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Summary

1. Bayesian state-space movement models have been proposed as a method of inferring behavioural states from

movement paths (Morales et al. 2004), thereby providing insight into the behavioural processes fromwhich pat-

terns of animal space use arise in heterogeneous environments. It is not clear, however, how effective state-space

models are at estimating behavioural states.

2. We use stochastic simulations of twomovement models to quantify how behavioural state movement charac-

teristics affect classification error. State-space movement models can be a highly effective approach to estimating

behavioural states frommovement paths.

3. Classification accuracywas contingent upon the degree of separation between the distributions that character-

ize the states (e.g. step length and turn angle distributions) and the relative frequency of the behavioural states. In

the best case scenarios classification accuracy approached 100%, but was close to 0%when step length and turn

angle distributions of each state were similar, or when one state was rare. Mean classification accuracy was un-

correlated with path length, but the variance in classification accuracy was inversely related to path length.

4. Importantly, we find that classification accuracy can be predicted based on the separation between distribu-

tions that characterize the movement paths, thereby providing a method of estimating classification accuracy

for real movement paths. We demonstrate this approach using radiotelemetry relocation data of 34 moose

(Alces alces).

5. We conclude that Bayesian state-space models offer powerful new opportunities for inferring behavioural

states from relocation data.

Key-words: classification accuracy, correlated random walk, global positioning system, mechanis-

tic movementmodel, telemetry

Introduction

Patterns of animal distribution and space use arise from a com-

plex interaction between environmental conditions and

behavioural responses. Understanding the processes that gov-

ern movement, and the evolutionary consequences of move-

ment, is a fundamental research area in ecology (Nathan et al.

2008). One of the motivations for monitoring animal space use

is to develop an understanding of the behavioural strategies

underlying how animals use heterogeneously distributed

resources and habitat, and how animals manage risk and

competing demands that influence fitness (Rosenzweig 1991;

Morris 2003).

Advances in location-monitoring technology, such as global

positioning system (GPS) devices, have enhanced our ability to

accurately sample space use at high temporal frequencies

(Cagnacci et al. 2010). There are, however, two issues that

must be confronted when using location data to quantify the

link between space use and fitness: the spatial locations lack a

behavioural context and they are typically sampled at regular,

but behaviourally arbitrary, time intervals. In the absence of

knowledge of what the animal is doing at a location, or

whether a location corresponds to a transition between behav-

iours, it can be difficult to quantify the utility of a location to

the animal (Beyer et al. 2010).

One approach to modelling movement paths are correlated

random walks (CRWs) whereby a continuous movement path

is approximated as a series of discrete ‘steps’ (two consecutive

point locations) characterized by a step length (d) and turn

angle (h) representing the change in direction of the current

step relative to the previous step (Kareiva & Shigesada 1983;

Turchin 1998; Jonsen, Myers & Flemming 2003). Unlike sim-

ple isotropic random walks, in which each step is independent

of all preceding steps, CRWs take into account directional per-

sistence (a short-term tendency to keep moving in the same

direction). Randomwalks form the basis of the theory of diffu-

sive processes and provide a strong theoretical framework for

understanding movement processes (reviewed in Codling,
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Plank & Benhamou 2008). CRWs are generally only reason-

able approximations of animal movement paths over short

periods of time because they fail to incorporate behavioural or

cognitive processes (e.g. site fidelity, memory, intra- or inter-

specific interactions, etc.) that are important determinants of

space use over longer time periods (B€orger, Dalziel & Fryxell

2008).

Morales et al. (2004) proposed modelling movement paths

as a mixture of several CRWs each of which corresponds to a

different behavioural ‘state’ (or movement mode). A behavio-

ural state is defined as a collection of behaviours that have sim-

ilar movement characteristics. For instance, given a movement

path that has been characterized using one or more quantita-

tive metrics (e.g. step lengths, turn angles, etc.), the behaviour-

al states correspond to different modes in a multi-modal

distribution or, using a k-means clustering analogy, to clusters

in multidimensional parameter space. Using a Bayesian state-

space modelling framework, Morales et al. (2004) demon-

strated that elk (Cervus elaphus) movement paths could be

characterized as a mixture of ‘encamped’ and ‘exploratory’

behavioural states. Transitions between states can be modelled

as a constant switching probability, or with more complex

models based on previous states and other environmental or

path covariates (Morales et al. 2004). Similarly, Eckert et al.

(2008) used this approach tomodel movement paths of logger-

head turtles (Caretta caretta), identifying an intensive- and

extensive-search behavioural states and relating the probabil-

ity of being in these states to environmental features. TheMor-

ales et al. (2004) approach is an important development as it

provides a method for estimating the behavioural context of

spatial locations.

