
Expert Systems with Applications 41 (2014) 2886–2896
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
NLP-based faceted search: Experience in the development of a science
and technology search engine
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.10.023

⇑ Corresponding author. Tel.: +54 2494439682.
E-mail address: marcelo.armentano@isistan.unicen.edu.ar (M.G. Armentano).

1 Available online at http://serverhp.isistan.exa.unicen.edu.ar:8080/buscador/.
Marcelo G. Armentano ⇑, Daniela Godoy, Marcelo Campo, Analia Amandi
ISISTAN Research Institute (CONICET-UNICEN), Campus Universitario, Paraje Arroyo Seco, Tandil 7000, Argentina

a r t i c l e i n f o a b s t r a c t
Keywords:
Vertical search engines
Faceted search
Named entities recognition
Natural language processing
An appropriate promotion, distribution and dissemination of scientific, artistic and technology develop-
ments can foster the collaboration between a country’s productive and academic sectors. The purpose of
this paper is to present a novel search engine aiming at helping people to access science and technology
advances, researchers and institutions working in specific areas of research. Our search engine first col-
lects information disseminated on the Web in academic institution sites and in researchers personal
homepages. Then, after intensive text processing, it summarizes the information in an enriched and
user-friendly presentation oriented to non-expert users. Stable performance and an acceptable level of
effectiveness for automatic named entities recognition indicate the potential of our approach for bridging
the gap between the heterogeneous and unstructured information available on the Web about the
research and development advances in a country and the innovation required by the productive sectors.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Information about science and technology (S& T) advances of a
country, including articles, patents and technological develop-
ments, is often available from official websites of S& T agencies, na-
tional and private universities, research institutes and other
institutions (Bar-Ilan, 2000). For researchers, practitioners, entre-
preneurs and the general public it might be difficult to access this
corpus of knowledge scattered on the Web, hindering possible
interactions between the parties and preventing fruitful collabora-
tion (Wong and Yap, 2012).

In this paper, we describe our experience on the development
of SciTechSE, a search engine specialized on S& T information
that was tested in our country. The main purpose of the project
was to bring scientific knowledge to people in order to foster
collaboration with the country productive sectors. The result
was a specialized S& T search engine1 that indexes pages on
Web servers belonging to scientific and educational institutions
nationwide with the goal of promoting the distribution and dis-
semination of scientific, artistic and technological developments
in the country.

Instead of creating and maintaining a centralized database,
the main purpose of SciTechSE is to take advantage of the
information already published by researchers and institutions
in their Web sites. Then, it replaces the effort of loading and
manually organizing such knowledge, which implies to aug-
ment the workload of researchers, with an automatic informa-
tion extraction method applied to the text of Web pages. This
method recognizes interesting entities, such as individuals,
institutions and places using natural language processing
(NLP) techniques.

Furthermore, it was required to present information to non-ex-
pert users in a friendly interface, allowing them to rapidly identify
people, institutions and places related with their information
needs. This requirement leads to the use of faceted search as a
mechanism to organize Web search results. Hierarchical faceted
categories (HFC) (Hearst, 2006) are built and populated using the
extracted entities. Each category corresponds to a different facet,
dimension or feature type relevant to the collection of Web pages
to be navigated. Thus, facets help to identify categories of interest
so that users can interactively filter results to find pages meeting
their needs.

SciTechSE is the first search engine specialized in science and
technology bounded to our country. Other existing search en-
gines specialized in the same domain mainly act as a gateway
to science and technology documents from reliable scientific
Websites with structured information. The search engine pre-
sented in this article works on the unstructured information
published in the websites of the institutions as well as in the
homepages of the researchers.

The rest of this paper is organized as follows. Section 2 pres-
ent some related work. Section 3 presents the search engine,
whereas Section 4 describes the general architecture of the
proposed tool. Section 5 describes some experiments conducted

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.10.023&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.10.023
mailto:marcelo.armentano@isistan.unicen.edu.ar
http://serverhp.isistan.exa.unicen.edu.ar:8080/buscador/
http://dx.doi.org/10.1016/j.eswa.2013.10.023
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896 2887
to evaluate the performance of the search engine in identifying
relevant entities. Finally, Section 6 states conclusions drawn
from this experience.
2. Related work

In the last years, many efforts have been made to parse text
documents and discovery useful knowledge from them (Patterson
et al., 2008; Jacquenet and Largeron, 2009; Hong et al., 2010; Choi,
2011). SciTechSE can be framed within the research on vertical
search engines. Vertical search engines differ from general search
engines in that they focus on a specific industry, topic, type of con-
tent (e.g., travel, movies, images, blogs, live events), piece of data,
geographical location, etc. This kind of search engines are useful
to find content that might be difficult to find on a general search
engine due to the great amount of documents that are indexed
by the later.

Tang et al. (2006) compared the performance of domain-specific
health and depression search engines with a general-purpose en-
gine (Google) on both relevance of results and quality of advice.
They conducted a standard IR experiment, running queries on en-
gines, pooling the results for each query, and employing research
assistants to judge them. Authors found that domain-specific
search might provide more relevant results, since it indexes a
non-uniformly chosen, relevant subset. Domain specific search
might also provide higher quality results, if its subset includes
high-quality information sources and avoids pages with false,
harmful or misleading information.

Several search engines focused on science and technology have
been developed. Course Homepage Finder (Altingovde et al., 2007),
for example, maintains and queries course homepages for various
university departments. This prototype system first crawls the
web seeded with the Turkish university homepages and restricted
to .edu domains. Then, an information extraction engine is trained
to extract course ids, course names, semester, instructors’ names
and emails, and store them in a relational DBMS. Scitopia.org2 is
a free federated vertical search service which retrieves content pro-
vided by its twenty-one partner scholarly societies. Scitopia.org acts
as a gateway to the research most cited in scholarly work and pat-
ents, searching more than 3.5 million documents from the leading
electronic libraries in major science and technology disciplines. Re-
sults to a query are presented to the user organized in different clus-
ters (Topics, Authors, Publications, Publishers, Affiliations and Years).
Science.gov3 is an integrated single-search gateway to reliable sci-
ence and technology information from over 2100 scientific Websites.
Science Research4 is a free search engine allowing access to numer-
ous scientific journals and public science databases. Similar initia-
tives are Scitation5 and TechXtra.6

Most of the previously cited approaches are limited to offering a
gateway to a set of authoritative sources of structured information
about documents. Differently, SciTechSE collects unstructured
information that is already present on the Web in academic insti-
tution sites and researchers personal homepages and, after inten-
sive text processing, summarizes the information in an enriched
and user-friendly presentation oriented to non-expert users.

