates services

labeled ‘‘spellchecker’’ and a more specific ‘‘englishspell-

checker.’’ Let us suppose we select the second candidate, thus

we must command our tool to build the corresponding proxy

and adapter, and assemble them to the PersonalAgenda com-

ponent. This is done via a contextual menu from the selected

service (Figure 5). Afterwards, we revise the generated adapter

code to ensure that all signature and data type mappings are

properly coded and specified. The generated extra code artifacts

will appear in a separate ‘‘mappings’’ folder of the project in

the left part of the GUI.

Overall, the discovery–selection–injection sequence is per-

formed until all external components of the application are

associated with a service. To conclude, it is worth noting that

user intervention was only required to select candidate services

and revise adapters. Since an adapter indirectly interacts with a

service through a proxy using the built-in object-oriented mech-

anism of method invocation, the user was free from dealing

with WSDL, SOAP, and other SOC-specific technologies in the

code of the application. Figure 6 illustrates the resulting appli-

cation by remarking which activities take place during design

and implementation time and which are supported by the tool.

EVALUATION OF EasySOC

This section describes the experiments that were performed to

assess whether EasySOC, which supports the new methodology

for constructing SOC applications described in the previous

section, has an acceptable difficulty of adoption by novice

users. Another aspect we evaluated is whether our tool allows

for a better level of abstraction and technology isolation when

designing and implementing service-oriented software com-

pared to existing SOC libraries. The experiments involved 45

students and a two-phase homework, after which the students

were asked to complete a survey to collect their opinions.

Then, we analyzed these opinions to determine to what extent

EasySOC helped them with the assignments.

The experiments were carried out during 2009 in the con-

text of the ‘‘SOC’’ course (http://www.exa.unicen.edu.

ar/�cmateos/cos) of the Systems Engineering BSc program at

the Faculty of Exact Sciences (Department of Computer Sci-

ence—UNICEN). The course was also offered on 2008, is

optional, and its audience are last-year undergraduate students

and postgraduate students (both master and doctoral programs)

without knowledge on SOC. The course requirements are good

programming skills, object-oriented programming basics, and

some experience with Java development. In 2009, the course

was taken by 38 undergraduate students and 7 postgraduate stu-

dents from 4 different Universities of Argentina.

The homework was carried out individually by the stu-

dents, and each part of the work impacted on the partial and

final grades for the course. This contributed to obtain a high

level of commitment with the evaluation from students. As the

experiment involved the use of a tool of our own, which might

represent a threat to validity, the students were not told about

the secondary goal of the homework, and precise and careful

question–answering instructions prior to take the survey were

emailed to them to ensure objectivity. After five lectures within

1 week of 2 h each discussing the fundamentals of the SOC

paradigm and its enabling technologies, the students were

instructed to develop the service-based personal agenda

described in the Using EasySOC: Step-by-Step Example Sub-

section. The contents of the lectures comprised traditional SOC

Figure 6 Component diagram of the service-oriented personal agenda.

8 MATEOS ET AL.

technologies and EasySOC. Among others, the set of traditional

technologies described in the lectures included the W3C

language for describing Web Services—i.e., WSDL, a popular

library for invoking services within Java applications named

Axis2, and an Integrated Development Environment that is

designed for building Web-based and SOC-based applications

using Java, named Eclipse WTP (http://www.eclipse.org/

webtools).

As mentioned, the development of the software involved

two phases. The second assignment was given after finishing

the first one. In the first phase, the students designed the agenda

software by using traditional Web Service libraries from the set

of alternatives discussed in the lectures of the course1 except

EasySOC. Basically, these technologies were needed to invoke

and incorporate selected services into their applications. In the

second phase, the students developed the same application but

by using EasySOC. It is worth noting that the order in which

the two phases were performed did not bias the experiment in

favor of any approach, as even when the same application was

developed, students were familiar with the application domain

prior to realize the two situations.

In both phases, the students exercised three aspects

inherent to developing SOC applications, namely:

1. Service discovery: In the first phase, this was carried out

by inspecting a UDDI Web Service registry by using its

standard ‘‘Google-like’’ GUI that supports keyword-

based search of Web Services. In the second phase, this

was performed by using the Web Service discovery sup-

port of EasySOC.