It is not clear, however, to what extent behavioural states

identified using the Morales et al. (2004) approach might be

meaningful representations of real animal behaviour, or how

the characteristics of the CRWs for each state might influence

our ability to identify these states. Here, we use stochastic sim-

ulations of two movement models to generate movement

paths comprised of a mixture of two CRWs, and evaluate the

ability of Bayesian state-space models to recover behavioural

states and parameter values from the simulated movement

paths. Specifically, we evaluate five aspects of state-space

model classification accuracy: (1) How is classification accu-

racy of behavioural states influenced by the degree of overlap

of step length and turn angle distributions for each of the two

states? How different do the movement characteristics of the

behavioural states needs to be in order to be reliably estimated

using this approach? (2) Is classification accuracy sensitive to

the proportion of time spent in these states? If a state is rare,

can it still be identified reliably? (3) Is it possible to estimate

classification accuracy a posteriori-based solely on the distribu-

tions that characterize the movement paths? (4) How is classi-

fication accuracy influenced by sample size (path length)? and

(5) Is classification accuracy influenced by model complexity

(the number of covariates upon which state assignments are

based)? We then apply what is learned from the simulations to

a real-world case study of the analysis of moose telemetry

data.

Materials andmethods

MOVEMENT MODELS

We model movement as a mixture of CRWs corresponding to discrete

behavioural states (I = 1,…, M). Our simulations include two behavio-

ural states (sensuMorales et al. 2004): an encamped state (E) character-

ized by short step lengths and random (uniform) turn angles, and an

exploratory state (X) having longer step lengths and greater directional

persistence relative to the encamped state. It is straightforward to

extend these models to more than two states (see Morales et al. 2004;

McClintock et al. 2012). Each CRW is characterized by gamma-dis-

tributed step lengths (Г, with shape and rate parameters a and b respec-

tively) andwrappedCauchy-distributed turn angles (C, withmean turn

angle l and dispersion parameter q). The general form of the likelihood

function for themovementmodel is as follows:

Pðyja; b; l;qÞ ¼
YT
t¼1

CðdtjaI; bIÞCðhtjlI;qIÞ eqn 1

whereT is the number of observations in the location time series.

The gamma distribution is useful for modelling movement distance

because it is bounded at 0 and has a flexible, right-skewed shape that is

often a good fit to observed animal step length distributions. The Wei-

bull distribution has similar properties and has also been used tomodel

step length distributions (e.g.Morales et al. 2004), but is less suitable in

our application because its density is undefined for some combinations

of parameter values, making it more problematic to fit. The vonMises

distributionmay be a suitable alternative to thewrappedCauchy distri-

bution, but is harder to implement because the probability density func-

tion includes a Bessel function.

We evaluated twomovementmodels with differentmechanisms gov-

erning state transitions. In the ‘double’ modelMorales et al. 2004 there

is a fixed probability (ci) of being in behavioural state i, and wherePM
i ci ¼ 1. Behavioural states are, therefore, independent of the previ-

ous state or any environmental conditions. To examine whether the

scarcity of the behavioural state influences classification accuracy we

evaluated three levels of c2, the probability of being in the exploratory

state, of 0�5, 0�3 and 0�1.
We also define a ‘patch’ model in which the probability of switching

between behavioural states depended on the time spent in that state

and the habitat class (here, patch or matrix) in which a location occurs.

The rationale behind the patch model is that habitat may often be an

important determinant of behavioural state, and states may often be

temporally autocorrelated. The encamped and exploratory states are

more strongly associated with habitat patches and matrix respectively.

Specifically, thematrix of switching probabilities (W) ismodelled as:

W ¼ e�k ðs;hÞt 1� e�k ðs;hÞt

1� e�k ðs;hÞt e�k ðs;hÞt

� �
eqn 2

where s is an index of the current state, h is an index of the habitat

class and t is the time since the last state transition. In the patch model

there are two states and two habitat classes such that k is a 2 9 2

matrix, the values of which determine how the probability of switch-

ing from one state to another (or staying in a state) changes as a func-

tion of t. We used an exponential form to describe this relationship

because of its simplicity, although any asymptotic function that scales

values to the range [0,1] could be used (e.g. logit, Gompertz function).

The probability of switching states increases monotonically as t

increases and, conversely, the probability of remaining in a given state

decreases monotonically as t increases. This formulation is useful for
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representing temporal autocorrelation in states, and helps to resolve

the problem that the temporal sampling interval of the telemetry

data may be finer than the temporal frequency of behavioural state

transitions.