Regarding faceted navigation, several works have been also pre-
sented. Prasad and Guha (2008) addressed the issue of concept
naming vs. concept categorization by introducing the semantic
annotating mechanism with facet analysis and coordination tech-
niques. Yee et al. (2003) presented an interface for large image col-
2 http://www.scitopia.org/scitopia/.
3 http://www.science.gov/.
4 http://www.scienceresearch.com/scienceresearch/.
5 http://scitation.aip.org/.
6 http://www.techxtra.ac.uk/. 7 http://code.google.com/webtoolkit/.
lections that allows users to navigate explicitly along conceptual
dimensions that describe the images. The interface uses hierarchi-
cal faceted meta-data and dynamically generated query previews
integrating category browsing with keyword searching. Images in
the collection contained standard arts meta-data facets, including
artist names, types of media, and dates, but it lacked meta-data
categories that describe the appearance of items or the images de-
picted in them. To solve this problem, authors developed an algo-
rithm to semi-automatically convert these descriptions into a set
of meta-data categories. This was done by comparing the words
in the descriptions to their higher-level category labels in WordNet
(Fellbaum, 1998), and retaining a subset of the most frequently
occurring categories. Ramirez and Mattmann (2004) presented
the Automatic Concept Extraction (ACE) algorithm, which can aid
users performing searches using search engines. Concepts of
underlying web page results being searched are presented to the
user in order to reduce the amount of links the user will need to
visit to find her desired results. The ACE algorithm is based on
emphasizing a concept through the amount of times it appears
on a web page and emphasizing a concept using HTML tags.

Dakka and Ipeirotis (2008) presented an approach for automatic
identification of facets that can be used to browse a collection of
free-text documents. The technique presented builds on the idea
that external resources, when queried with the appropriate terms,
provide useful context that is valuable for locating the facets that
appear in a database of text documents. As external resources for
providing context authors used WordNet, Google, and Wikipedia.
These resources are queried to examine which terms tend to co-oc-
cur often with the terms from the indexed documents under the
assumption that facet terms are rare terms in the original database
but co-occur frequently in the external resources with the terms
that appear in the original database. Authors apply an expansion
procedure, in which the important terms from each news story
are expanded with ‘‘context terms’’ derived from the external re-
sources. The expanded documents then contain many of the terms
that can be used as facets. Sleiman and Corchuelo (2013) presented
an unsupervised information extractor that works on two or more
web documents generated by the same server side template. It
finds the relevant information that should be extracted from them
by removing shared token sequences among those documents.

The difference of the above mentioned approaches with our ap-
proach is that we focus on helping people to access researchers and
institutions working in specific areas of research. For this reason,
predefined facets are selected to identify People, Organizations
and Places that can be used to refining search results.
3. SciTech search engine overview

SciTech search engine was created with the goal of assisting the
population of our country to access the scientific developments in
the country, supporting searches both in Spanish and English. Since
the search engine is oriented to non-expert users, most of the effort
was dedicated to providing a friendly user interface. Because of this
reason, the graphical interface of SciTechSE was entirely developed
using Google Web Toolkit (GWT)7 that enables rich Web application
development in Java. The interface communicates with SciTechSE’s
front-end to send queries, parse XML responses, etc.

Fig. 1 shows a screenshot of SciTechSE’s main page. We can ob-
serve in this figure that the user entered the query ‘‘artificial intel-
ligence’’. The response of the search engine is the set of pages
containing those terms along with the set of people, institutions
and places automatically identified in these pages using NLP tech-
niques. We can also observe in label ‘‘11’’ of Fig. 1 that the user has

http://www.scitopia.org/scitopia/
http://www.science.gov/
http://www.scienceresearch.com/scienceresearch/
http://scitation.aip.org/
http://www.techxtra.ac.uk/
http://code.google.com/webtoolkit/

Fig. 1. SciTechSE screenshot showing the main page and search Web results.

2888 M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896
selected ‘‘Department of Computer Science’’ from the set of institu-
tions presented as facets so that the search results are reduced to
those pages in which that specific entity was recognized. In the
remaining of this section we detail the main features available in
SciTechSE.

Users post queries to SciTechSE as if it was a traditional search
engine, using a set of keywords. As a result, SciTechSE presents
Web pages matching those terms in the results pane (labeled with
‘‘1’’ in Fig. 1), paged with 20 results per page.

For each result, SciTechSE shows its title (labeled with ‘‘2’’ in
Fig. 1), an extract of the document in which the searched terms ap-
peared (labeled with ‘‘3’’ Fig. 1) and the Web address of the result
(labeled with ‘‘4’’ in Fig. 1). At the bottom of the results panel the
total number of retrieved Web pages is shown (labeled with ‘‘6’’ in
Fig. 1 and a navigation panel that paginate results (labeled with ‘‘7’’
Fig. 1).

Some other additional features of SciTechSE include:

� More-Like-This is used to find documents similar to a docu-
ment returned by the search engine. Suggestions are made
when the user clicks on a link named ‘‘Similar Pages’’ (labeled
with ‘‘5’’ in Fig. 1). To find these similar documents SciTechSE
uses the vectors of terms stored in the index. More information
about this feature can be found in Section 4.3.2.
� Highlighting is the ability to highlight the text that matches the

query in the information of the results displayed to the user
(snippets). Terms used in the search query are highlighted in
bold font, as can be seen in Fig. 1.
� Field Collapsing is a feature that allows users to group results

with the same value for a certain field. The field used by SciTe-
chSE to implement this feature is the site or domain of the
retrieved pages. This causes that documents belonging to the
same domain that a previously retrieved document (with a
higher ranking score) will be removed from the response. The
user can then see all the collapsed results using the link named
‘‘more results from this site . . . ’’ (labeled with ‘‘8’’ in Fig. 1).
� Spell Checking provides spelling suggestions of the words
entered by the user in the form of ‘‘Did you mean: . . . ‘‘. To
implement this feature, the query is processed, analyzers are
applied and then it is contrasted with the dictionary of terms
in the index. More information about this feature can be found
in Section 4.3.1.
� Faceted Navigation improves the search results with additional

