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Most plants grow in dense vegeta-
tion with the risk of being out-

competed by neighboring plants. These
neighbors can be detected not only
through the depletion in light quantity
that they cause, but also through the
change in light quality, which plants
perceive using specific photoreceptors.
Both the reduction of the red:far-red
ratio and the depletion of blue light are
signals that induce a set of phenotypic
traits, such as shoot elongation and leaf
hyponasty, which increase the likelihood
of light capture in dense plant stands.
This set of phenotypic responses are part
of the so called shade avoidance syn-
drome (SAS). This addendum discusses
recent findings on the regulation of
the SAS of Arabidopsis thaliana upon
blue light depletion. Keller et al. and
Keuskamp et al. show that the low blue
light attenuation induced shade avoid-
ance response of seedling and rosette-
stage A. thaliana plants differ in their
hormonal regulation. These studies also
show there is a regulatory overlap with
the R:FR-regulated SAS.

Plants perceive the threat of competing
neighbors through various signals, such as
specific changes in the light quality. Plants
carry sophisticated photoreceptor systems
to perceive these signals and subsequently
activate a complex network of various
hormones and transcriptional regulators.1-4

Perception of competition signals results in
increased growth of the hypocotyl, stem
and petioles, and an increased leaf angle
(hyponasty), which are all part of the
so-called shade avoidance syndrome
(SAS).5 Plants use specific changes in the
light quality as signals of potential or

actual competition for light. A reduction
in blue light fluence rate is an indicator of
actual shading, whereas the reduction in
the red (R) to far-red (FR) ratio (R:FR) of
canopy light can be used by plants as an
early warning signal of future competi-
tion.6 Leaves absorb blue and R light for
photosynthesis, whereas FR radiation is
not absorbed and it is either transmitted
or reflected. A significant body of work
has concentrated on the mechanisms
and ecological implications of the R:FR-
regulated SAS responses.5 In contrast, the
role of blue light signals in the control of
plant developmental plasticity has received
only limited attention. This addendum
discusses the hormonal regulation of the
SAS responses of Arabidopsis thaliana
plants to blue light depletion based on
two recent papers.7,8

Photoreceptors Mediate
the Shade Avoidance Response

Plants carries specific photoreceptors to
detect the blue, R and FR radiation. The
photoreceptor families of cryptochromes
and phototropins, are sensitive to changes
in blue light, whereas phytochromes are
sensitive to R and FR radiation.9-12 Until
now most research was focused on the
R:FR and thus phytochrome regulated
SAS. Recent studies showed that crypto-
chromes are not only involved in blue
light de-etiolation and phototropism of
seedlings,13,14 but are also the major
mediators in blue light regulated SAS.7,15

In the study of Keller et al.7 petiole
elongation and hyponasty of rosette-stage
A. thaliana plants were investigated,
whereas in Keuskamp et al.8 hypocotyl
elongation of A. thaliana seedlings was
used as a readout of SAS. Interestingly,
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both studies found that blue light attenua-
tion induced robust SAS responses, which
in many regards resembled the phenotypes
of seedlings and plants grown under low
R:FR ratio.7,8 In these studies light treat-
ments were used that had reduced blue
light fluence rates (low blue) through
wavelength-specific filters and these were
compared against control light conditions.
Keller et al.7 showed that cry1 is required
for the SAS response to low blue for
rosette plants, whereas in seedlings, elong-
ation responses to blue light depletion
are controlled by both cry1 and cry2.15

The mechanisms that mediate the SAS
responses induced by cry inactivation have
been much less intensively studied than
those involved in the regulation of phyB
responses, and the papers of Keuskamp
et al.8 and Keller et al.7 have addressed the
involvement of several hormones known
to participate in the control of elongation.

The Hormonal Regulation
of the Low-Blue-Induced SAS

Auxin is a well-studied plant hormone that
has been associated with various elonga-
tion responses, such as low R:FR-induced
SAS16-18 and is known to be regulated
by cryptochrome as well.19 However, its
role in plant responses to blue light
attenuation has not been fully investigated.
Auxin biosynthesis under the control of
TRYPTOPHAN AMINOTRANSFERASE
OF ARABIDOPSIS1 (TAA1) is upregu-
lated in response to low R:FR.17 Mutations
in the TAA1 gene, such as in the sav3-2
or wei8-1, prevent SAS induction by low
R:FR.17,18,20 In Keuskamp et al.8 it was
shown that wei8-1 had a reduced (but still
significant) elongation response to blue
light attenuation. Likewise, the sav3-2
mutant at the rosette stage displayed a
nearly normal petiole elongation response
to blue light attenuation, and retained a
full leaf hyponastic response.7

In a previous study, Keuskamp et al.18

demonstrated that Polar Auxin Transport
(PAT) is required for the elongation
response to low R:FR of petioles and
hypocotyls. They showed that low R:FR
treatments produced a change in the sub-
cellular localization of PIN-FORMED3
(PIN3), which is a facilitator of auxin
transport.21 This relocation would lead to

a change in PAT, leading to auxin
accumulation throughout the hypocotyl
and eventually an increased elongation
rate. Seedlings of the pin3-3 mutant failed
to respond to a low R:FR treatment with
auxin accumulation in the hypocotyl and
hypocotyl elongation.18 These data show
the significance of auxin transport in SAS
response elicited by low R:FR, as proposed
by Morelli and Ruberti.16 Interestingly,
PAT can be regulated by cryptochrome.19

Inhibition of auxin transport (or block-
ing the auxin perception) in seedlings, did
not fully inhibit the elongation response
induced by blue light attenuation8 and, in
the rosette phase, pin3-3 plants showed
completely normal SAS responses to
reduced blue light levels.7 The observed
inhibition of the petiole elongation
response upon blue light attenuation
by 1-N-Naphthylphthalamic acid (NPA),
an inhibitor of PAT, could imply
involvement of other PINs,7 as was shown
for seedlings8. Interestingly, inhibiting
PAT did not affect low blue-induced
hyponasty, indicating that these two
responses are regulated through partly
separate mechanisms.

