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Abstract

Glyphosate is intensively used in agriculturaldselnd it is frequently detected
in non-target wetland ecosystems. The floating bydyteLudwigia peploidess
widely distributed in American streams and it issdooundant species. Therefore, our
objectives were (1) to establish and validate d@raetton and quantification
methodology for glyphosate Inpeploidesand (2) to evaluate the role of this species as
a potential glyphosate biomonitor in an agricultuvatershed. We developed a new
method of glyphosate extraction from leaves @ieploidesThe method recovery was
117 £ 20% and the matrix effect 20%. To validae irethod using environmental
samples, plants @f.peploidesvere collected in March 2016 from eight monitorgitgs
of El Crespo stream. Surface water and sedimenplegnwere collected at the same
time to measure glyphosate and to calculate bicaanation factors (BCFs) and biota-
sediment accumulation factors (BSAFs). Glyphosais éetected in 94.11% in leaves,
the concentrations ranging between 4 — 108 pug/Kyph®sate was detected in surface
water and sediments at 75% and 100% of the sangilesncentrations that varied
between 0 — 1.7 pug/L and 5-10.50 pg/Kg dry weigkgpectively. The mean BCFs and
BSAFs were 88.10 L/Kg and 7.61, respectively. Theeselts indicate that. peploides
bioaccumulates glyphosate mainly bioavailable engtirface water. In this sense,
L.peploidescould be used as a biomonitor organism to evalgigfghosate levels in
freshwater aquatic ecosystems because, in additit® capacity to bioconcentrate

glyphosate, it is easy to sample and it has aicesdrmobility.
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1. Introduction

Glyphosate [N-(phosphonomethyl) glycine] is an etifee and non-selective
post-emergence herbicide used worldwide for thérobaf many grasses, broadleaf
weeds, aquatic grasses and brush (Zhang et all).ZDde to its massive application
within agro-ecosystems it is frequently detectedyall as its metabolite
aminomethylphosphonic acid (AMPA). The reportedaanirations of glyphosate and
AMPA in USA surface waters range between 0.08 &tdg/L (Coupé et al., 2012;
Battaglin et al., 2014), while the concentratiamsediments reach 470 pg/Kg
(Battaglin et al., 2014). In Switzerland, the rapdrglyphosate concentrations range
from 0.024 to 3.3 pg/L (Hanke et al., 2010); whiléArgentina, levels in surface water
are within 0.5 - 7.6 pg/L and from 5 to 200 pg/Kgsediments (Aparicio et al., 2013).

In particular, in EI Crespo watershed, which isu®the of the present study, the
glyphosate and AMPA levels in surface water ranfgesch 2.00 to 2.90 pg/L, and in
sediments from 18.50 to 47.50 ug/Kg (Pérez e@ll7). The spatial variations are
mainly dependent on the proximity of the agricudturelds, in the upper basin, where
there are extensive crops, glyphosate and AMPAdarerease in surface water and in
the lower basin, where the main farming activityhis extensive livestock, the levels
decrease (Pérez et al., 2017).

Floating, submerged and emergent macrophytes casditas situ

bioindicators of water quality because of theidigbto accumulate agrochemicals, and
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because wetlands and agricultural fields are styaaggociated (Lewis, 1995; Carvahlo
et al., 2007; Turgut, 2005; Pérez et al., 2013gyltomprise an important component
of benthic primary production in wetlands that mostprotected from adverse chemical
effects in order to maintain ecosystem structuresfanctions. Macrophytes fulfil
several critical functions in aquatic ecosystenthsas the conversion of solar energy
and carbon dioxide into organic matter, oxygen jgens, nutrient cycling, sediment
stabilization, and habitat and shelter for aquliefec(Freemark and Boutin, 1994; Arts et
al., 2010). Also, they provide natural habitatsgoHinators and beneficial insects that
can act as biological pests control in nearby agjtical fields. However, these plant
resources may be at significant ecotoxicologicat from herbicides applied in crop
fields.

The genud.udwigia (Fam. Onagraceae) has been extensively studiedibed
belongs to a native aquatic group of macrophytédarsth and South America (Bedoya
and Madrifian, 2014). Nowadays, this genus has beammortant due to its expansion
as an alien species in some European countriesdélaret al., 2005; Bou Manobens
and Font Garcia, 2016).

Ludwigia peploideg¢H.B.K.) or floating primrose willow is a nativeepennial
dicotyledonous hydrophyte, extensively distriburean USA and Mexico to South
America (Lahitte and Hurell, 1997). peploidesommonly grows in natural wetlands
and fresh marshes (Lahitte and Hurell, 1997), argdfrequently found in Austral
Pampas streams (Menone et al., 2015). This ripagdrophyte is a postrate
amphibious plant anchored in water-logged soilgr{&te, 1981). It commonly grows
forming abundant clumps of large floating shootkicl are easy to sample from the

wetlands. In additior.,.. peploideshas been demonstrated to be a biomonitor of
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organochlorine pesticide residues in Argentineegashs (Gonzalez et al., 2013).
Therefore, we have chosenpeploidesas a potential aquatic macrophyte biomonitor.

