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Defect dynamics in crystalline buckled membranes
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We study the dynamics of defect annihilation in flexible crystalline membranes suffering a symmetry-
breaking phase transition. The kinetic process leading the system toward equilibrium is described through a
Brazovskii-Helfrich-Canham Hamiltonian. In membranes, a negative disclination has a larger energy than a
positive disclination. Here we show that this energetic asymmetry does not only affect equilibrium properties,
like the Kosterlitz-Thouless transition temperature, but also plays a fundamental role in the dynamic of defects.
Both unbinding of dislocations and Carraro-Nelson “antiferromagnetic” interactions between disclinations slow
down the dynamics below the Lifshitz-Safran regime observed in flat hexagonal systems.
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I. INTRODUCTION

Spatially periodic patterns are ubiquitous in nature because
ordered configurations frequently minimize the interaction
potential between the building blocks of a wide variety of
systems [1]. Besides the academic interest, the studies of
pattern formation in low-dimensional systems also have been
driven by the potential applications to soft matter, biophysics,
and nanotechnology. For example, thin-film patterns of block
copolymers have been used as nanolithographic masks for
pattern transfer [2,3] and the synthesis of graphene, a two-
dimensional material with unprecedented physical properties,
has opened new horizons for science and technology [4].
One of the main difficulties associated with these systems
for practical applications is the lack of long-range order due
to the presence of topological defects that often control key
material properties [5–8]. For example, the nonlocal disorder
introduced by disclinations in smectic systems reduces the
applicability to several nanodevices [8,9], and the fact that
graphene is actually not flat but exhibits pronounced wrinkles
into the third dimension was attributed to the presence of
defects, like dislocations and grain boundaries [4]. However,
defects are not necessarily undesirable. For example, it has
been suggested that novel tetravalent colloidal materials can
be developed by anchoring chemical linkers or DNA strands
to the topological defects of nematic textures lying on the
surface of micron-sized spheres [10,11]. And more recently, it
has been shown that grain boundaries can be used as tunable
transport gaps to develop practical digital electronic devices
based on graphene [12]. However, although in some cases the
diffusion of defects and grain boundaries can be arrested by an
appropriate selection of the material properties, defect motion
is a thermally activated process that can disturb both crystalline
order and transport properties.

During the last years there has been an increasing interest
in the study of two-dimensional (2D) textures on curved
surfaces [13–19]. One of the main differences between planar
and curved 2D-modulated phases is related to the structure of
topological defects. While in most flat systems the defects are
nontrivial excitations of the ground state, in the case of curved
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crystals long-range interactions can lead to complex arrays of
defects even at zero temperature [18].

Although the equilibrium properties of crystalline mem-
branes have been well established [20–24], how the dynamics
of defects is affected by the curvature of the space in which the
system lives is an open question that we address in this paper.
This study is focused in a membrane with internal degrees
of freedom, that below a critical temperature undergoes a
symmetry-breaking phase transition.

II. THE MODEL

To describe the dynamic of defects in a crystalline mem-
brane we propose a minimal model that includes a Bra-
zovskii Hamiltonian geometrically coupled to the topography
of the membrane. We consider a membrane that at high
temperatures is a disordered structureless deformable surface,
with equilibrium properties dictated by a Helfrich-Canham
Hamiltonian. The low-temperature phase is described through
the Brazovskii model, where the fluid membrane phase sepa-
rates into a buckled crystalline state with hexagonal symmetry.

A. Fluid membrane

Fluid membranes occur in a wide variety of systems, in-
cluding surfactant films, vesicles, and lipid bilayer membranes
[25–27]. The phase behavior and equilibrium structure of fluid
membranes have been investigated intensively in recent years
through different methods, including Monte Carlo [28,29],
molecular dynamics [30], and phase field models [27].