Recent studies have shown that
brassinosteroids (BR) also play a role in
the SAS response of A. thaliana plants
triggered by phyB inactivation.8,22

Furthermore, auxin and brassinosteroids
(BR) are linked to many of the same
growth processes, including cell elongation
which is the driving force behind hypo-
cotyl elongation.23 BRs were found to
be required for the elongation response
of seedlings to blue light attenuation.
When BR biosynthesis or perception was
blocked, the elongation response to low
blue was reduced. Interestingly, only when
both auxin and BR were blocked simulta-
neously, the response to low blue was
fully inhibited.8 In petioles, the combined
involvement was not studied, but BR
appeared to be more important for petiole
elongation than for leaf hyponasty.7

These data show that the hypocotyl
elongation response upon low blue treat-
ment can be fully explained by the
combined action of auxin and brassino-
steroid,8 whereas the leaf morphology
responses of rosette-stage plants do not
seem to be regulated in the same
way.7 Interestingly, Both auxin and BR

are important regulators of the petiole
elongation and hyponasty responses
elicited by low R:FR.18,20,22 In short, this
means that the hormonal regulation
of SAS is not only organ- and/or
developmental stage-dependent but also
photoreceptor-dependent.

GA is a key regulator of cell elongation,
and an important player in SAS res-
ponses.2,5,15,24 Low R:FR enhances both
GA biosynthesis25 and responsiveness,26

representing a direct link between GA
and SAS. In addition, GA-related mutants
do not only present reduced hypocotyl
elongation responses to low R:FR treat-
ments but also to blue light depletion.15,24

The signal transduction of GA requires
ubiquitination of DELLA proteins,27 and
previous studies show that DELLA
abundance is affected during the SAS
response.15,24 Although the stability of
DELLAs is reduced in the hypocotyl
when seedlings are exposed to low blue
light levels,15 this was not the case for
petioles in plants at the rosette stage.7 In
addition, the DELLA gain-of-function
mutant gai-1, which has a reduced GA
responsiveness due to enhanced DELLA
stability, displayed only a slightly reduced
petiole elongation response compared
with wild-type, and a completely-normal
hyponastic response.7 These data suggest
that DELLA stability is not affected
in petioles that are exposed to low blue
light levels, which is different from the
situation in seedlings or petioles exposed
to low R:FR.15

In the absence of GA, DELLA proteins
accumulate to higher levels and interact
with PHYTOCHROME INTERACT-
ING FACTORS (PIFs), a family of
growth-promoting transcription factors,
and prevent these PIFs from regulating
gene expression associated with cell elong-
ation.28,29 The PIF family of proteins is
involved in the signal transduction of
phytochromes and can affect the complex
network of hormone interactions.29-31

Interestingly, two PIFs that are required
for low R:FR-induced SAS, PIF4 and
PIF5, also appeared to be essential for
low blue-induced petiole elongation and
hyponasty.7 Although it remains to be
studied whether pif4 and pif5 mutants also
have impaired low blue-induced hypocotyl
elongation, these data imply that PIFs can
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be recruited by photoreceptor-signaling
pathways other than those controlled
through phytochromes.

Conclusions

The studies of Keller et al.7 and Keuskamp
et al.8 show that there are differences in
the hormonal regulation of SAS response
elicited by low blue light between seedling
and rosette-stage A. thaliana plants. The
hypocotyl elongation response to blue
light depletion can be explained by a
combined action of auxin and BR, whereas
the hormonal regulation of petiole elonga-
tion and hyponasty appears to be more
complex. The elongation response of the

petiole to blue light attenuation seems
to be (partly) regulated by auxin and
brassinosteroids, whereas hyponasty could
not be explained on the basis of the tested
hormonal pathways. Ethylene could be
a possibility, as ethylene is a potent
inducer of hyponastic growth. However,
in A. thaliana ethylene does not appear
to contribute to hyponastic growth in
response to low light intensity.32 Further
work is needed to evaluate the interplay
between light signals and hyponastic
growth in A. thaliana.

Keller et al.7 identified PIF4 and PIF5
as novel regulators of SAS in response to
blue light depletion. Much is known about
the interaction between phytochromes

and PIFs,31 but it remains to be elucidated
how PIFs are recruited to elicit a growth
response when cry1 is inactivated by blue
light depletion.

This addendum discussed the fact
that although the SAS phenotype
induced by low R:FR or low blue light
is similar in many regards, the hormonal
regulation of these responses overlap only
partly. More research is needed especially
on the blue light regulated SAS. From
an ecophysiological point of view, it
would be interesting to investigate possi-
ble interactions between R:FR and blue
light regulated SAS, and how plants
respond when the light treatments are
combined.
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