2. Service incorporation: In the first phase, this involved

building service proxies based on the service invocation

features of the Web Service technology individually

chosen by each student, whereas in the second phase this

was uniformly handled by using the DI-based proxy and

adaptation facilities of EasySOC.

3. Service replacement: The input service registry pointed

to several implementations of the Web Services needed

to develop the agenda software. The students were asked

to change the provider for a half of the outsourced serv-

ices after implementing their agenda software. For both

phases, this involved repeatedly perform (1) followed by

(2) on the already implemented software.

To better prepare the students to fill out the survey, we

added some general ‘‘warming up’’ questions placed at the

beginning of the survey, asking, for example, what SOC is and

what kinds of applications actually benefit from it. Then, we

included several query items designed to collect the students’

opinions with respect to the three aspects mentioned above. By

following Likert’s approach to build questionnaires [28], the

items were not plain questions but statements to which the stu-

dents could either totally agree, agree, somewhat agree, some-

what disagree, disagree, or totally disagree. In this sense,

students did not felt evaluated but consulted. Unlike other

recent students’ preference studies that have used an odd-num-

bered scale of agreement (e.g., [29,30]), we decided to employ

an even-numbered scale to better capture the opinions of the

students (no neutral mid-point). Additionally, students had to

provide a concise but complete textual justification for each

item. We also reserved a check box to indicate the perceived

overall difficulty of the course and its assignments, and a text

field through which any further comments could be specified.

Given the different formation levels of the students

involved in the experiment, the next two subsections analyze

the results by considering the opinions of the postgraduate

students and the undergraduate students, respectively. Table 1

summarizes the survey query items (warming up questions have

been omitted) and results. Query items were arranged in two

groups, that is, those asking whether students would use either

approaches for materializing service-oriented applications

beyond this experience (items 1–2), and those evaluating the

suitability of EasySOC according to supporting and simplifying

the aspects that are inherent to SOC development (items 3–6).

For the sake of better readability, the acronym PGS is used for

referring to postgraduate students, while UGS represents under-

graduate students.

1From now on, we will refer to employing the libraries and tools
of this phase as the ‘‘traditional approach’’ to SOC-based design and
implementation.

Table 1 Results Based on 38 Undergraduate Students (UGS) and 7 Postgraduate Students (PGS)

Query item Totally agree Agree Somewhat agree Somewhat disagree Disagree Totally disagree

I would always design any SOC application as in the first phase

UGS 1 (3%) 5 (13%) 18 (47%) 7 (18%) 6 (16%) 1 (3%)

PGS 0 (0%) 1 (14%) 2 (29%) 1 (14%) 2 (29%) 1 (14%)

I would always design any SOC application as in the second phase

UGS 1 (3%) 16 (42%) 15 (39%) 3 (8%) 2 (5%) 1 (3%)

PGS 0 (0%) 5 (71%) 1 (14%) 0 (0%) 1 (14%) 0 (0%)

EasySOC materializes the triad SOC model

UGS 1 (3%) 9 (24%) 14 (37%) 3 (8%) 0 (0%) 2 (5%)

PGS 3 (43%) 4 (57%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

EasySOC abstracts from Web Service technologies

UGS 1 (3%) 14 (37%) 6 (16%) 1 (3%) 0 (0%) 0 (0%)

PGS 5 (71%) 2 (28%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

EasySOC simplifies service discovery

UGS 27 (71%) 9 (24%) 1 (3%) 1 (3%) 0 (0%) 0 (0%)

PGS 5 (71%) 2 (28%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

EasySOC helps in changing service providers

UGS 18 (47%) 11 (29%) 8 (21%) 1 (3%) 0 (0%) 0 (0%)

PGS 6 (86%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

INTRODUCING SYSTEMS ENGINEERING STUDENTS IN SOC 9

Postgraduate Students: Survey Analysis

For the first group of items, none of the surveyed postgraduate

students completely agreed to always using either approaches

for building their service-oriented applications, as shown in

Table 1. However, 85% of the students either agreed or some-

what agreed to the idea of ‘‘using EasySOC in early stages of

development,’’ since the pattern-based programming model of

EasySOC could lead to some adaptation effort when SOC-ena-

bling existing applications to made them compliant to the Easy-

SOC application anatomy. However, the same students said that

they would definitively use the tool in the presence of large

service registries whose functional content is not known regard-

less of the development stage. This is precisely the case of

open contemporary massively distributed environments such as

the Web or Grids, in which a lot of services are offered. As the

number of publicly available services grows, it is crucial to

have effective and efficient discovery mechanisms to dramatic-

ally narrow down the result list and therefore reduce the effort

when looking for required services [24].

