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Amorphous precursors of crystallization during spinodal decomposition
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A general Landau’s free energy functional is used to study the dynamics of crystallization during liquid-solid
spinodal decomposition (SD). The strong length scale selectivity imposed during the early stage of SD induces
the appearance of small precursors for crystallization with icosahedral order. These precursors grow in densely
packed clusters of tetrahedra through the addition of new particles. As the average size of the amorphous
nuclei becomes large enough to reduce geometric frustration, crystalline particles with a body-centered cubic
symmetry heterogeneously nucleate on the growing clusters. The volume fraction of the crystalline phase is
strongly dependent on the depth of quench. At deep quenches, the SD mechanism produces amorphous structures
arranged in dense polytetrahedral aggregates.
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I. INTRODUCTION

According to the classical theory of symmetry-breaking
phase transitions, the crystallization process may proceed
via two distinct mechanisms, nucleation and growth (NG) or
spinodal decomposition (SD) [1]. In the NG mechanism the
initial disordered phase is metastable, and the relaxation of
the system is promoted by the overcoming of a free energy
barrier. This process involves the formation of a critical
nucleus of the crystalline phase by structural fluctuations.
In a manner different from the NG process, SD does not
require large fluctuations to initiate the phase transition,
and it is characterized by the exponential growth of density
fluctuations of a dominating wavelength, entirely determined
by the thermodynamic properties of the system. At early times
this process leads to the formation of disordered isotropic states
that eventually evolve toward the equilibrium phase through
coarsening [2,3].

Although this classical picture provides a qualitative
description of the phenomenology involved in the phase tran-
sition process, during the last 30 years, experiments, theory,
and simulations have shown that the process of crystallization
is far from being trivial. For example, in the NG process, the
kinetic pathway toward equilibrium may involve intermediate
phases with a symmetry different than those corresponding
to equilibrium [4–9]. According to Ostwald’s step rule the
nucleated phase is not necessarily the thermodynamically most
stable, but it has energy levels closest to the disordered state
[5]. A similar process was observed in the crystallization of
globular proteins and colloids, where density inhomogeneities
in the fluid lower the free energy barrier for NG [6–9]. On the
other hand, the relaxation in the spinodal region is still poorly
understood. For example, it has been recently observed that
thermal fluctuations play an important role in the dynamics
of SD. In the neighborhood of the spinodal line, it was found
that the equilibrium phase can be pseudonucleated by density
wave fluctuations [10]. A complex phase separation kinetics
has been observed also in different systems, such as colloids
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and polymers, where it has been found that a spinodal-like
dynamics can precede the crystallization process [10,11].

In this work a continuous Landau’s free energy expansion
and a relaxational dynamics are used to study the kinetics
of crystallization of a body-centered cubic (bcc) structure in
the spinodal region. As compared with molecular dynamics
simulations, the phase field approach employed here naturally
incorporates the elasticity of the bcc crystals and provides
an efficient approach over diffusive time scales, while the
identification of the precursors of crystallization as well as
amorphous and crystalline regions can be easily determined
through the local amplitude of the continuum order parameter.

II. MODEL

Symmetry-breaking phase transitions in a wide variety of
systems can be studied through an expansion of the free energy
� in terms of an appropriated order parameter ψ . Here we
employ the expansion [12]

� =
∫ [

W (ψ) + D(∇ψ)2 + b

∫
ψ(r) ψ(r′)
|r − r′| dV ′

]
dV, (1)

where W (ψ) = −τψ2 + νψ3 + λψ4. Here the order param-
eter represents the deviation of the particle density from
the uniform value characteristic of the liquid state (where
ψ = 0). The parameter τ is proportional to TS − T , being
a measurement of the depth of quench, with TS the spinodal
temperature where the continuous phase transition begins. The
constants ν and λ are related to the symmetry and saturation
of ψ at equilibrium, and D is a free energy penalization to the
spatial variations of the order parameter [2,3,13].

The dynamics of SD can be studied through a Cahn-Hilliard
equation [14]: ∂ψ/∂t = M∇2(δ�/δψ), where M is a mobility
coefficient. By inserting the free energy functional [Eq. (1)]
in the relaxational equation, the following equation for the
evolution of the order parameter can be obtained:

∂ψ

∂t
= M∇2

[
dW (ψ)

dψ
− D∇2ψ

]
− M b ψ. (2)

In this work Eq. (2) was numerically solved through
finite-difference methods on cubic grids having 1283 and
2563 grid points using periodic boundary conditions. After
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FIG. 1. (Color online) Early autocorrelation function C(r) values
for a system quenched into the spinodal region with reduced temper-
atures τr = (τ − τS)/τS = 1 × 10−5 (black line) and τr = 1 × 10−1

[red (gray) line]. The dashed blue (dashed gray) line indicates
C(r) ∼ 1/r . The inset shows the early-time real space fluctuations
(left) and the formation of precursors by the nonlinear enhancement
of density fluctuations (right).