information about the retrieved pages. The browser interface is
enriched with facets that can then be used as filters in a subse-
quent query. These facets correspond to different entities recog-
nized in the text. The entities identified are presented in three
different categories (People, Organizations and Places) on the
left of the search results (labeled with ‘‘9’’ in Fig. 1). Notice that
only ten entities are shown in each category. The set of all enti-
ties identified can be viewed by clicking on the link ‘‘More. . . ’’
found at the end of each category (labeled with ‘‘10’’ in Fig. 1).
By selecting one or more of these entities it is possible to restrict
the results to only those pages or documents containing the
selected entities. After applying a filter, it is visually located
the filters bar (labeled with ‘‘11’’ in Fig. 1), between the search
box and results. The user can apply as many filters as desired by
clicking on other entities or delete a previously applied filter by
clicking on the cross that is located next to it in the filters bar
(labeled with ‘‘12’’ in Fig. 1). The filters applied are cumulative,
meaning that every time a new filter is applied the number of
results obtained will be equal to or less than the results pre-
sented without the application of the new filter. Facets are
sorted on the interface according to this value. More informa-
tion about faceted search can be found in Section 4.3.3.

4. SciTech architecture

The general architecture of SciTechSE is similar to most Web
search engines, having three major elements: Web crawling,
indexing and searching. Fig. 2 depicts the search engine general
architecture. First, the crawler visits Web sites and follows links

Fig. 2. General architecture of SciTech search engine.

M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896 2889
to other sites looking for Web pages. It also returns to them on a
regular basis to look for changes. Every page visited by the crawler
goes to a central repository that is indexed for fast retrieval and
ranking. Finally, users search the indexed information specifying
a query that reflects their information needs. User queries are com-
pared against the index to retrieve a subset of pages satisfying the
user need and the resulting pages are ranked according to their rel-
evance to the query.

In the SciTechSE search engine the crawler was implemented
using Apache Nutch.8 It periodically connects to those Web pages
in which it is interested in. The visited pages are then processed to
extract the entities contained in the text and, finally, an index is cre-
ated to provide an efficient search service to end users. Since SciTe-
chSE specializes in the domain of scientific and technological sites in
our country, Web sites that are currently analyzed are institutional
sites of universities and scientific and technological institutes explic-
itly given as seeds for crawling. The crawler starts with the default
web page for each of those seeds, extracts the web links contained
in those pages and traverse these links up to a predefined depth
whenever the linked page fulfill a set of inclusion and exclusion
rules. These rules aim at keeping the process limited to the domain
we are interested in. For example, the rule +ĥttp://([a-z0–
9]⁄)_⁄edu.ar accepts all pages within the edu.ar domain. Notice that
by changing the seeds and the crawling rules, SciTechSE can be
adapted to work with institutions of other countries.

The Web pages that are recovered by the crawling process are
analyzed searching for names, organizations and places that will
be then presented to the user in the form of facets in the search en-
gine interface. The user can interact with these facets to filter the
results obtained from a given query in order to narrow down the
results. In the following section we detail the process we follow
to analyze the text present in the crawled Web pages in order to
obtain the mentioned entities.

4.1. NLP and named entity recognition

Named Entity Recognition (NER) is a sub-task of the informa-
tion retrieval process that aims at identifying atomic elements in
the text and classifying them into predefined categories such as
names, places, organizations or addresses, among other elements
of interest for a particular domain. For this task, the text is pro-
cessed using linguistic techniques together with statistic ones.
8 http://nutch.apache.org/. 9 http://gate.ac.uk/.
SciTechSE NER module is based on GATE,9 an open source text pro-
cessing engine, which was adapted and extended to recognize
names, organizations and places both in English and Spanish con-
strained to the domain of science and technology. Named entity rec-
ognition involves three steps: statement segmentation, part-of-
speech (POS) tagging and NER itself. Each of these steps are detailed
in the following sections.

4.1.1. Sentence segmentation
Sentence identification is done using a rule-based method that

looks for potential sentence delimiters. These rules identify dot
characters as sentence delimiters but take into account common
exceptions such as acronyms and dots within numbers. Sentence
segmentation is done in three steps. First, text is tokenized. Second,
rules are applied to identify sentence delimiters. Third, start-of-
sentence and end-of-sentence tags are added to the text.

The rules for sentence segmentation are configured by three
files containing regular expressions, one regex per line. The three
different files encode patterns for:

� internal splits: sentence splits that are part of the sentence, such
as sentence ending punctuation;
� external splits: sentence splits that are not part of the sentence,

such as 2 consecutive new lines;
� non splits: text fragments that might be seen as splits but they

should be ignored, such as full stops occurring inside
abbreviations.

NLP rules for sentence segmentation assume well-formed text.
However, web pages usually contain text fragments without punc-
tuation such as those in web forms, different kind of lists and ta-
bles. To solve this problem we implemented a set of heuristics
that transform web text into text suitable to be used by the rule-
based method for sentence segmentation. For example, certain
HTML tags, such as < br/>, were also considered as sentence delim-
iters. We also appended missing a full stops to the text contained
within tags such as < p>,, <td>, <h1>, <h2>, etc.

4.1.2. Part-of-speech tagging
Part-of-speech (POS) tagging, also known as grammatical tag-

ging, is a process that needs to be applied before analyzing the
content of the sentences identified in the previous step. This pro-

http://nutch.apache.org/
http://gate.ac.uk/

2890 M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896
cess assigns to every word in the sentence a grammatical category
(noun, verb, article, etc.). POS tagging is done using both the word
itself and the context in which the word is written, that is to say
the position of the word with respect to adjacent words in the
phrase, sentence or paragraph.

Most words in a text correspond to nouns and adjectives. For
example, a pattern to identify a person in the text ‘‘Perez, J. A. Jr.’’
could be ‘‘a proper noun followed by a comma, one or more initials
and an optional suffix’’. For each entity that need to be identified
in the text there will be a set of patterns defined to discover those
entities based on the tags assigned by the POS tagging process.