SIMULATION ANALYSIS

We investigated the determinants of classification accuracy (our five

objectives) by simulating movement paths using the double or patch

models (Fig. 1; Appendix S1) to generate paths with known behaviour-

al states, and then attempted to recover both the movement model

parameters and the behavioural states by fitting themodel to these sim-

ulated data. The choice of model and the combination of parameters

used to simulate a path depended on the question being addressed.

Using these known and estimated paths we quantified classification

accuracy of behavioural states using the Kappa statistic (ĵ), which is a

measure of agreement between observed and expected values that takes

into account chance agreement (Congalton 1991) and ranges from 0

(chance agreement) to 1 (perfect agreement).

The parameterization of the encamped state was the same among all

simulations, with step lengths drawn from an exponential distribution

(a gamma distribution where a = 1) with a mean and standard devia-

tion of 50 (the distances are unitless, but could be conceptualized as

metres), and with turn angles drawn from a wrapped Cauchy distribu-

tion with mean and dispersion of 0 (equivalent to a uniform distribu-

tion in the range 0–2p). The exploratory state was parameterized to

vary the degree of separation between the encamped and exploratory

distributions (Table 1, Fig. 2a and b).

The degree of separation between step length and turn angle distribu-

tions (Δd and Δh respectively) was calculated based on frequency distri-
butions (with B = 30 bins) derived from 10000 random samples from

each distribution using D ¼ PB
i jfE;i � fX;ij=

PB
i ðfE;i þ fX;iÞ, where fE,i

and fX,i are the frequencies in bin i of the encamped and exploratory

states respectively. Values of Δ can range from 0 (the distributions are

identical) to 1 (no overlap between distributions). This metric is a close

empirical approximation of the Kolmogorov–Smirnov D̂ statistic, but

unlike D̂ it can be applied to circular distributions. As the number of

bins is arbitrary, we used 30 bins to ensure that the difference between

Δd and D̂was less than 0�01.

To investigate how classification accuracy was influenced by the sep-

aration between distributions (objective 1) and the rarity of a state

(objective 2), 10 replicates of movement paths (of length 300 steps)

using the double model were generated using all 75 possible combina-

tions of the three levels of c2 (0�5, 0�3, 0�1) and the five step length and

five turn angle distributions for the exploratory state (Table 1), for a

Table 1. Parameterization of six step length and turn angle distribu-

tions used to simulate movement paths using gamma (with shape

parameter a, rate parameter b and mean step length �d) and wrapped

Cauchy distributions (with mean turn angle l and dispersion q) respec-
tively. The first distributions (id 1) were used to simulate the encamped

state in all models. The exploratory state was based on one of the other

distributions (id 2–6) of increasing mean step length and increasing

directional persistence. The variance of all six step length distributions

was held constant (50). The degree of separation of the exploratory and

encamped step length distributions (Δd) and turn angle distributions

(Δh) ranged from 0�07 (a high degree of overlap) to 0�94 (almost no

overlap)

id a b �d SD Δd l q Δh

1 1 0�02 50 50 – 0 0 –
2 2�25 0�03 75 50 0�29 0 0�1 0�07
3 4 0�04 100 50 0�50 0 0�3 0�19
4 9 0�06 150 50 0�75 0 0�5 0�33
5 16 0�08 200 50 0�87 0 0�7 0�50
6 25 0�1 250 50 0�94 0 0�9 0�72

Figure 1. Examples of movement paths generated using twomovement

models (a, b), each consisting of amixture of randomwalks correspond-

ing to an encamped (filled circle) or exploratory (open circle) behavioural

state. In the ‘double’model (a) behavioural states are independent, result-

ing in frequent switching between the states (c; top). In the ‘patch’ model

switching probabilities vary according to habitat and the time since the

last state transition, resulting in less frequent switching (c; bottom). Light

grey corresponds to the patch habitat andwhite is thematrix (b, c).

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 433–441
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total of 750 simulated paths. We fit a linear regression to quantify the

relationship between classification accuracy (ĵ) and the separation

between the step length (Δd) and turn angle (Δh) distributions of the
behavioural states, the relative frequency of themovement states (c2) as
a three-level factor and including all-way interaction terms among these

variables. This linear model was used as the basis for establishing a pre-

dictive relationship between the separation of the distributions and

classification accuracy (objective 3).