Furthermore, one student disagreed with always using

EasySOC because he/she through that its discovery mechanism

would not be effective when dealing with poorly described

WSDL documents (the same student consistently disagreed

with not employing any other invocation library in those cases

when a lot of services are available). Although not particularly

relevant to the goals of our experiment, these are correct obser-

vations, on which we have been working on by identifying

common anti-patterns in WSDL descriptions that harm our ser-

vice discovery mechanisms and providing clear user guidelines

to avoid them [31]. To complement this research with evidence

taken from a cognitive perspective, we conducted an extra and

optional survey among the students to gather opinions about

which WSDL construction practices they felt are more detri-

mental to understanding what a service does, which in turn dif-

ficult service selection. For details on this study, please see

Appendix. We are therefore planning to incorporate these ideas

based on the feedback from students in the near future in order

to improve our tool support regarding service ranking and

selection.

Returning to the Likert-based questionnaire results, four

out of the seven students disagreed with different levels to using

the Web Service libraries employed in the first phase of the

homework because such libraries demanded them to spend

much time rewriting the application upon changing service pro-

viders, introducing complexity to the assignment and leaving

less time to invest into SOC-specific design issues. In other

words, they thought that having an adaptation layer for isolating

application code from service interfaces supports the construc-

tion of service-oriented software in a more technology-agnostic

way. The other three students said that they would rely on the

traditional approach to service consumption as long as the set

of services to be consumed is known in advance, that is, service

instances are given as input to the assignment. However, these

three students consistently responded that they would switch to

EasySOC in those situations when target services are not deter-

mined beforehand, such as collaborative homework in which

students play different roles from the Web Service model, as

some support for service discovery would then be strongly

necessary.

On the other hand, for the second group of items, all post-

graduate students either totally agreed or agreed to the

associated query items. Most of them said that EasySOC pro-

vides intuitive support to the triad find-invoke-publish when

working with Web Services, even when they did not exercise

the ‘‘publish’’ activity in the homework but nevertheless

acknowledged wizard-based tool support for it. Certainly, mate-

rializing such model directly in a software tool allows students

to focus on performing the activities that correspond to high-

level SOC design. Moreover, the students considered that Easy-

SOC was useful to make them unaware of technological details

with regard to finding or consuming Web Services. Concretely,

half of the students conceived inspecting service registries and

providing code for processing WSDL descriptions as being the

most time-consuming and difficult tasks when constructing their

SOC applications. One student pointed out, however, that even

when abstraction from technological details is important, so is

to have background on low-level technologies for those cases in

which specific adjustments must be made to an application

(e.g., changing the invocation protocol used to call an individu-

al service). In this sense, EasySOC automatically generates the

necessary technology-dependent software artifacts for contact-

ing external Web Services, while allows such artifacts to be

inspected and modified by users when necessary.

The seven postgraduate students found the service discov-

ery module of EasySOC ‘‘very helpful to quickly find required

candidate Web Services,’’ which essentially means that looking

for Web Services implementing the functionality a user appli-

cation expects is efficient and hence has a positive impact on

application building in terms of required effort. Furthermore,

four out of the seven students found that good code documen-

tation in their client-side software artifacts was a prerequisite

for the discovery process of EasySOC to be effective. Indeed,

the effectiveness in finding required services heavily depends

on to what extent users employ explanatory names and proper

documentation for both class names and method parameters.

However, these are desirable and frequent development practi-

ces that should be followed in any kind of software [32] that

require little cognitive effort provided the application domain is

known and thus good documentation for its implementation

code can be supplied. Finally, all of the postgraduate students

said that EasySOC helped them with service replacement,

which arguably may translate into a cleaner apprehension of

this SOC-specific concept.