The tagger used in SciTechSE is based on the Brill tagger (Hep-
ple, 2000), which produces a part-of-speech tag as an annotation
on each word or symbol. The tagging accuracy reported for this
algorithm is 97.05%. We consider eight basic POS tags: noun, verb,
adjective, article, adverb, conjunction, preposition and pronoun.
There are further specific tags for each basic tag. For example, for
nouns the POS tagger identifies different forms such as singular,
plural and possessive. The POS tagger used by SciTechSE identifies
forty-five tags in total.

4.1.3. Named entities recognition
In this step of the process, different entities are identified and

classified into three different categories: persons, organizations
and places.

Rules for named entities recognition (NER) were defined for
English and Spanish and each group is applied after a language
identification step. Both sets of rules were also specialized in the
domain of S& T in which we searched for organizations such as uni-
versities, faculties, institutes, etc.

NER rules were written using Java Annotation Patterns Engine
(JAPE). This engine enables the transformation of a previously
tagged text using a grammar based on regular expressions. The
grammar consists in a sequence of rules with the form patter-
n ? action that are executed over the tagged text of each sentence.
The left side of the rule specifies a pattern of tags, in the form of a
regular expression, and the right side of the rule is an action to be
executed if the left side is satisfied by the tagged text. The follow-
ing rule shows an example of how to identify an organization, in
this case a faculty, in Spanish:

Rule:OrgFacultadSpanish

Priority: 25

// EXAMPLE: Facultad de Ciencias Exactas

(

(

{Token.string == "Facultad"}——
({Token.string == "Fac"}({Token.string == "."})?) j

({Token.string=="Fc"}({Token.string=="."})?)
)

(

(CONNECTOR_INSTITUCION)?
({Token.orth == upperInitial}–{Token.orth ==

allCaps}j(INITIALS))
(CONECTOR_INSTITUCION_COMA)?

)+

):orgName –>:orgName.TempOrganization = {kind =

"org", rule = "OrgFacultadSpanish"}
10 http://lucene.apache.org/.
To match this rule, the text has to begin with the tokens ‘‘Facul-
tad’’, ‘‘Fac’’, o ‘‘Fc’’ (which are possible start tokens for a faculty in
Spanish), followed by an optional point, followed by a connector
that identifies an institution (CONNECTOR_INSTITUTION, defined
in another rule), followed by a word that either begins with an
uppercase letter or is completely in uppercase or is an acronym
(defined in INITIALS rule). In the case that a given text matches
the left side of this rule, it will be assigned a new tag corresponding
to an Organization.

The following rule is an example oh how we identify a Person:

Rule: Person Title

Priority: 45

// Example: Sr. Juan García
// Example: Prof. Dr. Juan Perez

(

(TITLE)+

(FIRSTNAME)+

(SURNAME)

(PERSONENDING)?

)

Macro: TITLE

(

{Title}
({Token.string == "."})?

)

Macro: FIRSTNAME

(

{FirstPerson.gender == male} j
{FirstPerson.gender == female} j
(INITIALS)

)

Macro: INITIALS

(

(

{Token.orth == upperInitial, Token.length =="1"}
({Token.string == "."})
)+

)

This rule indicate that a string of text will be considered a Per-
son if it starts with one or more titles, followed by one or more
names, followed by a surname (the definition of the rule for iden-
tifying surnames accept compound surnames) and ending with an
optional suffix (such as Jr.). This definition depends on other rules
that identify titles, names or surnames. The rule for identifying a
title, for example, is also shown in the previous code example
and consists of a TITLE token, which is matched against a dictionary
of titles, followed by a dot character.

4.2. Indexing and searching

After the crawling and NER processes, the information retrieval
process is done in four steps:

1. Represent documents and Web pages in a suitable form to be
indexed. This step consists in obtaining a subset of words that
better describe each document and is done during the indexing
process.

2. Identify the information needs of the user, represent it in the
same form as documents and create a query to the system.

3. Search for documents matching the query by comparing both
representations.

4. Score the documents recovered according to their relevance
with respect to the query and sort them according to its score.

These features were implemented using Apache Lucene,10 an
open source library for indexing and searching. Details of these
processes are given in the following sections.

http://lucene.apache.org/

M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896 2891
4.2.1. Index structure
The process of indexing or creating a searchable index is a basic

functionality of any search engine and consists in generating and
maintaining the data structures needed to store the content re-
trieved from a set of Web sites. This process is done after analyzing
the text and extracting relevant information from the pages re-
trieved during the crawling process, in order to optimize future
searches for this information.

The result from the previous step consists of a set of pages with
a set of associated entities. Using this information as input, index-
ing is done in such a way that both basic and advanced queries on
the indexed text can be efficiently solved.

The index consists basically in an inverted file, a word-oriented
mechanism for indexing a collection of texts in order to accelerate
the task of searching those documents. In traditional search en-
gines the index contains an entry for each word found in the in-
dexed documents. In turn, each of these entries has a pointer to
a list of URLs or documents containing that word. This enables to
quickly find a given word in the index and to retrieve the indexed
documents that contain that word. SciTechSE index also stores the
entities recognized within each page so that they are also recov-
ered in the searching process.

In order to improve the searching process, the inverted file is di-
vided into two parts: a dictionary containing all the words in the
index, global statistics of each word (such as term frequencies, in-
verse document frequencies), and a pointer to a second file, called
postings file, which stores information about each of the individual
occurrences of a word (including a pointer to the corresponding
documents where each word appears).

Thus, the dictionary is used to search for the terms appearing in
the query since it only has one entry for each unique term that ap-
pears in the indexed information. Once the term is found in the
dictionary, the postings file is accessed through a pointer to the
place where entries to the corresponding term starts in order to ex-
tract more data on each occurrence of that word and the related
documents.

Particularly, for indexing and searching we adapted the func-
tionality provided by Lucene, a high performance information re-
trieval library written in Java. Lucene offers powerful features
through a simple API: scalable, high-performance indexing along
with powerful, accurate and efficient search algorithms.
4.2.2. Web pages representation
Representation, retrieval and sorting used in SciTechSE is

based on the standard Vector Space Model (VSM). In this model
documents and queries are represented as n-dimensional vec-
tors, where each dimension corresponds to a separate term. If
a term occurs in the document, its value in the vector is non-
zero and represents the importance of weight of the term in
the document.