To quantify the influence of sample size (path length) on classification

accuracy (objective 4) we restricted our analysis to a single combination

of movement parameters for the double model because of processing

time constraints. The exploratory state was simulated using the fourth

step length distribution and the fifth turn angle distribution (Table 1),

which were selected because they provide enough separation (Δd and

Δh) to ensure that the two states could be distinguished but not somuch

separation that classification accuracy was universally high. Ten repli-

cates of movement paths were generated for the three levels of c2, with
path lengths ranging fromT = 100 to 1500 in intervals of 100.We quan-

tified how classification accuracy and the variation in classification accu-

racy changed as a function of sample size using linear regressionmodels.

We qualitatively contrast results from the double and patch model

to investigate how model complexity influenced classification accuracy

(objective 5). For the patch model, habitat patches were simulated as

regularly spaced circles of radius 250 units (Fig. 1b). The relative

frequency of encamped and exploratory states is determined by the

interaction between the matrix k, the step length and turn angle distri-

butions and the distribution of habitat. To facilitate comparison, the

spacing among habitat patch centres was adjusted to ensure the mean

proportion of encamped locations was 0�4–0�5 among all patch models

(patches constituted 21�8% of the landscape). Ten replicates of move-

ment paths of length 300 steps were generated using all 25 possible

combinations of the five step length and five turn angle distributions

for the exploratory state (Table 1). All simulation and statistical ana-

lyses were implemented in R (RCoreDevelopment Team2010).

State-space models were used to estimate parameter values and

behavioural states from the simulateddata.Modelswere fit usingMonte

CarloMarkov chain (MCMC) techniques implemented in the software

JAGS (Plummer 2010) with a burn-in period of 5000 samples, which

were discarded, followed by 25 000 samples that were thinned to retain

every 25th sample resulting in 1000 independent samples from the pos-

terior distribution of each parameter. Behavioural state variable esti-

mates were based on a further 2500 samples (also thinned to retain every

25th sample, resulting in 100 samples). Behavioural states were sampled

separately from the other parameters because of processing constraints

(behavioural states involvemonitoring 2T latent variables,which is com-

putationally demanding). Every replicate was checked for convergence

to a stationary distribution using theGelman-Rubin convergence statis-

tic (R̂c; Gelman & Rubin 1992) and by visually examining plots of the

chains and autocorrelation plots for each chain. MCMC chain conver-

gence is improved under the assumption that the exploratory state is

characterized by steps that, on average, have longer step lengths and

greater directional persistence than those of the encamped state. Vague

priors were specified for all parameters (Appendix S1), but the parame-

terswere constrained to reflect thesea prioriassumptions.

CASE STUDY: MOOSE MOVEMENT

We demonstrate the application of the double model to GPS telemetry

data collected from 34 moose in southern Ontario, Canada. Telemetry

collars (GPS 3300; LotekWireless Inc., Newmarket, Ontario, Canada)

were fit to adult, femalemoose in January 2006 and February 2007. See

Lowe, Patterson & Schaefer (2010) for a description of the study area

and the methods used to capture and collar moose. Spatial locations

were collected at 2 h intervals untilMarch 2008, or until the animal died

or the collar failed. Success rates for acquiring locations were generally

high (mean 97�9% among all moose). Twelve locations were deleted

from the data set because they represented unrealistic or obviously erro-

neous movements, such as movement distances greater than 6 km in a

2 h interval followed by a return to the vicinity of the previous location.

We restrict our analysis to summer movements fromMay to August

2007 inclusive (mean 1437 telemetry locations per moose; range: 1374–

1465). Step lengths were expressed as movement rates (mh�1) because

movement rates are less sensitive to occasional missing locations than

are step lengths. The double model was fit to each animal indepen-

dently as described above. The classification accuracy of moose

behavioural states (encamped or exploratory) cannot be quantified

directly because the true states are unknown. Instead, we estimate the

classification accuracy by simulating movement paths using the fitted

parameter estimates, and use these simulated paths as the known states

that we then attempt to estimate using the approach described above

for the simulation analysis. Specifically, for eachmoosemovement path

we simulated 10 movement paths using the maximum density parame-

ter values from the posterior distributions with the same number of

steps as the observed path. The double model was then fit to each of

these simulated paths, and the mean classification accuracy among the

10 simulated paths quantified for each animal (as described above).

