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m-bonacci metamaterial multilayers: location of
the zero-average index bandgap edges
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We examine quasiperiodic multilayers arranged in m-bonacci sequences, which combine ordinary positive-
index materials and dispersive metamaterials with negative index in a certain frequency range. When the
volume-averaged refractive index of the nonperiodic multilayer equals zero, the structure does not propa-
gate light radiation and exhibits a forbidden band. We identify some analytical expressions to determine the
upper and lower limits of the above zero-average refractive-index bandgap. We recognize that these limits
are not explicitly dependent on the geometrical parameters of the stack of layers. © 2009 Optical Society of
America

OCIS codes: 160.3918, 160.5293, 160.5298, 230.4170.
Photonic crystals (PCs) allow propagation of electro-
magnetic waves in certain frequency bands but not in
others [1], their essential feature being the periodic
arrangement of materials showing high-contrast
electromagnetic properties. The recent advent of
metamaterials (MMs) has led to PCs that show im-
pressive optical properties [2].

In this Letter we are interested in zero-n̄ band
gaps that appear in 1D PCs combining ordinary ma-
terials (with positive refractive index) and MMs (with
negative refractive index) at frequencies where the
volume average of the refractive index is zero [3].
Since these photonic bandgaps (PBGs) are not based
on the standard Bragg interference mechanism, they
are scale-length invariant and very robust against
disorder. Experimental verifications of zero-n̄ PBGs
have been reported for 1D multilayers [4] and binary
PC superlattices [5]. Apart from perfectly periodic
PCs, deterministic aperiodic 1D structures also ex-
hibit zero-n̄ PBGs [6,7].

The complex variation of the shape and width of
the zero-n̄ gap with both the constitutive and geo-
metrical parameters has been explored only for peri-
odic multilayers [8]. It has been shown that the
zero-n̄ bandgap edges are approximately ruled by the
following analytical expressions:

�̄ = 0, ��/c�2�̄ + kx
2�−1 = 0 �TE�, �1�

�̄ = 0, ��/c�2�̄ + kx
2�−1 = 0 �TM�, �2�

where kx is the wave-vector component along the lay-
ers and �̄, �̄, �−1, and �−1 are the volume average of
the dielectric permittivity, the magnetic permeability,
and their inverses, respectively, in a period of the

structure. Note that the above equations become
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�̄ = 0, �̄ = 0, �3�

at normal incidence �kx=0� for both polarizations. We
recognize that these expressions are written in terms
of quantities that do not explicitly depend on any geo-
metrical parameter of the multilayer structure. Ac-
cordingly, their applicability could be more general.

The purpose of this Letter is to explore the validity
of expressions (1) and (2) as good estimations for the
zero-n̄ bandgap edges for quasiperiodic multilayers.
We would like to emphasize that quasiperiodic order
has attracted considerable interest recently. From a
theoretical point of view, it is considered a suitable
theoretical model to describe the conceptual transi-
tion from randomness to periodic order. Besides, from
a practical point of view, there is evidence that deter-
ministically ordered aperiodic structures may offer
interesting possibilities for technological applications
[9]. Here we consider quasiperiodic MM stacks ar-
ranged in m-bonacci sequences, with m=2 (Fi-
bonacci) and m=3 (Tribonacci). In contrast to peri-
odic multilayers, in the quasiperiodic case the volume
averages involved in Eqs. (1) and (2) depend on the
number of fundamental building blocks of the
m-bonacci sequence. This fact gives rise to a new
variable, the generation level S of the structure.

Quasiperiodic binary multilayers based on the Fi-
bonacci sequence are constructed following the recur-
sive relation DS= �DS−1 ,DS−2� for S�2, D1= �A�, and
D2= �AB�. In this way, D3= �ABA�, D4= �ABAAB�, and
so on. Note that the sequence at any generation level
S contains NA=FS A-layers and NB=FS−1 B-layers,
where Fj, j=0,1,2, . . ., is a Fibonacci number result-
ing from the sum of the two preceding numbers,
�Fj�= �0,1,1,2,3,5,8,13, . . . �. Tribonacci numbers Tj,
j=0,1,2, . . . are like Fibonacci numbers, but the se-
quence starts with three predetermined terms. Be-

sides each term is the sum of the preceding three
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ones, �Tj�= �0,1,1,2,4,7,13,24, . . . �. For the con-
struction of the quasiperiodic binary multilayers
based on the Tribonacci sequence we use the recur-
sive relation DS= �DS−1 ,DS−2 ,DS−3� for S�3, with
D1= �A�, D2= �AB�, and D3= �ABAB�. Note that the se-
quence at an arbitrary generation level S contains
NA=TS A-layers and NB=TS−1+TS−2=TS+1−TS
B-layers. Note that Fibonacci stacks of MMs and con-
ventional dielectric materials were proposed previ-
ously [6,7], although their zero-n̄ band limits were
never discussed. Additionally, to the best of our
knowledge, the aperiodic Tribonacci sequence has not
been considered so far.

