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Abstract. Simulation of particle-matter interactions in complex geometries is one of the main
tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient
particle transportation in a non-uniform magnetic field, which includes the handling of volume
crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of
numerical methods that provides attractive features for particle transportation processes, such
as dense output (sequences of polynomial segments changing only according to accuracy-driven
discrete events) and lightweight detection and handling of volume crossings (based on simple
root-finding of polynomial functions). In this work we present a proof-of-concept performance
comparison between a QSS-based standalone numerical solver and an application based on the
Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case
study with a charged particle circulating in a vacuum (with interactions with matter turned
off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn,
simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times
slower in the case with zero volume boundaries.

1. Introduction

A significant challenge in high energy physics (HEP) particle simulations is an accurate and
efficient tracking of particles affected by physics processes in complex detector geometries
consisting of a variety of materials and many adjacent 3D volumes of different shapes. Every
time a particle crosses a volume boundary, the numerical method that solves the underlying
ordinary differential equations (ODEs) [1] needs to be interrupted. As this situation can happen
many times during the lifetime of a particle in a typical HEP setup, the underlying continuous
models describing particle trajectories must cope with frequent discontinuities.

Geant4 [2] is the most widely used simulation toolkit in contemporary HEP experiments. It
provides classical numerical methods based on time discretization [3] (in particular, variations
of the Runge-Kutta family of numerical solvers [4]) where time advances by well-defined steps
of either fixed or adaptive duration. Since spatial discontinuities will rarely coincide with the
start of a new step, which mostly occur after a physics interaction, custom iterative algorithms
are needed to approximate the actual time of the discontinuity in an accurate way. When
these events are very frequent, they can dominate the CPU time of the numerical method and
considerably reduce its performance.

A new family of numerical integration methods that addresses efficiently the above type of
challenges was developed relatively recently. The Quantized State System (QSS) methods [3, 5]
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discretize the state variables instead of discretizing the time and solve ODEs using discrete—event
approximations of continuous models. QSS methods approximate the state variables through
discrete quanta; new integration steps can only happen whenever a state variable deviates by a
predefined amount from its expected solution. As each variable is simulated independently from
each other, at its own pace, QSS are inherently asynchronous methods.

A feature of QSS particularly relevant in the context of HEP simulations is that these methods
handle discontinuities very efficiently [6]. In QSS, the state variables follow piecewise polynomial
trajectories. The detection of a volume crossing is modeled by solving a zero-crossing function,
which can be done efficiently using the aforementioned polynomials (at least for some categories
of the surface boundaries). Since each new QSS step is, by definition, a discontinuity in the
quantized variable —strictly speaking, a discrete event— this task is naturally supported by the
numerical method.

This paper is organized as follows: Section 2 briefly discusses the Geant4 transportation chain
and introduces the QSS theory. Section 3 describes the experimental setup under study. Next,
Section 4 presents a performance comparison between Geant4 and a standalone QSS simulation
engine. Finally, Section 5 contains a summary, conclusions and plans for the future.

2. Background information on particle transport in Geant4 and QSS methods

2.1. Particle transport in Geant/

Geant4 computes particle trajectories in a magnetic field by means of Runge-Kutta family of
numerical methods. In particular, the fourth-order Runge-Kutta (RK4) is the most widely used
one. Figure 1 illustrates how a charged particle ¢ is transported along a step of length h proposed
by a physics process. Suppose the step starts at point @ Then, the following procedure is
applied:

miss-distance < deltaChord relative-error < epsilon-h

——h < stepMax

real trajectory

Figure 1: Particle transport sketch

(i) A step of length h is proposed. This value is limited by the physics processes affecting
the particle, the detector geometry and a user-specified step limiting parameter, stepMax,
which is enforced when set.

(ii) Then, two half-steps of length h/2 are computed: from @ to @ and from @ to @, using
RK4.

(ili) Next, the closest distance between the chord (1)}(3) and the mid-point (2) of the
approximate trajectory, termed miss-distance, is compared against deltaChord (another
user-settable accuracy parameter). The miss-distance is given by segment @—@

(iv) If miss-distance > deltaChord, the step length h is reduced and the process starts over
from (i).

(v) Otherwise, Geant4 determines whether the resulting numerical error is acceptable. This
error is given by the combination of the errors in the distance and velocity between @
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and @ which we call relative-error. It is compared with a fraction of h given by epsilon,
which in turn is derived from three other user-settable accuracy parameters: epsilonMin,
epsilonMax and deltaOneStep.

a. If relative-error < epsilon - h, the step is accepted and the particle is moved to point

b. Otherwise, h is reduced iteratively so as to improve the precision until the above
condition is satisfied.