In other words, each document dj is represented in the space as
a vector of terms:

dj ¼ ðw1j;w2j; . . . ;wnjÞ

where wkj is the weight of the kth term in document j.
The wkj for a term tk in a document dj is obtained consider-

ing a local component related to each document and a global
component related to the complete collection of indexed docu-
ments. The local factor correspond to the frequency of the term
in the document tfkj, that is the number of times that tk occurs
in dj. The global factor is estimated using the inverse document
frequency idf(tk) = log(N/nk), where N is the total number of in-
dexed documents and nk is the number of documents that con-
tain the term tk at least once.
This way, terms are weighted using a function known as tf � idf
(term frequency x inverse document frequency) that is computed
as the product of both factors:

tf � idf ðtk; djÞ ¼ tfkj�logðN=nkÞ
This weighting scheme formalizes two empirical observations
about the text. First, the more times a term occurs in a document,
the more important is the term to determine the relevance of the
document to a query. Second, the more times the term appears
in the collection, the less useful it is for discriminating between dif-
ferent documents.

The index is internally composed of a series of segments. Each
segment contains, among other information:

� Term Dictionary is a dictionary containing all the terms used in
all indexed fields of the entire collection of documents
� The dictionary also stores the number of documents containing

a term and pointers to the data frequency and proximity
� Term Frequency for each word in the dictionary to store the IDs

of all documents that contain the term and frequency of the
term in each document
� Proximity Term, for each term the position in which the term

occurs in each document is stored
� Term Vectors, for each field in each document a vector of terms

is stored

The raw text extracted from Web pages goes through a series of
analyzers before being converted into vectors to be indexed. The
first step in this analysis is the tokenization that uses rules to par-
tition the text into tokens. A token is a unit of text, usually a term
or word in the document. The following filters or analyzers applied
to the text work on the tokens identified.

The value of a field, such as the contents of a document, must be
analyzed before it can be indexed. Lucene includes the concept of
pipe of analyzers, i.e. different analyzers can be used for indexing
and searching. An analyzer examines the raw text and provides
the indexable terms that will be used when indexing the docu-
ment. The simplest analyzer divides the text into tokens separated
by white spaces. Other analyzers perform different types of tasks
on the tokens they receive from a previously analyzer.

Analyzers used by SciTechSE, in the order in which they are ap-
plied, are the following:

1. WhitespaceTokenizerFactory: create tokens when finding white
spaces (including spaces, tabs, line breaks, etc.). It does not low-
ercase the text nor removes hyphens.

2. StopFilterFactory: removes stop-words, words with little seman-
tic value such as articles (a, an, the), conjunctions (and, or, but),
prepositions (in, on), pronouns (that, this) or very common
verbs (be, take). This step saves storage resources and unpro-
ductive processing time at later stages. SciTechSE uses a stan-
dard list of stop-words of the supported languages (Spanish
and English) so that this filter removes the words included in
this list.

3. WordDelimiterFilterFactory: This analyzer joins or separates
compound words. For example, it divides words when there is
a transition to uppercase or lowercase (WiFi is divided into
Wi and Fi), it concatenates series of alphabetic symbols, etc.

4. ISOLatin1AccentFilterFactory: This analyzer normalizes accented
characters to their unaccented equivalent (it converts é to e, for
example), it also normalized umlauts and others.

5. LowerCaseFilterFactory: transform all text to lowercase.
6. RemoveDuplicatesTokenFilterFactory: it ensures that no duplicate

terms appear in the same position. This filter is applied as a last
filter since duplicate terms usually appear as a result of a series
of filters applied previously.

Fig. 3. Analyzers applied to documents and queries.

2892 M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896
The same analyzers are applied to the indexed documents and to
the queries so that they can be compared in vector space, as shown
in Fig. 3.

4.2.3. Queries representation
A query is split into a set of simple terms or phrases. Multiple

terms are then combined with Boolean operators such as AND
(+), OR and NOT (�) to form more complex queries. The OR opera-
tor finds all documents with any of the term in the query (it is
equivalent to a union of sets). OR is the default operator, i.e. if there
is no operator between two terms is assumed the existence of an
OR operator. The AND operator match documents that have both
terms expressed in the query (it is equivalent to an intersection
of sets). The NOT operator excludes documents containing the
term that comes after this operator (it is equivalent to a difference
of sets). Finally, SciTechSE allows grouping expressions in paren-
theses to form sub-queries.

In addition to Boolean operators, the query can be delimited by
quotes to find documents containing an exact phrase and it can
also contain some special elements, such as:

� ? implies a match of any character. For example, the query
‘‘hell? ’’ matches any word starting with ‘‘hell’’ followed by
any character.
� ⁄ involves multiple matches of any character. For example, the

query ‘‘hell⁄’’ matches any word that begins with ‘‘hell’’ fol-
lowed by any string.
� � this is a fuzzy operator. It is used at the end of a word, e.g. the

query ‘‘hello �’’, will return all the words similar to ‘‘hello’’.

The string entered by the user is analyzed as shown in Fig. 3 and
then it is taken by Lucene’s QueryParser module, which translates
into a Boolean expression that is then used to find relevant docu-
ments. For example, if the interface receives the string ‘‘find this
text’’, the parser would transform it into ‘‘search OR this OR text’’.

4.2.4. Searching and retrieval
The retrieval process involves the identification and ranking of

documents from the index that are relevant to a given query. SciTe-
chSE combines two classic models of the information retrieval
area: the vector space model described in Section 3 and the Bool-
ean model. The Boolean model is used as an initial step to reduce
the number of retrieved documents which are then ranked using
the criteria of the vector space model.

The Boolean model is a simple model based on the theory of
sets and Boolean algebra. The retrieval strategy is based on a binary
decision criterion in which a document is relevant or not for a par-
ticular query, without considering any degree of relevance (that is,
it is a model of exact matching).

The documents retrieved are then those documents that satisfy
the logical expression in the query expressed by the user. To
achieve this, it uses the operators of Boolean algebra (AND, OR
and NOT) and applied them to each term in the index. In the basic
search interface provided by SciTechSE the retrieval process re-
turns all documents that contain any of the terms in the query.
In the advanced search interface provided by SciTechSE, logic func-
tions can be expressed on the terms of the query.