Undergraduate Students: Survey Analysis

Table 1 shows that, for the case of undergraduate students, the

opinions with respect to items 1 and 2, and to a lesser extent

for the items 3–6, were less concentrated as opposed to the

results of the previous subsection. In this sense, to better ana-

lyze the responses, we quantified and categorized whether each

individual student was more convinced of using an SOC

approach above the other. Thus, for example, if a student

agreed to ‘‘I would always design any SOC application as in

the first phase’’ and somewhat agreed to ‘‘I would always

design any SOC application as in the second phase,’’ it meant

that the student preferred the traditional approach. Figure 7

illustrates the obtained results. It is worth pointing out that,

except for the case of the ‘‘Undecided’’ group, the rest of the

students either somewhat agreed, agreed, or totally agreed to

one of these two items, which established a minimum accept-

able level of confidence regarding approach preference.

10 MATEOS ET AL.

Remarkably, 55.27% of the surveyed students said that

they preferred using EasySOC over relying on the traditional

approach. The common argument behind this preference was

that the basic elements of the EasySOC methodology facilitate

the ‘‘agile’’ construction of ‘‘modifiable’’ SOC applications.

Agility in this context comes as a result of allowing users to

organize the components of their applications according to the

SOC paradigm without the requirement of unnecessarily deal-

ing with low-level SOC technologies. On the other hand, mod-

ifiability aligns with the benefits of EasySOC in terms of

structuring components to better visualize the points of an

application that are potentially affected by the concept of ser-

vice replacement. In this line, the students emphasized on the

usefulness of the discovery support and the convenience of the

automatic source code generation techniques for building ser-

vice adapters of the EasySOC plug-in.

Furthermore, 5 out of the 38 students (13.16%) said that

they were more comfortable with the traditional approach since

it required less software (just a proxy library to invoke services)

compared to EasySOC, and ‘‘one could nevertheless achieve an

acceptable level of decoupling and abstraction between appli-

cations and service interfaces by addressing this non-functional

requirement early in the design stage of the application’’ to

simplify code maintenance and service replacement. Precisely,

EasySOC comes with a software support that prescribes a

simple SOC development methodology that is based on popular

object-oriented patterns, which leads to a natural way of build-

ing SOC applications and therefore performing the associated

paradigm shift. Application design is thus more focused on

specifying the functionality of the internal application com-

ponents and the external services without initially paying atten-

tion to technological details, which allows the user to

concentrate on exercising the fundamental elements of SOC

design.

Not surprisingly, 31.57% of the undergraduate students

were not decided about which approach they would use to

develop SOC applications in the future. Moreover, half of them

(i.e., 6 students) simultaneously somewhat agreed to using both

tools because ‘‘choosing a tool depends on several factors,’’

including the size of the client-side software, the number of

services to be consumed, and the amount of dependencies

between internal application components and such services.

However, the same students pointed out that they found

EasySOC useful to simplify service discovery, and to keep the

client source code away from ‘‘service-specific instructions,’’

which allowed them to be more focused on SOC design and

simplified the requirement of changing service providers.

On the other hand, the other half of the students gave

origin to two corner cases. Three students agreed to employ

either approaches since they had trouble learning Eclipse but

they would definitively exploit the design principles material-

ized by EasySOC for doing SOC. As explained, these principles

promote technology-agnosticism, and we are in fact working on

providing alternative materializations of EasySOC for support-

ing other popular DI containers and programming environments

to avoid this ‘‘platform-barrier’’ given by the supporting tech-

nologies on which the current implementation of EasySOC

relies. Furthermore, two students and one student simul-

taneously disagreed and completely disagreed, respectively, on

using either alternative for developing applications for similar

reasons. They nevertheless gave encouraging values to the

query items 3–6 in favor of EasySOC accordingly.

All Students: Acceptance Analysis

In order to obtain complementary quantitative evidence on the

opinions of all the students participating in the experiment, the

Likert scale [28], the most widely used psychometric scale in

survey research, was employed. Roughly, the Likert scale is the

sum of answers on several Likert items, that is, individual state-

ments to which respondents can associate a level of agreement.