(vi) Finally, if segment @@ happened to cross a volume boundary, Geant4 computes the
intersection point on the boundary using a custom iterative algorithm based on RK4.

As it can be seen, simulation performance strongly depends on the computing efforts needed
by the numerical integration methods. In particular, the aforementioned intersection point
detection algorithm can be rather expensive, as it needs to iterate back and forth until a
candidate point satisfying the intersection accuracy constraints is found. This suggests that
methods such as QSS, which naturally provide a lightweight handling of discontinuities, are
good candidates for simulating HEP setups with frequent volume crossings.

2.2. The Quantized State System (QSS) numerical integration methods

QSS are numerical methods that solve systems of ordinary differential equations (ODEs) in the
form of Eq. 1, where x(t) is the state vector and u(t) is the input vector representing independent
variables for which no derivatives are present in the system:

x(t) = f(x(t), u(t)) (1)

Traditional ODE solvers (like the Runge-Kutta family) make use of time slicing: given the
current and past state and state derivative values, the solver estimates the next value of the
state x4 one “time step” At into the future, i.e., at tx11 = tx + At.

QSS solvers operate differently: they make use of state space quantization. Rather than
discretizing the time axis, they discretize the state variable axis. They evaluate the first time
instant f;4; in the future at which the state variable differs from its current value by one
“quantum level” AQ), i.e., when xy 1 =z £ AQ.

The system described by Eq. 1 is thus approximated by the following quantized system:

x(t) = f(a(t),u(t)) (2)
where q(t) is the quantized state vector resulting from the quantization of the state variables
x;(t). In the first-order QSS method (QSS1) each ¢;(t) follows a piecewise constant trajectory
that is related to x;(t) by the following hysteretic quantization function:

i(t if |q;(t7) — x;(t)| > AQ;
Gi(t) = xz(z if |qi( ‘) zi(t)| = AQ; 3)
qi(t™) otherwise

where AQ); is the quantum, i.e. the maximum deviation allowed between ¢;(t) and z;(t), and
qi(t™) is the left-handed limit of ¢;(¢t). Figure 2 illustrates the relation between z;(t) and g;(t).
The hysteretic effect introduced by the quantization function q(t) prevents the occurrence of an
infinite number of state changes within a finite time interval [5].

From Eq. 3, it can be seen that ¢;(t) changes its value whenever its difference with x;(¢)
exceeds the quantum AQ);. This is called an integration step. Between these steps, in QSSI,
quantized states q(t) follow piecewise constant trajectories, as shown in Figure 2. Since the
derivatives x(t) are expressed in terms of q(t), they are also piecewise constant. In consequence,
state variables x(t) follow piecewise linear trajectories. Higher-order QSS methods generalize
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Figure 2: State quantization with an hysteretic window of height AQ in QSS1 (left). State quantization
trajectory ¢(t) in QSS1 for a given state variable trajectory x(t) (right).

this behavior: in QSSn, x(t) follow piecewise n-th degree polynomial trajectories and q(t) follow
piecewise (n — 1)-th degree polynomial trajectories.

A QSS method can simulate any ODE system in the form of Eq. 1 offering, among others,
the following properties [5]:

e [t is inherently asynchronous: each state variable updates its value independently at self
clocked time instants dictated by its own dynamics and the accuracy AQ (cf. time slicing
methods where all state variables are scanned synchronously at each At). This can offer
significant performance advantages e.g. when simulating sparse systems.

e It provides dense output: at any given time ¢y, QSS approximates x(¢y) using the piecewise
polynomial trajectories computed for the interval in which ¢y lies in.

e It is particularly efficient at simulating systems with very frequent discontinuities. A
discontinuity is modeled by a zero-crossing function which is in turn defined in terms of
the QSS polynomials. Thus, detecting a discontinuity calls only for finding the roots of a
polynomial. The latter is computationally inexpensive for at most third-order QSS methods
as it does not require iterative approximations.

e QSS1 to QSS3 provide a global error bound (controlled by AQ), limiting globally the error
of the numerical solution of an analytically stable, time-invariant system.

Regarding practical tools, QSS Solver [7] is a standalone software that provides optimized
implementations of different QSS methods. Equations are expressed in pu-Modelica [8], a subset
of the more general Modelica language [9].