Once documents are recovered from the index based on this
model, SciTechSE uses the vector space model, which is a partial
matching model, to sort them according to their degree of rele-
vance with respect to the query. The general idea of this model is
that a document is more relevant to a query when the terms of
the query appears more often in a document, relative to the num-
ber of times that the term appears in all documents in the collec-
tion. That is, the weights assigned to the terms are used to
calculate the degree of similarity between each retrieved docu-
ment and the query made by the user.

The traditional measure of similarity in information retrieval
systems is the cosine similarity, which measures the angle be-
tween the vector of the query q and the vector of each document
dj in the space of vectors. This measure is calculated as the normal-
ized inner product between two vectors:

simðdj; qÞ ¼
dj�q

dj

�� �� qk k
¼

Pn
k¼1wkjwkqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1w2
kj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1w2

kq

q

where wkj is the weight of the term tk in the document dj and wkq its
weight in the query.

The similarity measure used in SciTechSE is inspired in the no-
tions of the cosine measure and is described in the following
section.

4.2.5. Scoring and ranking
The scoring function assigns a score to each document in the

search results according to their relevance to the query expressed
by the user. This score is then used to sort search results before
presenting them to the user. All score values are normalized to en-
sure that all the results have value less or equal to one. The follow-
ing equation, known as Lucene’s Practical Scoring Function
McCandless and Gospodnetic, 2010, shows the scoring function
used in SciTechSE:

scoreðd; qÞ ¼ coordðd; qÞ � queryNormðqÞ �
X
t2q

ðtftd � idf 2
t � t:getboostðÞ

� normðt;dÞÞ
where:

� tftd is the frequency of term t in document d. Documents that
have more occurrences of a term that is in the query receive a

higher score. This is computed as
ffi
frequency

p
.

� idft is the inverse document frequency, so that rare terms in the
collection contribute more to the score. This is computed as
1þ logð numDocs

docFreqþ1Þ.
� coord(d,q) is a factor that considers how many terms in the

query are found in the document. A document that contains
more query terms gets better score than one that holds only
some of them.
� queryNorm(q) is a normalization factor to makes comparable the

scores of different queries. This factor does not affect the rank-
ing and all results are multiplied by the same factor. It is com-

puted as: queryNormðqÞ ¼ 1=
ffi
q:getBoostðÞ2 �

P
t2qðidft�t:getBoostðÞÞ2

q

Fig. 4. Average well-formed names and duplicates for five searches.

M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896 2893
� t.getBoost() is a factor favoring a term t in query q during the
search process.
� norm(t,d) contains factors to boost documents and fields, which

are stored during the indexing process, and a normalization fac-
tor for length. Namely:
– Promote a document: a boosting factor assigned to a doc-
ument before adding it to the index

– Promote a field: a boosting factor assigned to a field
before adding the field to the document

– LengthNorm(field) is calculated when the document is
added to the index according to the number of tokens in
the document field
These factors are multiplied when adding a document
to the index. That is: normðt; dÞ ¼ doc:getBoostðÞ
Fig. 5. Average topically appropr
�lengthNormðfieldÞ �
Q

field f 2 d named as tf :getBoostðÞFor exam-
ple, the title of a document is a field that is considered
more descriptive than the content of the document. For
this reason, a higher boosting value is assigned to this
field so that a term of the query appearing in the title
of a document gives a better score to that document.
4.3. Improving the user experience

In order to improve user satisfaction, SciTechSE includes a num-
ber of additional features: Spell checking, finding similar docu-
ments and filtering using facets. We describe next how this
features are implemented.
iate names for five searches.

2894 M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896
4.3.1. Spell checking
Most Web search engines correct the spelling of queries sug-

gesting query terms that are similar to the terms used by the user.
For example, if the user query is ‘‘artificial intelligence’’, the search
engine prompts the user with the question ‘‘Did you mean: artificial
intelligence?’’. To implement this feature, instead of using a dictio-
nary, we use the collection of indexed documents to find terms
similar to that in the user query. The set of all terms longer than
three characters in the main index are extracted and added to a
new n-gram-based SpellChecker index (McCandless and Gospod-
netic, 2010). The length of the n-grams in this index range from
1–2 for short words and 3–4 for long words. Under the assumption
that the characters of the misspelled words are more likely to be
found in the inner n-grams, the n-grams of a fixed length are di-
vided into three categories to make it possible to assign higher
weights to he n-grams at the beginning or ending of the word. Mis-
spelled words are then split into n-grams using the same proce-
dure and the resulting terms are used to query the SpellChecker
index to retrieve the most similar words.

4.3.2. Finding similar documents
Users of SciTechSE can chose to find documents that are similar

to any result after performing a query. To implement this feature, a
‘‘more like this’’ link is appended to every search result. When the
user clicks on a ‘‘more like this’’ link, the corresponding document
is used to create a term vector that will be used to build a new
query. Before performing the query stop-words are removed and
the resulting terms are sorted by descending order of value. Only
the most frequent terms in the document term vector are used
to query the index. The number of terms used depends on the
length of the document, and corresponds to the square root of
the total number of tokens.

4.3.3. Faceted search
The use of faceted browsing is aimed to make it easier to refine

search results for both expert and non-expert users. Facets corre-
spond to properties of the information elements that are derived
by the analysis of the text of web documents using entity extrac-
tion techniques, as detailed in Section 4.1.3.

After performing an initial query, the entities recognized within
the search results are grouped into three categories: People, Orga-
nization and Places. These facets can then be used to show only re-
sults in which a selected entity appears. The process is iterative, so
that after selecting an entity and filtering out the matching results,
a new set of entities (those appearing in the filtered results) are
shown to the user. Conceptually, faceted browsing can be viewed
as the Boolean AND of multiple sets representing different
attributes.

For example, assume that the user searches for ‘‘artificial intel-
ligence’’ and a set of 100 matching documents are retrieved. Then
the user can select ‘‘Joe Doe’’ under the People category and the re-
sults will be narrowed to those pages matching ‘‘artificial intelli-
gence’’ which contain Joe Doe as a recognized Person entity. The
entities under the People category will no longer include Joe Doe,
but all people who co-appear in results containing Joe Doe.