Here we employ a phase-field approach to describe the
temporal evolution of the morphology of the membrane during
a symmetry-breaking phase transition. This model accounts for
bending stiffness, spontaneous curvature, and surface energy.
In the Monge gauge, the deformation of a membrane can be
described by r(x,y) = [x,h(x,y)], where x = {x,y} represents
a set of standard Cartesian coordinates in the plane and z =
h(x,y) is the out-of-plane deformation of the membrane over
the reference plane x (see Fig. 1). The equilibrium properties
of fluid membranes can be described by a Helfrich-Canham
Hamiltonian FHC [23,24,31–36]:

FHC =
∫

[F1 + F2 + F3]
√

gdxdy, (1)
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FIG. 1. (Color online) A schematic representation of a crystalline
membrane in the Monge gauge. The Monge gauge describes a
surface by a single function z = h(x,y), the height over a reference
plane (x,y).

where g is the metric tensor [14,23]. The first energy density
term F1 = kB

2 (K − C0)2 accounts for the bending elastic
energy [33,34]. Here kB is the bending modulus, K is the mean
curvature, and C0 the homogeneous spontaneous curvature
[33]. The second term F2 = σ is an isotropic contribution
that controls the area of the membrane and it is characterized
by a constant surface tension σ . The third energy density
contribution F3 = kg

2 R, where R is the Gaussian curvature and
kg is the Gaussian rigidity, is a topological invariant depending
only on the genus of the surface [37].

B. Crystalline phase

In this work the dynamics of topological defects is studied
through a continuous phase field model. The dynamics of
defects and the process of phase separation have been studied
numerically using different approaches such as Monte Carlo or
molecular dynamic methods. However, the atomistic simula-
tions are computationally limited in the time and length scales
they are able to achieve. The phase field approach employed
here naturally incorporates the elasticity of the hexagonal
phase and also provides an efficient approach over diffusive
time scales. This approach is by now widely used in order
to describe different phenomena on atomic and mesoscopic
length scales. For example, it has been applied to describe
defect dynamics [38–40], pattern formation [1,41], grain
boundary melting [42], symmetry-breaking phase transitions
[43–45], block copolymers [46], Langmuir films [47], and
liquid crystals [48].

In the neighborhood of the critical temperature, the order-
disorder transition can be phenomenologically described by a
Brazovskii Hamiltonian [43,49] modified to account for the
membrane geometry:

Fψ =
∫ (

2
(∇2

LBψ
)2 − 2∇iψ∇ iψ + τ

2
ψ2 + 1

4
ψ4

)
dA.

(2)

This free-energy functional is a modified Ginzburg-Landau
expansion in the order parameter ψ(r) = φ(r) − φ0, where
φ(r) is the local composition and φ0 is the average composition
at the critical temperature Tc. In the above equation, τ =
(Tc − T )/Tc is the reduced temperature and ∇2

LB is the

Laplace-Beltrami operator [50,51]. We use the standard index
summation convention while subindices and superindices
indicate contravariant and covariant vectors, respectively. At
low temperatures, Fψ favors periodic profiles of well-defined
wavelength and symmetry [1,38,52]. In off-critical conditions
(φ0 �= 0), the hexagonal modulations with a dominant wave
vector k0 = 1/

√
2 are preferred due to the the competition

between the gradient square term and the term involving the
Laplace-Beltrami operator.

C. Crystalline membrane dynamics

Taking into account both contributions to the free energy,
the Hamiltonian for the crystalline membrane results: F =
FHC + Fψ . A dissipative model [36] where the membrane
shape and order parameter are coupled through the metric
of the membrane can be used to obtain the time evolution of
both scalar fields:

∂ψ

∂t
= −∇2

LB

(
δF

δψ

)
+ ηψ (r,t), (3)

∂h

∂t
= −δF

δh
+ ηh(r,t). (4)

Here ηψ (r,t) and ηh(r,t) are the random Gaussian noise fields
satisfying fluctuation dissipation [53]. The coupled dynamical
equations were numerically solved using a semi-implicit
pseudospectral algorithm with periodic boundary conditions.
The size of the time step t0 (t0 = 10−4), and spatial steps were
selected to provide numerical stability [33]. The system size
is L × L, where L = 256. The results discussed here did not
display any detectable finite-size effects.