3. Case study: Circulating particle with frequent volume crossings

The setup studied in this work consists of a single electron under a uniform, static magnetic field
along the Z plane, i.e., B = (0,0, B) = BZ and initial velocity ¥ = vz. The particle then follows
a circular trajectory in the (,7) plane. Because of its simplicity, the case offers a closed form
analytic solution which facilitates the error analysis. Figure 3b shows the underlying equations
of motion and their analytic solution.

We designed a test scenario where discontinuities play a significant role in the form of frequent
boundary crossings. The goal is to assess the potential benefits offered by QSS in terms of its
lightweight event detection and handling features. Thus, we extended the setup by inserting
equidistant parallel planes along the trajectory of the particle, as shown in Figure 3a.

4. Simulation experiments and discussion

We start with an individual analysis of the Geant4 application and QSS Solver in order to ensure
that they produce simulations that are sufficiently close to the exact solution. After this, we
compare them in two different scenarios: a planes-free scenario (i.e. with no boundary crossings)
and then using an increasing number of crossing planes.
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y(t) = vy () vy(t) = =55 Boa(t)
z(t) = R sin(wt) vz(t) = Ruw cos(wt)
(2) { y(t) = —R + R cos(wt) vy(t) = —Rw sin(wt)
R = myv W = qB v o= 1
q¢B my V1-v2/c?

Figure 3: Setup sketch (a) and equations of motion for an electron in a constant magnetic field (b.1) with
their analytic solution with cyclotron radius R and frequency w (b.2)

4.1. Experimental setup

For each simulation a track length of 1 km was set. In the setup, we used B = 1Tesla
and v = 0.999c¢ (where ¢ = 299.792458 mm/ns), which yielded a circle radius R of about
38.085386 mm. We also used the following default values for accuracy control in Geant4:
epsilonMin = epsilonMax = epsilon= 107>, deltaOneStep= 1072 mm, deltaChord=
0.25 mm, deltaIntersection= 107°> mm and stepMax = 20 mm. In the case of QSS Solver,
we set AQRel = 107° to be comparable with epsilon.

All simulations were run on a dedicated Intel Xeon E5-2620 v2 CPU (clocked at 2.10 GHz)
server with 8 GB of RAM and Ubuntu 14.04.4 LTS x86_64 (3.13.0-49-generic kernel) OS.
The compiler used was gcc 4.8.4 (Ubuntu 4.8.4-2ubuntul~14.04.1). We used Geant4 version
10.01.p01 and QSS Solver version 3.0.

We finally stress that these were tracking-only simulations, i.e., all material related physics
processes were intentionally turned off in Geant4 and not implemented in QSS Solver.

4.2. Sitmulation results

Figure 4a compares the x-y trajectories simulated by Geant4 and QSS Solver against the ideal
analytic solution (first 10 revolutions). We can see that both trajectories are indistinguishable
by a naked eye from the analytic solution. Figures 4b and 4c¢ show the behavior of the error
in x(t) (G4_z_err(t) and QSS3_z_err(t), respectively) as a function of the distance traveled
by the particle. The error, which is computed as the difference between the simulated and
the analytic position of the particle in the x axis, undergoes an oscillating evolution, with
amplitudes increasing monotonically (oscillations are hidden to a naked eye in Figures 4b and

30

o+ Grantd
o oEsd
20 + + ldeal solubion

-
i
-
i

=

[
in

15

G4 x err [mm]
f=1
=]
0553 _x_err [mm]

v
=]
v
=]

o

40 =20 o 20 40 200 400 600 800 1000 200 400 600 800 1000
X [mm] Traveled distance [m] Traveled distance [m]

o

(a) First 10 revolutions of Geant4d  (b) Evolution of G4_z_err(t) dur- (¢) Evolution of QSS3_z_err(t)
and QSS Solver trajectories com- ing a track (dense oscillations with ~ during a track (dense oscillations
pared to the ideal solution an increasing amplitude) with an increasing amplitude)

Figure 4: Particle trajectories (a) and error evolution for independent simulations with Geant4 (b) and
QSS Solver (c) (experimental setup with no planes)
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4c, as these graphs show full error shapes producing a dense set of points). This increase is an
expected consequence of having used numerical methods not specifically suited for marginally
stable systems [3] like the one in Eq. 1 from Figure 3b. The error in y(t) was verified to follow
the same behavior.