Figure 2. Distributions of step lengths (a) and turn angles (b) used to

generate simulated movement paths based on an encamped state with

short step lengths and random turns (distribution 1 in a and b, bold

lines), and an exploratory state with longer step lengths (a; lines 2–6)
and greater directional persistence (b; lines 2–6). The ability to recover

behavioural state and movement model parameters using state-space

models was quantified as a function of the degree of overlap between

the encamped and exploratory distributions.
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Results

Not all replicates converged. An attempt was made to refit

models that did not converge, but if they failed to converge

again then they were excluded from the analysis. Failure to

converge in the double model was most common when the

probability of being in one of the movement states was rare (5,

8 and 22 of 250 replicates of the double model were excluded

for c = 0�5, 0�3 and 0�1 respectively). Failure to converge in the
patchmodel occurred in 6 of 250 replicates.

Classification accuracy (ĵ) of behavioural states using thedou-
ble model was positively associated with the separation of the

step length (Δd) and turn angle (Δh) distributions that character-
ize each state, and was highest when the two behavioural states

were present in equal proportions (Fig. 3; Table 2). For

instance, when c2 = 0�5, ĵ ranged from 96�3% when there was

little overlap between the distributions, to only 28�2% when

there was most overlap between the distributions (Fig. 3). ĵ
decreased by approximately 16% when c2 = 0�3 except for the

replicateswith stronglydissimilar distributionswhere ĵ remained

high (up to 93�6%). However, when c2 = 0�1, ĵ was low (mean

19�4%) and increased little as the separation of the step length

and turn angle distributions increased (ĵ was 9�6% for the most

similar distributions and only increased to 28�3% for the most

dissimilar distributions). There were strong interaction effects

between Δd, Δh and c2 (Table 2), indicating that the problem of

low classification accuracy was compounded when there was

poor separation of both the step length and turn angle distribu-

tion, and this effect was exacerbated as the second behavioural

state became rarer. Conversely, good separation of the step

length and turn angle distributions and an equal frequency of

states combined to result in good classification accuracy.

This linear regressionmodel was used to predict ĵ based on the

maximumlikelihood estimates of the parameters of the step length

and turn angle distributions for each of the simulated movement

paths. There was a strong positive linear correlation between pre-

dicted and true ĵ when c2 = 0�5 or 0�3, and a weak but positive

correlation when c2 = 0�1 (Fig. 4; ĵobs ¼ b0 þ b1ĵpred, c = 0�5:
b0 = 0�012 � 0�014 SE, b1 = 1�00 � 0�018 SE; c = 0�3: b0 =
0�027 � 0�015 SE, b1 = 0�980 � 0�024 SE; c = 0�1: b0 =
0�030 � 0�019SE,b1 = 1�31 � 0�148SE).
For the double model, mean ĵ was uncorrelated with path

length (linear regression, ĵ ¼ b0 þ b1T: |b1| < 1 9 10�5 for all

three levels of c), but the variance in ĵ declined as a function of

length (Fig. 5). The coefficient of variation of ĵ was highest for

short path lengths, and when one behavioural state was

rare (cvc2¼0�5 < cvc2¼0�3 < cvc2¼0�1). Linear models reveal a sig-

nificant decline in cv as a function of path length (cv = b0 + b1T,
c = 0�5: b0 = 0�062 � 8�2 9 10�2 SE, b1 = �3�55 9 10�5

� 9�0 9 10�6 SE; c = 0�3: b0 = 0�11 � 1�0 9 10�2 SE, b1 =
�5�96 9 10�5 � 1�1 9 10�5 SE; c = 0�1: b0 = 0�23 � 2�3 9

10�2 SE,b1 = �1�23 910�4 � 2�6 9 10�5 SE).

The ĵ of behavioural states using the patch model was also

positively associated with the separation of the step length (Δd)
and turn angle (Δh) distributions (Fig. 6), but was uncorrelated
with the relative frequency of states (which were in

approximately equal proportions with little variability by

design). When the separation between distributions was low, ĵ
was 10–15% higher for the patch model compared with the

corresponding double model (c2 = 0�5), although both models

achieved high ĵwhen the separationwas greatest.

Recovery of parameters was deemed successful if the 95%

credible intervals of the posterior distributions contained the

Table 2. Coefficients and standard errors of linearmodels relating clas-

sification accuracy of encamped and exploratory behavioural states to

the separation between the step length (Δd) and turn angle (Δh) distri-
butions of these states. The double model (top panel) also includes the

relative frequency of the movement states (c2) as a three-level factor

(see text for details), but this value was held near constant by design in

the patch model (bottom panel) and hence was omitted. All-way inter-

action terms among variables were evaluated for bothmodels.