III. RESULTS AND DISCUSSION

Shortly after the quench into the unstable region of the
phase diagram, the process of phase separation is dictated
by the high temperature fluctuations where both ψ and h

remain decoupled (ψ ∼ 0). A linear instability analysis of
Eq. (3) indicates that during this characteristic incubation time
tc (t ∼ tc ∼ τ−1), there is a continuous amplification of ψ until
the anharmonic terms of the free-energy functional triggers the
inhomogeneous nucleation of precursors for crystallization
[44]. This stage is characterized by growing crystalline
domains embedded in the unstructured fluid phase (see Fig. 2).

FIG. 2. (Color online) Mechanism of defect formation during the
early stage of the phase-separation process. Left panel: nucleation
and growth of the orderer phase. The propagating domains with
hexagonal symmetry remain roughly flat and free of topological
defects. Right panel: the collision of the orientationally uncorrelated
domains produces a granular structure with domain walls decorated
with dislocations. Here the different colors indicate different grain
orientations (color code indicated on the right).
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Due to causality, the orientation of distant growing crystals
is completely uncorrelated, and the collision of the different
domains unavoidably leads to the formation of domain walls
decorated with dislocations. Although disclinations also may
be present, its strain field is strongly screened by dislocation
lines [45,54]. In order to track the temporal evolution of the
system, here we identify the defects by means of Voronoi
diagrams through the centers of the particles (local maxima
of ψ) [44,55]. We found that the initial density of topological
defects is exclusively determined by the temperature of the
quench [45].

It was noted by Park and Lubensky that the crystalline
membrane is more rigid than the fluid membrane [23].
Consequently, a crystalline membrane is more crinkled than
crumpled and its configuration depends on the distribution
of defects. Theoretically, it has been found that the buckling
induced by topological defects is determined by the interplay
between the strain energy of the defect and the free-energy
penalization for curvature [20–23,56]. In hexagonal crystals,
disclinations are points of local fivefold or sevenfold sym-
metry, while dislocations are topological defects formed by
disclination dipoles separated by a lattice constant a0 [50,53]. It
was found that the buckling occurs when K0	

2
0/kB � γ , where

	0 is a characteristic length scale and γ is a dimensionless
constant of order 102. In addition and contrary to flat systems,
it has been observed that in the buckled state positive and
negative disclinations do not have the same energy. As
compared with a positive disclination, a negative disclination
has a larger energy and a smaller critical value of K0/kB at
buckling [24].

In the flat ordered phase the Lamé constants and 2D
Young modulus can be determined through the order
parameter field [57]. For the hexagonal phase ψ(r,t) =
Ak[cos(k0x)cos( k0y√

3
) − 1

2 cos( 2k0y√
3

)] + φ0, where Ak =
1

15 (−3φ70 + √
3
√

20k2
0 − 20k4

0 − 5τ − 12φ2
0). In this case the

Lamé constants λ and μ and the 2D Young modulus K0 can be
expressed as λ = 30|Ak|2k2

0, μ = 6|Ak|2k2
0, and K0 = 4μ(μ+λ)

2μ+λ
.

Here we select the temperature and free-energy parameters
in order to allow the defect-induced buckling transition.
We consider only membranes with fixed genus where the
free-energy parameters were fixed at φ0 = 0.4, τ = 0,
σ = 1.1, kB = 0.1, and C0 = 0. Figure 3 shows the time
evolution of a membrane suffering a symmetry-breaking phase
transition when it is quenched below the critical temperature
Tc. As we show below, the topography of the membrane is
strongly coupled with the motion of the defects and vice versa.

It has been observed in different systems that the strain
field induced by a disclination affects its core radius [53].
In response to the defect core energy, the domains at lattice
defect sites adjust their sizes relative to domains with sixfold
coordination (positive disclinations contract and negative
disclinations expand). In planar systems, this local deformation
has been observed in films of block copolymers and magnetic
garnets [58,59]. While this effect appears to have no effect
on the dynamics of coarsening in planar systems [55], here
we found that the positive disclinations can easily relax the
strain field stored in the core by buckling out of the plane (see
Fig. 4). Thus, the energetic asymmetry between disclinations
of different sign does not only modify the effective Kosterlitz-

FIG. 3. (Color online) Coarsening kinetics of a crystalline mem-
brane suffering a symmetry-breaking phase transition. A crystalline
membrane can buckle out of the plane driven by the relaxation
of the strain field introduced by topological defects. During the
temporal evolution toward equilibrium the annihilation and diffusion
of topological defects is dictated by the strong coupling between
the membrane shape and the geometrically screened strain field
associated with the defects.