Although the numerical error introduced by both methods has the same growth pattern, the
scatter plot and histograms presented in Figure 5 show that QSS3 errors are smaller and have
a smaller standard deviation.

y_err [mm]

i
| + Q55 Solver (Q553)

«  Geantd [RK4)
-3 - =

2]
-3 =3 =1 (1] 1 F] 30002040608 L0
x_err [mm]

Figure 5: Distribution of errors in z(¢) and y(t) for Geant4 and QSS Solver (experimental setup with no
planes): histograms and scatter plots for G4_x_err, G4_y_err, QSS3_x_err and QSS3_y_err

4.8. Performance comparison without crossing planes

Figure 6a shows a performance comparison in terms of a numerical error (defined here as the
maximum error observed along the = coordinate of the particle’s position, termed max_x_err)
and simulation time (t_sim), for both methods. We show results obtained for three values of
stepMax (0.2 mm, 2 mm and 20 mm).

Regarding the error behavior as related to the requested accuracy, we observe that for the
set of chosen parameters (see Section 4.1) the Geant4 application does not seem to improve the
error when the set relative precision is increased (i.e., when epsilon is decreased). A more
exhaustive study including variations of other parameters can be found in [10]. In this matter,

- 10° - - - - -
102 120 £ Geant4 scenarios: All combinations of
N m| deltaChord = {0.01 mm, 0.25 mm,1 mm, 2 mm}and
N Tl . Geant4 100 g stepMax = {0.2 mm, 2 mm, 20 mm}
10 S 8
~ l all'stepMax valuesx g 10t + \
E 10° [N 80 . deltaChord = 2 mm )
£ QS5 Solver™ Q5SS Solver — £ &CWPM’“ =20 mm QSS SolVer
— S 2 @
= ~ = 1 0
5 107 60 & = 100¢
) N
N \ CRRE T S S
| ~ I —%
g 107 Geant4 Sy w0 S - &N\
g stepMax = 0.2 mm 2 / 3 101 L & g —
10° b A\ S VAR 20 & deltaChord = 1 min —
Geantd Geantd . © stepMax = 0.2 mm"\
stepMax = 2 mm\—"stepMax = 20 mm "~ | E
4 X e -2 L L L L L
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(a) Maximum error (left y axis, dashed lines) (b) Combined method efficiency for different
and simulation time (right y axis, solid lines) vs.  relative precisions: Geant4 scenarios (crosses)
relative precision and QSS Solver (dots)

Figure 6: Performance comparison without geometry crossings
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as seen from point @ onwards, QSS3 error decreases approximately by an order of magnitude
for each extra order of magnitude of the set relative precision (AQRel). Regarding the stepMax
in case of Geant4, it does not seem to have a noticeable influence on the error (all three dashed
lines appear to be on top of each other). As this user imposed parameter is used to force more
steps, it may not improve the error when other parameters already impose stronger constraints.
We also observe that the lower the value of stepMax, the higher the simulation time in Geant4
as more steps are needed to cover the same track length. Besides, when epsilon > 1077, t_sim
increases more noticeably (cases for stepMax = 0.2 mm and 20 mm) as adaptive steps are taken
to meet the error constraints (see Section 2.1). The solid line for QSS3 shows simulation times
for different requested relative precision. In this case, we observe that QSS3 simulation time
increases with the cubic root of the relative accuracy, which confirms a theoretical property of
QSS3 [11]. When stepMax = 0.2 mm, between points @ and @, QSS3 outperforms Geant4
achieving both smaller error bounds and lower simulation times.

On the other hand, Figure 6b presents a more synthetic look at error and simulation times
by means of a combined custom efficiency metric n = 1/(¢t_sim - max_z_err). Crosses represent
Geant4 simulations for different combinations of stepMax and its accuracy-related parameters
(deltaChord and epsilon), whereas dots correspond to QSS3 simulations for different AQRel
values. According to this metric, and for this case study, Geant4’s efficiency tends to decrease as
the relative precision increases, while the opposite happens for QSS3. In fact, when epsilon and
AQRel are made equal to 1079, this custom efficiency measure for QSS3 is nearly three orders
of magnitude higher than that of Geant4 (for all tested combinations of accuracy parameters).