Coefficients Estimate SE t value

Intercept 0�015 0�0202 0�74
Δd 0�224 0�0281 7�98*
Δh 0�149 0�0471 3�16*
c2 (0�3) �0�172 0�0281 �6�12*
c2 (0�5) �0�182 0�0279 �6�50*
Δd:Δh �0�101 0�0653 �1�54
Δd:c2 (0�3) 0�731 0�0396 18�5*
Δd:c2 (0�5) 0�946 0�0390 24�2*
Δh:c2 (0�3) 0�659 0�0655 10�1*
Δh:c2 (0�5) 0�875 0�0652 13�4*
Δd:Δh:c2 (0�3) �0�555 0�0920 �6�04*
Δd:Δh:c2 (0�5) �0�982 0�0911 �10�8*
Intercept �0�019 0�0039 �4�79*
Δd 0�149 0�0065 22�9*
Δh 0�924 0�1379 6�70*
Δd:Δh �3�02 0�2549 �11�9*

*P < 0�01.

Figure 3. Classification accuracy (ĵ) of behavioural states using state-

space movement models to recover movement model parameters and

states based on simulated movement paths of 300 steps in length. Clas-

sification accuracy varies as a function of the degree of separation

between distributions that characterize the states for both step lengths

(Δd) and turn angles (Δh). Classification accuracy decreases when one

movement state becomes rare: the three planes from top to bottom rep-

resent a 50, 30 and 10% frequency of the exploratory state.
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original value of the parameter. Failure to recover parameters

was rare. When this did occur, it was often related to the fact

that different combinations of parameter values for the gamma

distribution could result in similar distributions. For instance,

three of ten replicates of simulations characterized by a mean

exploratory state step length of 250 failed to recover parameter

values (a2, b2), but the mean step length of these gamma distri-

butions was 240, 259 and 238, similar to the mean of the origi-

nal distribution. Thus, failure to recover parameter values was

not an important aspect of fitting success compared with the

failure of theMCMCchains to converge or classification error,

both of which were more problematic when the separation

between distributions (Δd and Δh) was small.

CASE STUDY: MOOSE MOVEMENT

All models converged. The maximum density values of the fit-

ted parameters for each animal, and the separation between

distributions, were generally consistent among animals

(Table S1). The mean movement rate (�SD) in the encamped

Figure 5. Simulated movement path length has little relationship to

the mean classification accuracy of the state-spacemodels, but the vari-

ance in classification accuracy is highest for short path lengths. Move-

ment paths were simulated as a mixture of two random walks

corresponding to an encamped and exploratory states. The relative fre-

quency of themovement states was 50:50 (c2 = 0�5), 70:30 (c2 = 0�3) or
90:10 (c2 = 0�1). Variance in classification accuracy also increased as

one of themovement states become rarer.

Figure 6. Classification accuracy (ĵ) of behavioural states using state-

space movement models to recover movement model parameters and

states based on simulated movement paths of 300 steps in length using

a patch-based model (see Methods). Classification accuracy varies as a

function of the degree of separation between distributions that charac-

terize the states for both step lengths (Δd) and turn angles (Δh).

Figure 4. The correlation between true and predicted classification

accuracy based on the separation between fitted step length and turn

angle distributions (see Methods). Movement paths were simulated as

a mixture of two random walks corresponding to an encamped and

exploratory states with relative frequencies of 50:50 (a), 70:30 (b) or

90:10 (c). When the relative frequency of states is roughly equal (a, b),

predicted classification accuracy is a good predictor of the true classifi-

cation accuracy. When one of the states is rare (c), classification accu-

racy is universally low.
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and exploratory states among all animals was 30�2 �
7�6 mh�1 and 150 � 28 mh�1 respectively. Turn angle

distributions were unimodal with a circular mean of�3�1 radi-
ans for the encamped state, but were bimodal for the explor-

atory state with 16 animals tending towards a mean of 0, and

18 animals tending towards a mean of p radians (e.g. Fig-

ure S1). Turn angles were more dispersed in the encamped

state (q1 = 0�12 � 0�05 SD) than the exploratory state

(q2 = 0�18 � 0�06; paired t-test, t = �4�65, d.f. = 33,

P < 0�001). The mean proportion of telemetry locations

assigned to the encamped state was 0�38 (�0�03 SD; range:

0�33–0�44).
Estimates of overall classification accuracy for each moose

movement path ranged from 0�49 to 0�72 (mean 0�61). The esti-
mated classification accuracy (ĵ) among moose was strongly

correlated with the separation between the movement rate (Δd;
0�91 � 0�034 SE) and turn angle (Δh; 0�09 � 0�021 SE) distri-
butions (Fig. 7a), and the proportion of locations in the

encamped state (c2; �0�19 � 0�069 SE). The number of steps

in each path was not a significant predictor of ĵ for the moose

case study, possibly because of the narrow range of these value.