Thouless transition temperature of the membrane [24], but also
dictates the early dynamics of buckling. Since the diffusion of
defects is affected by the geometric potential, the long time
relaxation of the system becomes tightly linked to the early
stage of buckling.

At the early stage of buckling, the compressional strain field
of the lattice in the neighborhood of a positive disclination
can induce the buckling of the membrane in either side of
the flat reference configuration (h = 0). While the energy
corresponding to isolated buckled disclinations is independent
of the direction of buckling (h < 0 or h > 0), as two discli-
nations become closer, the energy depends on the degree of
overlap between the membrane deformation induced by each
disclination. It has been noted by Carraro and Nelson (CN)
that buckling in opposite directions is favored for defects that
are further apart than two lattice constants [56]. This CN or
“antiferromagnetic” interaction between defects is favored by
the bending energy of the membrane. At the early stage of
buckling, the interspace between topological defects is nearly
flat because the deformation is concentrated at the core of
the disclinations and there is no substantial overlap between
the deformation induced by the different defects [Fig. 4(a)].
Thus, the buckling introduced by the positive disclinations
in the upward (h > 0) or downward (h < 0) directions is
predominantly random. As time proceeds, there is an increase
in the membrane deformation and the bending energy controls
the direction of buckling [Fig. 4(b)]. In order to identify
the existence of CN interactions during the relaxation of the
crystalline membrane, we define a disclination-disclination
pair correlation function C(s) that takes into account the
direction of buckling:

C(s) = 〈ρ(r,t)ρ(r − s,t)ϒ(r)ϒ(r − s)〉, (5)

where ρ(r,t) is the density of topological defects, 〈· · ·〉 denotes
an ensemble average with all the disclination pairs, s is the
geodesic distance between defects, and ϒ(x) = h(x)/|h(x)|
takes into account the sign of the CN interactions [i.e., the
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FIG. 4. (Color online) (a) The positive disclinations involved into the dislocations relax the stress field of the lattice by buckling out of the
plane. (b) Favored by the bending energy, the buckling of the membrane in opposite directions produces metastable configurations of defects.
Here the green (gray) line represents the geodesic distance s between two positive disclinations. (c) C(s) as a function of s at the onset of the
buckling transition (circles) and at long times (squares).

sign of ϒ(r)ϒ(r − s) determines if the buckling introduced
by a pair of defects is in either the same side or opposite sides
of the flat reference configuration] [60].

Figure 4(c) also shows the pair correlation function C(s) at
two different time scales. At the onset of the buckling transition
C(s) shows a maximum at the position corresponding to the
average distance between the positive and negative disclina-
tions forming a dislocation. Driven by the coupling between
the defects and geometry of the membrane, at large time
scales there is a splitting of the main peak of C(s), associated
to the unbinding of the positive and negative disclinations.
In addition, it is also possible to observe local minima at a
distance slightly smaller than two lattice spacings, indicating
the presence of CN interactions between near defects. Both
mechanisms slow down the dynamics. The unbinding of the
dislocations stabilizes the position of the positive disclinations
by increasing the membrane deformation. Thus, the binding
geometrical potential generated by the membrane deformation
slows down the dynamics of particles and defects in the neigh-
borhood of the dynamically stabilized positive disclinations.
On the other hand, the increase of the CN interactions produces
dynamically metastable configurations of defects, like those
shown in Fig. 4(b), that also slow down the dynamics.