4.4. Performance comparison with crossing planes

Figure 7 compares the performance of both methods for an increasing number of plane crossings
along the trajectory of the particle. The most salient observation from this Figure is that QSS
Solver’s QSS3 simulation time scales better than Geant4’s RK4 in the presence of an increasing
number of plane crossings, achieving speedups of up to 6 times in the case of 200 planes, despite
being initially significantly slower when the number of planes is small. The smooth growth in
t_sim is consistent with the lightweight discontinuity handling property of QSS, as discussed in
Section 2.2. Even though the behavior of errors (both in Geant4 and QSS3) does not seem to be
affected by the number of plane crossings, QSS3 presented better error bounds in this scenario
(using a fixed relative precision of 107°).

10 T T T T 10
—_ Geant4
E 1
£ 10" _
= )
N QSS Solver .
O beefmmdme o m b e —— — e ———— E
&I Geant4 b

I 0 !
8 410
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QSS Solver
0 ; ; H H -1
10 0 40 80 120 160 201)0

Crossing planes

Figure 7: Maximum error (left y axis, dashed lines) and simulation time (right y axis, solid lines) vs.
number of crossing planes (default experimental setup, relative accuracy = 107°)

5. Conclusions and outlook
We studied performance of the Quantized State Systems (QSS) numerical solvers in the
simulation of a charged particle motion in a uniform magnetic field. We relied on the
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hypothesis that the asynchronous discrete—event nature of QSS methods can offer performance
improvements in the numerical integration of particles’ trajectories in scenarios with an
increasing number of boundary crossings. This idea was rooted in the fact that classical
discrete-time solvers (e.g. those based on the Runge-Kutta methods) need to apply iterative
algorithms to detect discontinuities, while for QSS methods the handling of discrete events
calls only for a lightweight root finding of piecewise polynomial segments (dense output). We
chose a simple case with a well-known analytic solution (a particle moving in one plane in a
constant magnetic field) and studied the simulation performance for discrete-time vs. discrete—
event approaches. A Geant4 application was selected to test the discrete—time methods (using
its default customized Runge-Kutta adaptive stepper). The QSS Solver simulator was selected
to test the QSS3 discrete—event method.

Our results showed that QSS scaled significantly better than Runge-Kutta in situations with
an increasing number of volume crossings and with an increasing requested accuracy. Also,
QSS offered a straightforward and very predictable mechanism for accuracy vs. error control
with an analytically calculable formula for the latter. As an example, in the scenario where the
circulating particle crosses 200 planes twice per turn (with particle-matter interactions turned
off in Geant4 and not implemented in QSS Solver), QSS Solver performed up to 6 times faster
than Geant4 with an error up to 2 times smaller, despite being 10 times slower in the case with
zero planes.

The results suggest that QSS methods have a potential to reduce simulation time in scenarios
with heavy volume crossing activity, while offering a simple and very predictable accuracy
control which is an inherent property of the methods. To verify this hypothesis we intend
to fully integrate QSS methods within Geant4 to make them available along the current Geant4
steppers, to enable more direct comparisons within the same application and to enable studies
of more realistic test cases with particle-matter interactions turned on and using more complex
detector geometries. This is work in progress, showing so far that a smooth coupling of Geant4
with QSS is algorithmically feasible. From an efficiency perspective, the introduction of physics
processes would call for reinitializations of QSS variables at every interaction or decay point,
bringing potential time performance penalties with respect to the speedups reported in this
work.

Acknowledgments
1 Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the United States Department of Energy.

References
[1] Hairer E, Ngrsett S and Wanner G 1987 Solving ordinary differential equations i - nonstiff problems
[2] Allison J 2016 Nuclear Instruments and Methods A 835 186—225
[3] Cellier F E and Kofman E 2006 Continuous System Simulation (Secaucus, NJ, USA: Springer-Verlag New
York, Inc.) ISBN 0387261028
] Cockburn B and Shu C W 1998 Journal of Computational Physics 141 199-224
] Kofman E and Junco S 2001 Transactions of SCS 18 123-132
| Kofman E 2004 SIAM Journal on Scientific Computing 25 1771-1797
] Ferndndez J and Kofman E 2013 Proc. of RPIC 2013 (Bariloche, Argentina)
| Bergero F, Floros X, Ferndndez J, Kofman E and Cellier F E 2012 9th Int. Modelica Conference, Munich
Germany
[9] Fritzson P 2004 Principles of Object-Oriented Modeling and Simulation with Modelica 2.1 (Wiley-Interscience,
New York)
[10] Ponieman N 2015 Aplicacién de Métodos de Integracion por Cuantificacién al Simulador de Particulas Geants,
Master’s thesis Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.
[11] Kofman E 2006 Latin American Applied Research 36 101-108