SD the systems contain around 1.0 × 105 particles. The initial
homogeneous state is modeled by a random distribution of
order parameter fluctuations [2,3].

III. RESULTS

Since the initial disordered state is characterized by small
fluctuations (ψ ∼ 0), the early dynamics is almost linear and
the system’s state can be described as a random superposition
of density waves of the form [10] ψ(r,t) = ∑

k Akexp [i k · r
+ λ(k) t]. Here Ak is the initial amplitude of the k mode and
the amplification factor λ(k) = −D k4 + τ k2 − b selects the
range of unstable modes [those modes for which λ(k) > 0].
In real space the system displays a disordered pattern char-
acterized by a dominating length scale related to the most
unstable modes [10].

For systems quenched slightly below the spinodal line,
where τS = 2

√
bD, the region of unstable modes becomes

sharply peaked around a dominating wave vector amplitude
k0 ∼ √

τ/D. In this case the random superposition of modes
leads to the emergence of a strongly correlated filamentary
network of density wave fluctuations, with strong similarities
to those found in quantum billiards and other physical phe-
nomena involving random wave superposition [10]. Figure 1
shows the long-range density correlations that emerge in
the early state. In this case, the azimuthally averaged two-
point correlation function, C(r) = 〈∫ dr′ψ(r′)ψ(r + r′)〉, of
a critically quenched system behaves like a Bessel function
decaying as C(r) ∼ 1/r , in agreement with the theoretical
predictions for the random superposition of waves [10]. For
subcritical systems (τ > τs) the network of fluctuations lose
correlation and C(r) decays faster. As shown in the following,
the early correlations in ψ have a profound effect on the later
evolution of the system.

As time proceeds, there is a continuous amplification of
ψ until the anharmonic terms of the free energy functional

cannot be neglected and nonlinear dynamics comes into play.
While at deep quenches there is a lack of correlation in ψ and
the classical picture of SD is recovered, at shallow quenches
the early network of density wave fluctuations trigger the
inhomogeneous appearance of precursors for crystallization
(Fig. 1). Note that the local symmetry of the precursors is
dictated by nonlinear dynamic effects and does not necessarily
coincide with the symmetry of the phase of equilibrium.

FIG. 2. (Color online) (a) Precursor formed by four icosahedral
red (dark gray) particles and their first neighbors in yellow (light
gray). Thick red (dark gray) lines indicate bonds between icosahedral
particles and thin blue (gray) lines between icosahedra and their
first neighbors. Inset: Voronoi diagram of an icosahedral particle
(dodecahedron). (b) Precursor formed by a compact cluster of
icosahedra arranged in the vertex of a tetrahedron. (c) Propagating
amorphous nuclei shown in yellow (light gray) having compact
clusters and small chains of icosahedral particles in red (dark gray).
(d) Regular tetrahedron (lower right), where yellow spheres (spheres
at the vertices) indicate the particles and the green sphere (middle
sphere) indicates the tetrahedron’s center. Polytetrahedral aggregate
(upper), where lines connect tetrahedra with common faces.
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In order to track the evolution of the system, we identify
structural features by means of Voronoi diagrams through
the centers of the particles (with bulk particles defined as
local maxima of ψ) that are obtained through conventional
approaches [2,3,15]. Voronoi diagrams indicate that the
early precursors consist of compact clusters and chains of
icosahedrally arranged particles [Figs. 2(a) and 2(b)]. That is,
the symmetry of the precursors is dictated by the nonlinear
dynamics rather than by equilibrium states.

The presence of precursors with icosahedral symmetry in
the early stage of SD is not surprising. One of the oldest
scenarios for the formation of amorphous matter and glasses
is geometric frustration. According to this scenario, the amor-
phization of supercooled liquids is related to their tendency to
form locally compact structures, like icosahedra, incompatible
with translational symmetries [16–19]. The symmetry found
in the precursors is also in agreement with the Alexander-
McTague prediction, which indicates that local icosahedral
order is favored in the absence of an NG mechanism [20–22].