After a survey is completed, the agreement levels of each Likert

item are typically summed to create an overall score per

participant.

Since we were interested in quantifying the overall percep-

tion of the students on EasySOC, we associated a numerical

score with query item 1 ranging from 0 (totally agree) to 5

(totally disagree), but ranging from 5 (totally agree) to 0

(totally disagree) for query items 2–6. As a consequence, our

designed Likert scale was in the range of [0,30], with 0 being

strongly disagree with EasySOC and with 30 being strongly

agree with it. We computed the Likert score per student.

Figure 8 shows the score histogram, where each bar contains

the number of students who had the same score. Interestingly,

only one participant got the lowest score (15), that is, the worst

perception was in the middle of the entire scale.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
um

be
r

of
 r

es
po

nd
an

ts
 w

ho
 a

ch
ie

ve
d

th
e

sa
m

e
sc

or
e

Likert scale

Frequency histogram

Figure 8 Likert scale: Frequency of the scores.

Figure 7 Undergraduate students: Approach preference. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

INTRODUCING SYSTEMS ENGINEERING STUDENTS IN SOC 11

Figure 9 shows that by smoothing these results using

Bézier curves, they tended to a normal distribution with an

average m ¼ 22.67 and a standard deviation s ¼ 2.65. Then,

95.4% of the students scored between [m � 2 � s,

m þ 2 � s]. In other words, 42 students scored in the range of

[17.36, 27.97], which manifests a very good perception of

EasySOC from the experience.

CONCLUSIONS

Service-oriented computing is a relatively new paradigm for

developing applications that promotes the seamless combination

and reuse of existing pieces of functionality exposed by third

parties. The paradigm is far from being a buzzword and is

being exploited in the software industry by means of special-

ized libraries for both exposing and invoking services. Con-

sequently, there is an increasing need of effective ways of

teaching the fundamentals of this revolutionary paradigm to

systems engineering students.

One of the biggest hurdles in the path of educating stu-

dents in SOC concepts is the plethora of technologies surround-

ing the paradigm, which often obscures its cornerstones and

eclipses its simplicity. To date, very few educational tools for

SOC have been proposed, which unfortunately capture a small

fraction of the essential aspects of the paradigm. In addition,

the benefits of using these approaches have not been exper-

imentally assessed in real learning situations yet. Thus, techno-

logy isolation at the correct level of abstraction seems to be a

fundamental precondition to rapidly convey the basic concepts

of SOC and alleviating the cognitive effort that the associated

paradigm shift unavoidably demands.

To help addressing these issues, in this article we have

described the EasySOC tool, which allows users to easily

design and build service-oriented applications. EasySOC enfor-

ces the usage of common object-oriented design patterns and

component-based notions to structure such applications in an

effort to bridge the gap between these older paradigms and

SOC. Furthermore, EasySOC simplifies service discovery and

invocation, and hides technological details from users, which

allows them to be more focused on exercising and manipulating

the basic elements of SOC-based design. We evaluated the edu-

cational benefits of EasySOC by investigating whether exploit-

ing students’ experience in such earlier and well-established

programming paradigms while facilitating activities inherent to

SOC and hiding technologies reduces the effort needed to effec-

tively start applying SOC design concepts. We argue that, even

when assuming that some knowledge on object-oriented pro-

gramming from prospective users is necessary might represent

a threat to applicability of our approach, it is known that object

orientation is ubiquitous since it is already present in a very

large percentage of Computer Science and Information Systems

academic programs [33].

Our study involved 45 computer science students, who

were asked to develop a service-oriented application by using

traditional SOC libraries and EasySOC. Then, their thoughts

were collected via a Likert-based questionnaire. Results show

that the students, who had no previous experience in SOC

development before the situation, perceived that EasySOC

allows focusing on essential aspects of the paradigm while leav-

ing secondary ones on background. This suggests that EasySOC

is a convenient tool for having the first encounter with SOC

concepts and at the same time developing real applications.