4.4. Front-end for indexing and searching

The browser interface and the crawler do not directly interact
with the indexer but through a front-end for indexing and search.
SciTechSE uses Sorl11 for this aim. Solr acts as a server that commu-
nicates with both components via HTTP and XML standards acting as
a wrapper for Lucene, managing the synchronization of accesses to
11 http://lucene.apache.org/solr/.
index and providing multiple levels of caches to resolve queries
more effectively. Furthermore, Solr supports the distribution and
replication of Lucene indexes so that searches can be distributed if
it is necessary to increase the scalability of the system. Solr server
runs on Tomcat12 as a servlet container.

Documents with their various fields and types were defined in
an XML schema used by Solr to instruct the indexer about the type
of information contained in the documents. Next we show the def-
inition of some of the fields used in SciTechSE, including those con-
taining entities recognized in the text. In this scheme the analyzers
that will be applied to each field are also defined.

< field name=‘‘host’’ type=‘‘url’’

stored=‘‘false’’ indexed=‘‘true"/>
< field name=‘‘site’’ type=‘‘string’’

stored=‘‘true’’ indexed=‘‘true"/>
< field name=‘‘url’’ type=‘‘url’’ stored=‘‘true’’
indexed=‘‘true’’ required=‘‘true"/>

< field name=‘‘content’’ type=‘‘text’’

stored=‘‘true’’ indexed=‘‘true"/>
< field name=‘‘title’’ type=‘‘text’’

stored=‘‘true’’ indexed=‘‘true"/>
< field name=‘‘people’’ type=‘‘string’’

stored=‘‘true’’ indexed=‘‘true’’

multiValued=‘‘true"/>
< field name=‘‘places’’ type=‘‘string’’

stored=‘‘true’’ indexed=‘‘true’’

multiValued=‘‘true"/>
< field name=‘‘organization’’ type=‘‘string’’

stored=‘‘true’’ indexed=‘‘true’’

multiValued=‘‘true"/>
Documents are added to the index by posting an XML file with
the contents of the document through an HTTP POST to Solr. Enti-
ties recognized in a document are also added as values of the cor-
responding field (people, organizations or places). This way, after
processing a document with the entity recognizer, an XML file con-
taining all the values for fields in the document is created and
posted to the index.

The desired response format is set to the Solr query engine,
since not only the documents matching a given query are required,
but also faceted search and highlighting. A set of parameters are sent
along with the query, starting with the query string q entered by
the user (some previous checks are applied to avoid errors). The
language of the retrieved pages is also included in the request.

A query is typically satisfied by a number of indexed documents
that are not shown all at the same time but in a paged scheme. This
is indicated by the query parameters start and rows. Other param-
eters of the queries are defined in Solr’s settings file, such as the de-
fault operator q.op (being the OR operator in our case) or df, the
default field for searching, (being the content of the document
the case for SciTechSE).

Finally, when the user selects any filter in SciTechSE graphical
interface they are also added to the same HTTP request that ex-
presses the query. For example, if the user searches using the word
‘‘doe’’, she indicates that she only want pages in Spanish to be re-
trieved and then she select the person John Doe from the list of
entities recognized in the search results, the request will be:

http://isistan.exa.unicen.edu.ar/buscador/#q = doe;lang = lang_-
spa;facet = PEOPLE:John%2520Doe;and the result will be all those
pages containing the entity ‘‘John Doe’’.

The result of this request made to Sorl server will be an XML file
describing the results in the format specified above. An example is
2 http://tomcat.apache.org/.
1

http://lucene.apache.org/solr/
http://tomcat.apache.org/

M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896 2895
shown in the following code example, where we can see first the
number of documents matching the query (in this case 509), and
then the list of the resulting documents. For each document all
its data and associated entities of each type are specified.

< response>
< responseHeader > . . . </responseHeader>
< result numFound=‘‘509’’ start=‘‘0">
< doc>
< float name=‘‘boost">1.4142135</float>
< str name=‘‘content"> . . . text of the page . . . </str>
< str name=‘‘lang">en</str>
< arr name=‘‘organization">
< str > Department of Computer Sciences</str>
< str > UNICEN University </str>
</arr> <arr name=‘‘people">
< str > John Doe</str> </arr>
< arr name=‘‘places">
< str > Tandil</str>
</arr>
< str name=‘‘site">www.exa.unicen.edu.ar</str>
< str name=‘‘title"> . . . title of the page . . . </str>
. . .

</doc>
. . .

</result>
</response>
The resulting XML files are then processed before being dis-
played on the search engine interface.

5. Experiments

In order to test the search engine we evaluate two aspects.
Firstly, we determined the search engine capacity of extracting
valuable entities starting from Web page. Secondly, we determined
whether the extracted names correspond to actual researchers. For
evaluating both aspects we performed five queries to the search
engine and manually classified the results based on our knowledge
of the Argentinian research community in the consulted fields of
computer science. We used the following queries to judge results
for the top 1, 5, 10, 20 and 50 names identified by SciTechSE: ‘‘arti-
ficial intelligence’’, ‘‘intelligent agents’’, ‘‘software engineering’’, ‘‘web
services’’ and ‘‘logic’’.

For evaluating the extracting names we considered if the ex-
tracted names were well-formatted. This means that corresponds
to a name, possibly initials of second names and a surname. Errors
included truncated people names (for example, names without a
surname) or entities composed of words not corresponding to peo-
ple names. In this evaluation, we also counted entities that were
duplicated in the search results because they have different forms
(for example, in one case the name is formed by a surname and a
full name and in other case it is formed by the surname and the ini-
tials of the name).

Fig. 4 summarize the results of evaluating the previously de-
scribed issues. The average percentage of well-formed people
names and duplicated entities are depicted, error bars shows the
standard deviation for the five queries. As it can be observed, the
method reaches a very high precision on recognizing people
names, whereas a few duplications are included in the list of
results.