The distributions of probabilities of being in the exploratory

state for each location within a telemetry path were bimodal,

although much more so for the paths with the highest classifi-

cation accuracy compared with the paths with the lowest

(Fig. 7b). Thus, when the ability to discriminate states is high

this is reflected by a strongly bimodal distribution of probabili-

ties; conversely, when the ability to discriminate states is low

the uncertainty in classification of states results in a greater

number of intermediate probability values.

Discussion

This work demonstrates that state-space movement models

can be highly effective for estimating behavioural states from

movement paths. The success of this technique is contingent

upon the degree of separation between the distributions that

characterize the behavioural states (step length and turn angle

distributions in our examples), and the relative frequency of

the behavioural states. When the distributions are dissimilar,

and the behavioural states occur in approximately equal pro-

portions, classification accuracy (ĵ) approaches 100%. Con-

versely, when the distributions are similar and/or one state is

rare, ĵ approaches 0%.

Step lengths and turn angles are, however, just two of many

possible metrics that could be used to describe movement

paths. Incorporating other path metrics into state-space move-

ment models may improve their ability to differentiate among

behavioural states. For instance, cervid space use and move-

ment is influenced by habitat (Boyce et al. 2003;Morales et al.

2004), time of day (Forester et al. 2007), proximity and direc-

tion to features such as roads (Frair et al. 2008) or human

activity (Hebblewhite et al. 2005), conspecifics/herd size

(Haydon et al. 2008; Fortin et al. 2009), predation risk (Fortin

et al. 2005; Frair et al. 2005; Hebblewhite et al. 2005) and

forage (Fortin et al. 2005; Forester et al. 2007). These effects

can be quantified using a variety of spatial descriptors, such as

containment (is the animal within a given habitat?), proximity

(what is the distance to a feature/habitat?), visibility (is another

entity or place visible from a location?), crossing (is a feature

crossed when moving between consecutive locations?) and

adjacency (do two features touch?). The combination of effect

and summary statistic that is most relevant for distinguishing

among behavioural states will depend on the biology of the

animal and the set of other states considered. Thus, the addi-

tion of descriptor variables may increase both classification

accuracy and the number of behavioural states that can be dis-

tinguished.

Importantly, this work demonstrates that the classification

accuracy of behavioural states can be estimated based on the

separation between the fitted step length and turn angle distri-

butions. This is useful because independent behavioural vali-

dation data rarely exist to quantify classification accuracy.

When applying state-space movement models to real data,

such as the moose telemetry data in our case study, stochastic

simulations of the best fit model can be performed to quantify

Figure 7. Application of the double model to summer GPS telemetry

locations of 34 moose. (a) The estimated classification accuracy (ĵ)
among the models was strongly correlated with the separation between

the movement rate (Δd) and turn angle (Δh) distributions of the

encamped and exploratory states (linear regression:

ĵ ¼ �0 � 01þ 0 � 91Ddþ 0 � 09Dh� 0 � 19c2). The colour gradient of

the points is in relation to Δh. (b) Within a movement path, the proba-

bilities of each location being in the exploratory state were bimodally

distributed, although much more so for the paths with the highest clas-

sification accuracy (solid line) compared with the paths with the lowest

(dashed line).
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the relationship between classification accuracy, separation of

the distributions and the relative frequency of the states. As

demonstrated here, these relationships can then be used to esti-

mate both overall classification accuracy and the classification

accuracy of individual locations, which could then be used as

weightings in subsequent analyses such as resource preference

analyses.

A corollary of this work is that, when applied to real animal

data, the behavioural states quantified by these state-space

models will not necessarily correspond to specific behaviours,

but rather to collections of behaviours that have similar move-

ment characteristics. The encamped state, for instance, may

reflect several behaviours that occur when animals are moving

little (foraging, resting, etc.). Furthermore, animal behaviour

occurs across a wide range of temporal scales and although

state-space models can be used to infer behaviours occurring

on coarser temporal scales than the sampling interval (McClin-

tock et al. 2012), they will not be able to distinguish among

behaviours occurring on finer temporal scales than the location

sampling interval. Thus, caution must be exercised when inter-

preting modelled behavioural states in the context of real ani-

mal behaviour. In some cases modelled behavioural states may

be closely linked to real behaviours, but this is likely to vary

widely among individuals and species, and as a function of the

location sampling interval. When designing a telemetry study

it is important to consider the temporal scale at which animal

behaviours that are relevant to the questions motivating the

study are expressed; if the telemetry sampling interval is too

coarse there will be limited scope to make inferences regarding

these behaviours.