Since the students had conventional programming skills and

knowledge before taking our SOC course, which is the state of

advanced system engineering students in most universities, we

can reasonably extrapolate these results to support the argument

that EasySOC may be useful as a tool support for other similar

courses.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments

and suggestions to improve the article. We also thank the stu-

dents who participated in the survey for their good predisposi-

tion in the experiment. Finally, we acknowledge the financial

support provided by ANPCyT through grant PAE-PICT 2007-

02311.

APPENDIX:ALL STUDENTS: SELECTION
PREFERENCES ANALYSIS

Certainly, service discovery is an essential aspect of the SOC

paradigm. As users have the final word on which service is

more appropriate to their purposes when using EasySOC, we

conducted another experiment with all the students to analyze

the reasons behind selecting among several candidates, as illus-

trated in Figure 5. As input, we provided them with different

WSDL documents and an extra questionnaire that consisted of

11 questions divided into 3 groups. A group of questions were

designed to simply familiarize the participants with each

WSDL document. For example, one question asked about the

number of operations offered by the WSDL documents. The

second group of questions asked the students about whether the

WSDL documents were self-explanatory enough so they under-

stand what the offered service does from a functional perspect-

ive and how to invoke it, or if their descriptiveness could be

improved to some extent instead. The last group of questions

allowed the participants to comment which version of the

employed WSDL documents would they prefer and why. The

questions of the second and third groups, and the main results

of this extra survey are described next.

First, we gave the students a WSDL document with sev-

eral operations belonging to the same application domain, but

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
um

be
r

of
 r

es
po

nd
an

ts
 w

ho
 a

ch
ie

ve
d

th
e

sa
m

e
sc

or
e

Likert scale

µ=22.67

Bézier curve

Figure 9 Likert scale: Distribution of the scores.

12 MATEOS ET AL.

one operation in a different domain, and in turn asked the stu-

dents whether removing this non-cohesive operation would

improve the clarity and understandability of the service or not.

A 92% of the students answered that they would remove the

non-cohesive operation.

Second, we gave the students a service operation that

returns a generic data type, and whose documentation provides

hints that, in case of an invocation or execution problem, error

information would be included in the output message returned

by the service. Then, we asked the students about whether they

could determine the structure of the operation response,

whether they would replace the data type of the operation

output with a data type that merely represents the operation

result, and if they preferred the WSDL document to include

error information within output messages or provide separate

messages to convey such information. A 92% of the students

answered that the structure of the output was not clear at all.

The rest of the participants answered that the analyzed oper-

ation always returns instances of xsd:double or xsd:int data

types, that is, the WSDL data types that represent doubles and

integers, respectively. This result may stem from the fact that

the operation was for uploading data files, and if a file is suc-

cessfully transferred via the service, then the stored file size is

returned. In this sense, it seems that 8% of the students disre-

garded the possibility of a failure during the execution of the

operation. The results also showed that 92% of the students

would replace the data type of the output of the operation. As

the reader can see, the percentage of participants that identified

the situation as a problem was exactly the same that voted for

replacing the data type definition. At the same time, 92% of the

students realized that the analyzed output message could

exchange error information. However, only 81% of them

answered that they would use a WSDL built-in error message

to separate return error information.

Finally, we gave the students a WSDL document with two

operations returning the same data types, but defined twice. The

students were asked whether they would remove one of the

redundant data types or not. An 81% of them answered that

they would remove the repeated data types, because ‘‘it

obscures the data types defined by the WSDL operations of the

service.’’

The last group of questions allowed the participants to

comment which one of the input WSDL documents they would

select and why. The comments made by the students provided

an idea of their preferences when selecting WSDL documents.

Some participants included two, or more, different preferences

in their comments. From these comments we summarized and

ranked the most frequent students’ preferences. Accordingly,

the identified preferences are listed below in decreasing order

of occurrence:

1. The data types exchanged and exposed by the operations

of the selected WSDL document were better represented.

2. The selected WSDL document was more concise.

3. The operations of the selected WSDL document

belonged to a single application domain.

4. Error information was better handled by the selected

WSDL document.

Specifically, the results showed that 37% of the students

included in their comments the reason related to better repres-

entation of data type definitions. The responses of 30% of the

students highlighted that they preferred concise WSDL docu-

ments. Besides, 19% of the students commented that they

would select those WSDL documents that arranged cohesive

operations. Finally, 14% of the students said that separating

error information from output messages helped them to under-

stand how to use the service, so they would preferably select a

WSDL that deal with error information in this manner.