In our simulations A denotes a dispersive MM
layer with effective constitutive parameters given by
[3]

�A��� = 1 +
52

�2 − 0.92 +
102

�2 − 11.52 , �4�

�A��� = 1 −
32

�2 − 0.9022 , �5�

(� in gigahertz), whereas B represents an air layer.
The frequency variation of the effective parameters
�A and �A is depicted in Fig. 1(a). The widths of the
MM and air layers are dA=6 mm and dB=12 mm, re-
spectively.

The photonic spectrum of the Fibonacci and Tri-
bonacci 1D PCs at normal incidence (i.e., kx=0) and
generation levels from 2 to 11 are shown in Fig. 1.
The calculation was carried out using the standard
transfer-matrix method. The gray level indicates the
value of the reflection coefficient R of these struc-
tures; white regions correspond to R=1, whereas
black regions correspond to R=0. In the above sys-
tems, the average �̄S of a physical magnitude � for
the generation level S is defined as

Fig. 1. (Color online) (a) Frequency behavior of the consti-
tutive parameters corresponding to the MM layer. (b) Fi-
bonacci and (c) Tribonacci photonic spectra at normal inci-

dence for different generation levels.
�̄S =
�S�AdA + �BdB

�SdA + dB
, �6�

where �S=NA /NB. When S→�, �S tends to the value
� 	 1.61803, the golden mean for the Fibonacci se-
quence. Similarly, � 	 1.19149 for the Tribonacci se-
quence.

We observe that both kinds of quasiperiodic struc-
tures exhibit a forbidden bandgap in the region
where the refractive index of the MM layer is nega-
tive. If we identify � with n in Eq. (6) and we con-
sider S→�, we conclude that they certainly corre-
spond to zero-n̄ gaps, whose central frequency is �
	 2.547 GHz (for Fibonacci) and � 	 2.385 GHz (for
Tribonacci).

First we check that Eq. (3) also applies to deter-
mine the zero-n̄ gap limits in the quasiperiodic case.
To this end, we show in Fig. 1 the curves correspond-
ing to n̄S=0 (middle curve), �̄S=0 (top curve) and �̄S
=0 (bottom curve). It is interesting to note that the
forbidden band is well defined only at slightly high
generation levels, i.e., when the quasiperiodic
multilayer can be regarded as an effective homoge-
neous material. For the Fibonacci multilayer, the re-
quirements in Eq. (3) (�̄S=0 and �̄S=0), when S→�,
are met at frequencies 3.002 and 2.200 GHz, respec-
tively. On the other hand, we numerically find that
the zero-n̄ gap edges are practically stabilized at the
frequencies 2.973 and 2.240 GHz. Thus we conclude
that in this aperiodic architecture, the approximate
conditions given by Eq. (3) provide, as in the periodic
case, a good estimation of the zero-n̄ gap edges, the
relative errors being 0.96% (upper limit) and 1.84%
(lower limit). Similarly, for the Tribonacci multilayer,
the conditions �̄S=0 and �̄S=0 for S→� are fulfilled
at frequencies 2.826 and 2.043 GHz, respectively,
whereas the transfer-matrix method supplies the val-
ues 2.790 and 2.093 GHz, respectively. Despite using
a rather different stack of layers, we highlight the
fact that Eq. (3) still provides a good estimation of the
zero-n̄ gap edges. In the latter case the relative errors
are 1.28% (upper limit) and 2.42% (lower limit).

In Fig. 2 we plot the dependence of the photonic
spectra of the above aperiodic structures on the angle
of incidence, for TE and TM polarizations. We have
considered two different situations, the Fibonacci
multilayer S=10 and the Tribonacci structure with
S=8. In this way, we compare two aperiodic struc-
tures with nearly the same number of layers, 89 in
the Fibonacci case (NA=55 and NB=34) and 81 in the
Tribonacci one (NA=44 and NB=37). We observe that
for oblique propagation, Eqs. (1) and (2) also provide
a very good estimation of the zero-n̄ gap edges
(dashed curves in Fig. 2). Note that in these equa-
tions the lower limit for TE polarization ��̄=0� and
the upper limit for TM polarization ��̄=0� are inde-
pendent of the incident angle.

Summarizing, we have analyzed the behavior of
zero-n̄ PBG edges in quasiperiodic multilayers based

on m-bonacci sequences combining ordinary positive
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index materials and dispersive MMs. In this case, the
sequence for the generation of the aperiodic configu-
ration determines the central frequency of the zero-n̄
gaps. The upper and lower limits of these bandgaps
can be accurately approximated by analytical expres-
sions, which are exactly the same as the ones that ap-
ply for periodic multilayers at the low-frequency
limit. It cannot be otherwise, since the above band
limits only involve the volume average of the consti-
tutive parameters. This evidences the validity of this
extension. Consequently, it is apparent that the
above results may be generalized to other aperiodic

Fig. 2. (Color online) Photonic spectrum as a function of
the incident angle for (a) the Fibonacci MM multilayer with
level number S=10 and (b) the Tribonacci MM multilayer
with level number S=8.
multilayers, such as Thue–Morse, period doubling, or
silver-mean lattices, among others.
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