Once the precursors have been formed, they begin to
grow with an approximately spherical shape at a constant
rate by the addition of new particles [Fig. 2(c)]. Given
that the initial symmetry is incompatible with translational
order, the aggregation process produces growing amor-
phous clusters without any appreciable symmetry. As the
size of the precursors increases, the geometric frustration
is reduced and a number of particles begin to aggregate
with a crystalline structure at the front of the propagating
precursor [Fig. 3(a)] [23].

This process of surface crystalline nucleation shows sim-
ilarities with Monte Carlo results for the heterogeneous
nucleation on the surface of spherical colloidal seeds [24].
In agreement with the Monte Carlo simulations, here we also
observe that the crystalline particles do not span the whole
surface of the precursor because crystals cannot grow without
generating amorphous regions. Then, the growing nuclei
show an amorphous core surrounded by a shell consisting of
amorphous and crystalline phases [Fig. 3(a)]. A similar phe-
nomena has been also observed in freezing gold nanoclusters
where initially the system crystallizes on the surface of the
nuclei while the amorphous core with icosahedrally arranged
particles remains stable for some time [25].

Figure 3(b) shows the average radial profile of the ratio
between the fraction of crystalline particles on the propagating
nuclei, f cN , and the final fraction of crystalline particles
throughout the system, fcT . This figure shows that crystal
particles begin to nucleate at the surface of the amorphous
precursors for radii of the order of Rc � 3a, with a the
interparticle average distance, also in good agreement with
the results of Cacciuto et al. [24]. Then for R < Rc the high
curvature of the precursors clearly frustrates the formation
of crystal bonds. The subsequent growth and collision of the
different propagating nuclei lead to the formation of a structure
having crystalline and amorphous regions [Fig. 3(c)].

Once the SD process has been completed, the volume frac-
tion of crystals in the system depends strongly on temperature.
As the depth of quench increases, there is a larger number of
unstable modes in the system and C(r) decays faster than 1/r

(Fig. 1). Consequently, as the temperature of quench drops,
the number of amorphous precursors increases, incrementing

FIG. 3. (Color online) (a) Propagating nucleus formed by an
amorphous core shown in small yellow (small light gray) particles
and outer crystalline layers shown by big blue (big dark gray)
particles. (b) Typical nuclei density profile. (c) System composed of
amorphous and crystalline regions after the growth and collision of the
different nuclei. (d) Fraction of crystalline particles as a function of τr .
(e) q6, and (f) W6 distributions for the amorphous (continuous line)
and crystalline (dotted line) regions.

in this way the fraction of amorphous material. Figure 3(d)
shows the fraction of crystalline particles, fcT , as a function
of the reduced temperature τr = (τ − τs)/τs . We found that
fcT follows a power law with τr (fcT ∼ τ

−1/2
r ). This behavior

is consistent with previous results indicating that the average
distance between precursors ξ diverge as ξ ∼ τ

−η
r (η ∼ 1/5,

fcT ∼ ξ 3) [10].
To identify the symmetry of the crystalline phase sur-

rounding the amorphous precursor, we applied the bond order
parameter analysis introduced by Steinhardt et al. [17], where
the local structure is characterized in terms of the symmetry of
near-neighbor bonds by using spherical harmonics. The order
parameters are calculated by the expressions

ql(i) =
[

4π

2l + 1

l∑
−l

|qlm(i)|2
]1/2

,

wl(i) =
∑

m1,m2,m3

(
l l l

m1 m2 m3

)
qlm1 (i)qlm2 (i)qlm3 (i),
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where ( l l l
m1 m2 m3

) is the 3j -Wigner symbol. The vector order

parameter is given by

qlm(i) = 1

cNb(i)

Nb(i)∑
j=1

Ylm(r̄ij ),

where r̄ij is the direction of the bond between the
i particle and its near neighbor j , Nb(i) is the num-
ber of near neighbors of the i particle, Ylm(r̄ij ) are the
spherical harmonics, and c is a normalization factor such
that

∑
m qlm(i)qlm(i)∗ = 1.

The distributions of the bond order parameters are very
sensitive to the underlaying symmetry, allowing a clear
identification of the structure. Figures 3(e) and 3(f) show
the distributions of the rotational invariants q6 and W6, for
the amorphous and crystalline regions. These distributions
reveal that crystal particles arrange in a bcc lattice (peaks at
q6 ∼ 0.5 and W6 ∼ 10−3) while in the amorphous phase both
distributions become broader and shifted toward the low bond
order parameter region [4,17].