Figure 10 summarizes these results.

REFERENCES

[1] M. Bichler and K.-J. Lin, Service-oriented computing, IEEE

Comput 39 (2006), 99–101.

[2] J. Erickson and K. Siau, Web Service, service-oriented computing,

and service-oriented architecture: Separating hype from reality, J

Database Manage 19 (2008), 42–54.

[3] W.-T. Tsai, Y. Chen, C. Cheng, X. Sun, G. Bitter, and M. White,

An introductory course on service-oriented computing for high

schools, J Inform Technol Educ 7 (2008), 315–338.

[4] B. Lim, C. Jong, and P. Mahatanankoon, On integrating Web Serv-

ices from the ground up into CS1/CS2, SIGCSE Bull 37 (2005),

241–245.

[5] W.-T. Tsai, Y. Chen, and X. Sun, Designing a service-oriented

computing course for high schools. In: S. C. Cheung, Y. Li, K.-M.

Chao, M. Younas, and J.-Y. Chung (Eds.), IEEE International

Conference on e-Business Engineering (ICEBE 2007), IEEE Com-

puter Society, Hong Kong, China, 2007, pp 686–693.

[6] C. Kelleher and R. Pausch, Lowering the barriers to programming:

A taxonomy of programming environments and languages for

novice programmers, ACM Comput Surv 37 (2005), 83–137.

[7] M. Kendall and E. Gehringer, Teaching Web Services with Water.

In: Proceedings of the 36th ASEE/IEEE Frontiers in Education

Conference, San Diego, CA, IEEE Computer Society, Los Alami-

tos, CA, 2006, pp 7–12.

[8] J. Nandigam, V. Gudivada, and M. El-Said, Teaching Web Serv-

ices using WSExplorer. In: Proceedings of the 37th ASEE/IEEE

Frontiers in Education Conference, Milwaukee, WI, IEEE

Computer Society, Los Alamitos, CA, 2007, pp S3H-20–S3H-25.

[9] W.-H. Wu, W.-F. Chen, L.-C. Fang, and C.-W. Lu, Development

and evaluation of Web Service-based interactive and simulated

learning environment for computer numerical control, Comput

Appl Eng Educ 18 (2009), 407–422.

[10] W.-H. Wu, W.-F. Chen, T.-L. Wang, and T.-J. Su, A pedagogical

Web Service-based interactive learning environment for a digital

filter design course: An evolutionary approach, Comput Appl Eng

Educ 18 (2010), 423–433.

[11] B. Ramamurthy, GridFoRCE: A comprehensive resource kit for

teaching Grid Computing, IEEE Trans Educ 50 (2010), 10–16.

Figure 10 Students’ criteria when selecting among several candidate

services. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

INTRODUCING SYSTEMS ENGINEERING STUDENTS IN SOC 13

[12] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the Grid:

Enabling scalable virtual organization, Int J High Perform Comput

Appl 15 (2001), 200–222.

[13] S. Vaughan-Nichols, Web Services: Beyond the hype, Computer

35 (2002), 18–21.

[14] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, The

next step in Web Services, Commun ACM 46 (2003), 29–34.

[15] Google, Inc., Google SOAP search API, 2006, http://code.google.

com/apis/soapsearch/reference.html.

[16] C. Depcik and D. Assanis, Graphical user interfaces in an engin-

eering educational environment, Comput Appl Eng Educ 13

(2005), 48–59.

[17] J. Garcı́a Perez-Schofield, F. Ortı́n Soler, E. Garcı́a Roselló, and

M. Pérez Cota, Towards an object-oriented programming system

for education, Comput Appl Eng Educ 14 (2006), 243–255.

[18] G. Licea, J. Reyes Juárez, L. Martı́nez, and L. Aguilar, Develop-

ing programming tools to reach a deeper understanding of

advanced programming concepts, Comput Appl Eng Educ 16

(2008), 305–314.