The evaluation of the results regarding the identification of real
researches related to the topic of the query is presented in Fig. 5.
First, the percentage of researchers actually working in the area
of a query was determined from each query results. We can
observe that the number of researchers of the area identified in
the top 10 results is high: almost 7 out of 10 results correspond
to researchers working in the subject. This number drops consider-
ably if the top-50 results are considered. It is worth noticing that
the remaining results belong to researchers that are mentioned
in the crawled pages matching the query, but whose research is
not completely related to the consulted topic. Finally, we should
mention that sometimes Argentinian researchers publish or inter-
act with foreign researchers whose names are also part of the
search results for being mentioned in the Web pages (for example,
as paper co-authors), we show in the figure the number of Argen-
tinian researchers identified. Since external researchers are men-
tioned with a low frequency their names only starts to appear
after the top-10 results.
6. Conclusions

We have designed a search engine in the domain of science and
technology in our country. SciTechSE indexes the institutional sites
of universities and scientific and technological institutes of our
country and allows users to navigate a large collection of scientific
pages using faceted meta-data associated to each indexed docu-
ment. The facets used correspond to people, institutions and places
and they are automatically detected using NLP techniques. Besides
faceted search, the presented search engine also provides other
common search engine features such as ‘‘More-Like-This’’ docu-
ment search, highlighting of searched terms, field collapsing of
search results and spell-checking of query terms.

This development aimed at closing the gap between academic
and productive sectors of the country making more accessible
the information about research works and technological advances.
The advantage of this search engine is twofold. First, it does not re-
quire to upload information into a centralized repository, which
would have increase the workload of scientific or institutions, since
it process information that they publish on the Web. Second, an
intensive text processing approach enables the detection of the
main entities involved in the available documents and, in turn, pre-
senting the information in an enriched and friendly manner to
non-expert users.
Acknowledgment

This research was supported by the Buenos Aires Scientific Re-
search Commission (CICPBA), Buenos Aires, Argentina.
References

Altingovde, I. S., Ozcan, R., Cetintas, S., Yilmaz, H., & Ulusoy, Ö. (2007). An automatic
approach to construct domain-specific web portals. In Proceedings of the
sixteenth ACM conference on information and knowledge management, CIKM ’07
(pp. 849–852). New York, NY, USA.

Bar-Ilan, J. (2000). Results of an extensive search for s& t indicators on the web: A
content analysis. Scientometrics, 49(2), 257–277 [ISSN 0138-9130].

Choi, Y. S. (2011). Tpematcher: A tool for searching in parsed text corpora.
Knowledge-Based Systems, 24(8), 1139–1150.

Dakka, W., & Ipeirotis, P. G. (2008). Automatic extraction of useful facet hierarchies
from text databases. In Proceedings of the 2008 IEEE 24th international conference
on data engineering, ICDE ’08 (pp. 466–475). Washington, DC, USA: IEEE
Computer Society.

Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. MIT Press.
Hatcher, E., McCandless, M., & Gospodnetic, O. (2010). Lucene in action (2nd ed.).

Manning Publications.
Hearst, M. A. (2006). Clustering versus faceted categories for information

exploration. Communications of the ACM, 49(4), 59–61 [ISSN 0001-0782].
Hepple, M. (2000). Independence and commitment: Assumptions for rapid training

and execution of rule-based pos taggers. In Proceedings of the 38th annual
meeting of the association for computational linguistics (ACL-2000).

Hong, J. L., Siew, E.-G., & Egerton, S. (2010). Information extraction for search
engines using fast heuristic techniques. Data Knowledge Engineering, 69(2),
169–196 [ISSN 0169-023X].

http://refhub.elsevier.com/S0957-4174(13)00839-7/h0005
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0005
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0010
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0010
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0015
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0015
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0015
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0015
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0020
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0025
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0025
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0030
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0030
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0035
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0035
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0035

2896 M.G. Armentano et al. / Expert Systems with Applications 41 (2014) 2886–2896
Jacquenet, F., & Largeron, C. (2009). Discovering unexpected documents in corpora.
Knowledge-Based Systems, 22(6), 421–429 [ISSN 0950-7051].

Patterson, D., Rooney, N., Galushka, M., Dobrynin, V., & Smirnova, E. (2008). Sophia-
tcbr: A knowledge discovery framework for textual case-based reasoning.
Knowledge-Based Systems, 21(5), 404–414.

Prasad, A. R. D., & Guha, N. (2008). Concept naming vs concept categorisation: A
faceted approach to semantic annotation. Online Information Review, 34(4),
500–510.

Ramirez, P. M., & Mattmann, C. A. (2004). Ace: Improving search engines via
automatic concept extraction. In Proceedings of the 2004 IEEE international
conference on information reuse and integration pp. 229–234.
Sleiman, H. A., & Corchuelo, R. (2013). Tex: An efficient and effective unsupervised
web information extractor. Knowledge-Based Systems, 39, 109–123.

Tang, T. T., Craswell, N., Hawking, D., Griffiths, K., & Christensen, H. (2006). Quality
and relevance of domain-specific search: A case study in mental health.
Information Retrieval, 9(2), 207–225.

Wong, C.-Y., & Yap, X.-S. (2012). Mapping technological innovations through patent
analysis: A case study of foreign multinationals and indigenous firms in china.
Scientometrics, 91(3), 773–787 [ISSN 0138-9130].

Yee, K.-P., Swearingen, K., Li, K., & Hearst, M. (2003). Faceted metadata for image
search and browsing. In Proceedings of the SIGCHI conference on human factors in
computing systems, CHI ’03 (pp. 401–408). New York, NY, USA: ACM.

http://refhub.elsevier.com/S0957-4174(13)00839-7/h0040
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0040
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0045
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0045
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0045
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0050
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0050
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0050
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0055
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0055
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0060
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0060
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0060
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0065
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0065
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0065
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0070
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0070
http://refhub.elsevier.com/S0957-4174(13)00839-7/h0070

	NLP-based faceted search: Experience in the development of a science and technology search engine
	1 Introduction
	2 Related work
	3 SciTech search engine overview
	4 SciTech architecture
	4.1 NLP and named entity recognition
	4.1.1 Sentence segmentation
	4.1.2 Part-of-speech tagging
	4.1.3 Named entities recognition

	4.2 Indexing and searching
	4.2.1 Index structure
	4.2.2 Web pages representation
	4.2.3 Queries representation
	4.2.4 Searching and retrieval
	4.2.5 Scoring and ranking

	4.3 Improving the user experience
	4.3.1 Spell checking
	4.3.2 Finding similar documents
	4.3.3 Faceted search

	4.4 Front-end for indexing and searching

	5 Experiments
	6 Conclusions
	Acknowledgment
	References