In flat crystals the pathways toward equilibrium involve the
diffusion of dislocations located along grain boundaries. In
these systems it has been found that the rate of defect annihi-
lation is not controlled by the glide motion of dislocations but
for the slow diffusion of triple points (bounded regions where
three misoriented grains meet) [38,55]. As a consequence
of the pinning of triple points, in flat systems the temporal
evolution of the correlation length depends logarithmically
on time (Lifshitz-Safran mechanism) [52,61,62]. On the other
hand, in frozen curved topographies it has been determined that
the local curvature acts as a geometric potential that strongly
affects the motion of defects [19,63].

In order to analyze the dynamics of the system, here we
track the motion of the particles and defects. Once the position

of the particles (defects) was identified, the trajectories were
determined through ρ(r) = ∑N

i=1 δ[r − ri(t)], where ri(t) is
the position of the particle (defect) i at time t . Figure 5 com-
pares the time evolution of the average density of topological
defects ρdef in flat and buckled systems. As expected, at short
time scales, where the polycrystalline structure is defined,
ρdef is approximately the same in both systems. However, at
large time scales (t > 100t0) ρdef in the buckled membrane is
systematically higher than in flat crystals, indicating a slower
mechanism of defect annihilation [64].

The role of the buckling onto the relaxational dynamics can
also be analyzed by tracking the diffusion of the individual par-
ticles in the system. The dynamics of particle diffusion in 2D
crystals with hexagonal symmetry has been studied in colloidal

FIG. 5. (Color online) Diffusion coefficient (squares) and dislo-
cation density (triangles) as a function of time in flat and buckled
membranes. In the buckled membrane, both disclination unbinding
and CN interactions slow down the dynamics of coarsening below the
Lifshitz-Safran regime. Inset: g6(r) over the reference plane h = 0 as
function of r at early (lines) and long times (symbols).
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systems on different geometries [18,63]. Taking into account
the free diffusion of particles at short times and approximating
the restoring potential between near neighbor particles by
a circularly symmetric harmonic interaction W (r) = 1

2ksr
2

centered about each particle equilibrium position (ks being a
effective spring stiffness), the time dependence of the average
mean square displacement of the particles 〈�s2〉 can be
described by the following two-parameter model [18,65]:

〈�s2〉 = 1

2

ksβ + 1
4Dt[

ksβ

2 + 1
4Dt

]2 . (6)

Here D is the diffusion constant and β = 1/kBT is the thermal
energy [66]. Figure 5 also shows the time evolution of 〈�s2〉 in
flat and buckled membranes. A standard regression fit through
the data with the model for 〈�s2〉 yields D = 3.010−5a2

0 and
ks = k

f
s = 14β/a2

0 for the flat crystal and D = 2.510−5a2
0

and ks = km
s = 24β/a2

0 for the buckled membrane. Thus, the
strength of the harmonics traps involved in the long time
relaxation of the buckled membrane are very large as compared
with the flat counterpart (km

s /k
f
s ∼ 1.7) while the diffusion

coefficient becomes about 20% smaller, in agreement with the
results for the dynamics of defects. Note that here the nature of
the interactions responsible for the slowing down is completely
different.

The inset of Fig. 5 shows the azimuthally averaged correla-
tion function g6(r) = 〈exp[6i(θ (r + r′) − θ (r′))]〉, defined in
terms of the local bond orientation θ (r) [55]. Consistently
with the data for 〈�s2〉 and ρdef , we clearly observe that the
orientational dynamics is slower in the membrane (at long

times the orientational correlation length is about 40% smaller
than in the flat crystal).

Thus, while in flat systems the dynamics becomes slow as
a consequence of the pinning of triple points, in crystalline
membranes the pinning of positive disclinations and Carraro-
Nelson interactions control the dynamics.

IV. CONCLUSIONS

In summary, the early dynamics of buckling is led by the
positive disclinations. The coupling between the the topogra-
phy of the membrane and the defects induces the pinning of
positive disclinations and the formation of metastable struc-
tures of defects, stabilized by CN interactions. Consequently,
the relaxational dynamics of the system becomes even slower
than the Lifshitz-Safran regime observed in flat crystals.
The Brazovskii-Helfrich-Canham approach described here
provides a general framework for studying the dynamics of
topological defects in crystalline membranes, and can be
straightforwardly extended to crystalline phases with different
symmetries.
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