[19] B. Garcı́a Perez-Schofield, E. Garcı́a Roselló, F. Ortı́n Soler, and

M. Pérez Cota, Visual Zero: A persistent and interactive object-

oriented programming environment, J Visual Lang Comput 19

(2008), 380–398.

[20] M. Crasso, C. Mateos, A. Zunino, and M. Campo, EasySOC:

Making Web Service outsourcing easier, Inform Sci (2010), in

press.

[21] C. Mateos, M. Crasso, A. Zunino, and M. Campo, Separation of

concerns in service-oriented applications based on pervasive

design patterns. In: Proceedings of the 2010 Web Technology

Track (WT)—ACM Symposium on Applied computing (SAC),

Sierre, Switzerland, ACM Press, New York, NY, 2010, pp 2509–

2513.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

patterns: Elements of reusable object-oriented software, Addison-

Wesley, Reading, MA, 1995.

[23] M. Crasso, C. Mateos, A. Zunino, and M. Campo, Empirically

assessing the impact of dependency injection on the development

of Web Service applications, J Web Eng 9 (2010), 66–94.

[24] M. Crasso, A. Zunino, and M. Campo, Easy Web Service discov-

ery: A Query-By-Example approach, Sci Comput Program 71

(2008), 144–164.

[25] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu,

D. Jayasinghe, S. Weerawarana, and G. Daniels, Axis2, middle-

ware for next generation Web Services. In: Proceedings of the

IEEE International Conference on Web Services, IEEE Computer

Society, Los Alamitos, CA, 2006, pp 833–840.

[26] C. Walls and R. Breidenbach, Spring in action, Manning,

Greenwich, CT, 2005.

[27] E. Stroulia and Y. Wang, Structural and semantic matching for

assessing Web Service similarity, Int J Coop Inform Syst 14

(2005), 407–438.

[28] R. Likert, A technique for the measurement of attitudes, Arch Psy-

chol 22 (1932), 1–55.

[29] A. Savoy, R. Proctor, and G. Salvendy, Information retention from

PowerPointTM and traditional lectures, Comput Educ 52 (2009),

858–867.

[30] W. Woody and C. Baker, E-books or textbooks: Students prefer

textbooks, Comput Educ 55 (2010), 945–948.

[31] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, Improv-

ing Web Service descriptions for effective service discovery, Sci

Comput Program 75 (2010), 1001–1021.

[32] D. Spinellis, The way we program, IEEE Softw 25 (2008), 89–91.

[33] D. Douglas and B. Hardgrave, Object-oriented curricula in aca-

demic programs, Commun ACM 43 (2000), 249–256.

BIOGRAPHIES

Cristian Mateos (http://www.exa.unicen.edu.

ar/�cmateos) received a Ph.D. degree in Com-

puter Science from the UNICEN, in 2008, and

his M.Sc. in Systems Engineering in 2005. He

is a full time Teacher Assistant at the UNI-

CEN and member of the ISISTAN and the

CONICET. He is interested in parallel/distrib-

uted programming, Grid middlewares and Ser-

vice-oriented Computing.

Marco Crasso (http://www.exa.unicen.edu.ar/

�mcrasso) received a Ph.D. degree in Com-

puter Science from the UNICEN in 2010. He

is a member of the ISISTAN and the CONI-

CET. His research interests include Web Ser-

vice discovery and programming models for

SOA.

Alejandro Zunino (http://www.exa.unicen.

edu.ar/�azunino) received a Ph.D. degree in

Computer Science from the UNICEN, in

2003, and his M.Sc. in Systems Engineering

in 2000. He is a full Adjunct Professor at

UNICEN and member of the ISISTAN and the

CONICET. His research areas are Grid com-

puting, Service-oriented computing, Semantic

Web Services and mobile agents.

Marcelo Campo (http://www.exa.unicen.edu.

ar/�mcampo) received a Ph.D. degree in

Computer Science from the Universidade Fed-

eral do Rio Grande do Sul, Brazil, in 1997. He

is a full Associate Professor at the UNICEN,

Head of the ISISTAN, and member of the

CONICET. His research interests include intel-

ligent aided software engineering, software

architecture and frameworks, agent technology

and software visualization.

14 MATEOS ET AL.