If classification accuracies are low (perhaps ĵ < 0 � 5) then
limited confidence could be placed on inferences based on the

behavioural state classifications. In our case study, we found

that classification accuracies were moderately high (mean

0�61), implying that the simple two-state model provides a rea-

sonable fit to these moose movement paths for many of the

animals. It is likely, however, that a more ecologically realistic

movement model incorporating habitat and behavioural

effects would provide a better fit to the data andmore valuable

insight into moose space use. The variation in classification

accuracy we observed among individuals (range 0�49–0�72)
may reflect differences in individual movement strategies. Fit-

ting a suite of competing models that are ranked using DIC

would provide useful insight into these individual strategies

and is likely to improve classification accuracy (but see com-

ments on model selection below). Understanding variation in

space use strategies among individuals in the context of differ-

ences in habitat and experience (e.g. memory, site fidelity) is an

important goal for future research.

We made two assumptions that may imply this analysis is a

best case scenario. First, we assumed there is no spatial error

or missing locations in themovement path. Although location-

monitoring technology often records locations with seemingly

high accuracy, it is the positional error relative to the step

length of the animal over the time interval of the relocations

that is important in movement models (Jerde & Visscher

2005). For many mammals, for instance, positional error in

locations may be negligible relative to the movement rate of

the animal, although this needs to be evaluated on a case-by-

case basis. High frequencies of missed locations, however, are

problematic for movement models, especially when they are

associated with particular habitats (e.g. forest) or behaviours

(e.g. resting) as this can lead to bias (Frair et al. 2004, 2010).

State-space models provide a framework for estimating missed

locations (Patterson et al. 2010), although this may be of lim-

ited value when a high proportion of locations are missing. If

positional error is deemed important, however, it can be explic-

itly incorporated into the state-space modelling framework

(Jonsen, Flenming&Myers 2005; Eckert et al. 2008).

The second assumption we made is that model selection is

perfect because in this study the model used to generate the

simulated paths is subsequently fit to these paths. In reality,

model selection may introduce considerable error into classifi-

cation accuracy of behavioural states. More work is needed to

evaluate the effectiveness of Bayesian model selection tech-

niques such as Bayes factors (Kass & Raftery 1995) and DIC

(Spiegelhalter et al. 2002; Plummer 2008) for evaluating the

relative strength of evidence of competingmodels.

We found that constraining the step length and turn angle

probability distributions in a way that reflects specific hypothe-

ses about the behavioural states improved our ability to fit the

state-space models. For instance, the exploratory state was

constrained to have a longer mean step length and a less dis-

persed distribution of turn angles than the encamped state.

This helped to prevent the MCMC chains ‘flipping’ between

states, which we observed was one important obstacle to chain

convergence. The use of these mild constraints in the model

formulation can facilitate the fitting of these models. Con-

straining models can have important consequences for param-

eter estimation and inferences derived from models, however,

and care is required to ensure that any constraints are appro-

priate for any particular analysis.

State-space models provide a rigorous method for convert-

ing location data that are collected at regular intervals (but at

biologically arbitrary times) and that lack a behavioural con-

text intomore biological relevant ‘moves’ (sensu Turchin 1998)

that can then be used as a basis for further ecological investiga-

tion. For instance, if the encamped state corresponds primarily

to within-patch foraging behaviour and the exploratory state

to inter-patch movements, then this provides a basis for quan-

tifying foraging strategies (by quantifying patch residency time

and inter-patch movements). These behavioural states may

help to bridge the knowledge gap between observing the loca-

tion of an animal in space, and understanding the utility of that

location to the animal, i.e. the link between space use and fit-

ness (Beyer et al. 2010). The state-space framework can also be

used to model the influence of higher order movement pro-

cesses such asmemory and site fidelity onmovement and space

use (B€orger,Dalziel &Fryxell 2008;Dalziel,Morales&Fryxell

2008; Patterson et al. 2008; Van Moorter et al. 2009). Mecha-

nistic movement models provide exciting new opportunities

for understanding how animals use resources, how animals

might respond to environmental change (such as anthropo-

genic disturbance and climate change) and, ultimately, how
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animals may optimize fitness in dynamic and heterogeneous

environments.
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Appendix S1. R code for simulation of movement paths, JAGS code

for the fitting of movement models, and further information pertaining

to themoose case study.

Figure S1. Example of the empirical (grey histograms) and fitted (blue

lines) movement rate and turn angle distributions for the exploratory

and encamped state for onemoose.

Table S1. Fitted parameters for the double model for each of 34moose

paths.
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