At long times the relaxation of the system continues through
a complex process involving structural changes (coarsening),
where there is an invasion of the crystalline structure on
the amorphous regions. However, at low temperatures the
dynamics can be highly arrested and the structure freezes.

In order to study the glasslike amorphous structure in the
deep spinodal region, here we also analyze the structural
features of a system where the formation of crystals is totally
frustrated (τr > 10−2 in Fig. 3). Figure 4 shows the pair
correlation function g(r) = V

N2 〈
∑N

i

∑
j 	=i δ(r − rij )〉, where

V is the volume and N the number of constituents, for a
typical amorphous structure. In this figure we also include
the pair correlation function associated with those particles
with icosahedral symmetry. Note that the amplitude of the first
maximum of the pair correlation function calculated with the

FIG. 4. (Color online) The red (gray) line shows the pair
correlation function g(r) calculated by using the centers of all the
particles and the black line shows g(r) calculated by only using the
centers of the icosahedra. Inset: Distribution for the q3 bond order
parameter (left) and g(r) calculated through the center of the regular
tetrahedra (right).

icosahedra is about three times larger than the amplitude of the
first maximum of g(r) calculated with all particles. In addition,
the position of the first maximum for the icosahedral pair
correlation function is slightly smaller than that corresponding
to all particles, indicating that the icosahedral bonds are under
compression.

The structural features found here (small clusters and
chains of icosahedra and the behavior of pair correlation
functions) agree with experimental findings in supercooled
colloidal systems undergoing NG [4,26], suggesting that
icosahedra could also play a role in the amorphization of those
systems.

The structural characterization of amorphous matter has
been one of the major problems in condensed matter physics
during the last 50 years. In this sense, one of the best geometric
descriptions is based on aggregates of polytetrahedral clusters
that have been invoked in order to describe the structure of
liquids, glasses, and quasicrystals.

The geometric features of the tetrahedra can be obtained
through Voronoi diagrams [Fig. 2(d)]. To test for the regularity
of tetrahedral configurations in the amorphous phase, we
calculate the q3 order parameter, which is sensitive to local
tetrahedral order around the tetrahedrons center (q3 = √

5/3
for a regular tetrahedron). The left inset of Fig. 4 shows the
q3 distribution for our system. The sharp peak of the distri-
bution at q3 ∼ 0.73 clearly indicates that regular tetrahedra
are the fundamental units of the amorphous states obtained
via SD. The analysis of the tetrahedral configurations also
shows that most of the particles (∼90%) are involved in at
least one regular tetrahedron, indicating the presence of an
amorphous phase characterized by a dense polytetrahedral
structure [27].

The right inset of Fig. 4 shows a pair correlation function
calculated through the centers of the tetrahedra. After a
few oscillations, g(r) rapidly decays toward the asymptotic
value for r � a, showing that the tetrahedra aggregate in
local configurations without long-range order. By using real
space plots we observe configurations of tetrahedra packed
on common faces, forming disordered clusters [Fig. 2(d)].
In a manner similar to the dense disordered packing of hard
spheres, here we also found that the aggregates are mainly
formed by five-fold rings obtained by packing five tetrahedra
around a common edge [27].

IV. CONCLUSIONS

We have presented evidence of a mechanism of crystal-
lization during SD that is induced by amorphous precursors.
Local icosahedral clusters and amorphous precursors are
kinetically favored by the early dynamics of SD. Crystalline
particles aggregate on these precursors in a way similar to
heterogeneous nucleation on spherical colloidal seeds. Our
results are in qualitative agreement with recent NG work in
colloidal systems [28]. Although the relaxational mechanism
studied here can be easily confused with conventional NG,
it is hoped that the phenomenon of crystallization in the
neighborhood of the spinodal can be experimentally observed
in systems with slow dynamics and a high length-scale
selectivity such as hard-sphere colloidal suspensions or block
copolymers.
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[3] L. R. Gómez, E. M. Vallés, and D. A. Vega, Phys. Rev. Lett. 97,

188302 (2006).
[4] U. Gasser et al., Science 292, 258 (2001).
[5] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Phys. Rev.

Lett. 75, 2714 (1995).
[6] P. R. ten Wolde and D. Frenkel, Science 277, 1975 (1997).
[7] H. J. Schope, G. Bryant, and W. van Megen, Phys. Rev. Lett. 96,

175701 (2006).
[8] P. G. Vekilov, Cryst. Growth Des. 4, 671 (2004).
[9] J. F. Lutsko and G. Nicolis, Phys. Rev. Lett. 96, 046102

(2006).
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