Over the past decades, the use of persistent higlolyhilic organic pesticides
has resulted in a wide range of adverse ecologitatts due to their high
bioaccumulation capacity. For this reason, nowadage is an increase in the use of
less persistent and more water-soluble (hydroptpksticides, which generally have
low bioconcentration factors (Alvarez et al., 2Q0B)e physicochemical properties of
glyphosate, such as its high water solubility (lkagv = -3.57) and high adsorption to
different soil/sediment components, as organic enaimd clay minerals (Okada et al.,
2016), suggest that this compound would have lmedncentration (BCFs) and biota-
sediment accumulation factors (BSAFs) in the aguazitta. However, the
environmental fate of glyphosate in plant tissuegquatic macrophytes is a topic
scarcely studied.

There are several extraction protocols for glypt®satraction in plant tissues
(Koskinen et al., 2016). Due to the complex aneédie composition of this type of
material, in relation to photosynthetic pigmenigidls and proteins, there is not a
consensus about the use of a standardized protodbls sense, it is necessary to
determine an optimal glyphosate extraction protéaothe plant model to be used.

The objectives of this study were (1) to estabdisd to validate a methodology
of glyphosate extraction and quantification in kiyelrophyteL udwigiapeploidesand
(2) to evaluate the role of this species as a paleglyphosate biomonitor in aquatic

ecosystems.

2. Materialsand Methods

2.1. Study area
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El Crespo is a third-order stream located in thelseast of Buenos Aires
Province - Argentina with the catchment area of. 489Kntf and flows from south-
west to north-east through 65 Km (Fig. 1A) and weitmean discharge of 0.85/s
(Pérez et al., 2017). The headwaters are locatdgbimandilia hills System in the
southern upper part; while the mouth is locatetth@inorthern end into the floodplains
(Fig. 1A). This watershed is only influenced bynfémg activities without urban or
industrial impact; also without significant inpdtem other streams or surface water
channels, being an optimal site to study procedgsegpollution, transport and dynamic
of pesticides. The watershed can be divided indveas: the southern upper basin
mainly composed of agricultural lands and the rartHower basin, with native
grassland coverage, used only for extensive liastoithout history of pesticide
applications (Fig. 1B). The sampling sites werensexated from the headwater (S1) to
the mouth (S8), which have been previously charaet concerning glyphosate
pollution. Sites S1-S7 are surrounded by agricaltlands, mainly transgenic crops, as
soybean and maize, where the occurrence and ifgltpahosate is increased, and S8
belongs to an area of natural grassland withoutalgural activities, where the levels

of glyphosate are lower than the upper sampliresgPérez et al., 2017).

2.2. Sample collection

2.2.1. Plant material

Plants ofLudwigia peploidesvere collected at the eight sampling sites of El
Crespo stream (Fig.1) in the same week on March6 2 its natural habitak,udwigia
peploidedorms abundant clumps of large emergent floathmmpss. Figure 2 shows
clumps ofL.peploidesat some of the sampling sites of El Crespo streamt,a close up

of the leaves and flower. Taking into account thaeploidedlourishes in spring and
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summer (September to February) (Lahitte and Hurt8®7), only young specimens
without reproductive structures were collected @ shoots per site). Upon arrival to
the laboratory, plants were rinsed three times tfhwater to remove possible
glyphosate deposited on the surface of the planteder to determine only the
accumulated glyphosate inside the leaves. The $eaeee placed in paper bags and
dried at constant temperature in an oven at 60tCagnstant weight and then were

milled. The samples were preserved in dry chamb#rssilica gel until their analysis.

2.2.2. Surface water and sediments

Surface water and sediments were sampled in the sdes as the plant
material. Water samples were collected using Qobliypropylene bottles. Immediately,
pH and conductivity were measured. After that, watamples were filtered through a
0.45 um nylon membrane and stored at -20°C undilyais. Sediment samples were
collected using a cylinder core of 5 cm diameteat 20 cm of length. The upper 5 cm of
sediments were used for the analysis. Samplesdviere at constant temperature in an
oven at 30°C for 3 days. They were milled and gigteough 0.5 or 2 mm for total
organic carbon (TOC) and particle size distribu{iB&D) determination, respectively,
following the loss of ignition method (Schulte addpkins, 1996) and the pipette
method for estimate three sizes: clay (< 2 um)(2# 50 um) and sand (50 um — 2000
um) (Gee and Bauder, 1996). The pH and electraadiactivity were measured in

1:2.5 w/v sediment:water.

2.3.Glyphosate and AMPA determination and analyticalhoéology

2.3.1. Plant samples
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Different protocols were used to setup the glypteaad AMPA extraction in
leaves ofL. peploidesFor all protocols subsamples of 0.5 g of plantenal were used
for analysis. All the samples were fortified witlst@ck solution of ig/mL [1,2-
13~ 15 3~ 15 : :

C,N] glyphosate ([1,2CN]-Gly) to determine matrix effect and recovery. &th

follows is a description of each of the protocdsayed:

- Method 1:Extraction was done following the standard extoacprotocol for
glyphosate and AMPA in soil samples (Aparicio et 2013) by adding 25 mL of an
alkaline buffer solution (100 mM NB,O;- 10H0O/100 mM KPOy, pH= 9). Samples
were then sonicated three times for 15 min, arallfircentrifuged at 3000 rpm. An

aliquot of 2 mL of each sample was taken from tgesnatant.

- Method 2: The extraction was done by adding 20 mL of ulirepvater to each
sample and then shaking for 60 min at 250 rpm. $ssnwere then centrifuged at 3000
rpm. An aliquot of 2 mL was taken from the supeanatand added to 1 mL of buffer

solution (100 mM NgB4O;- 10H0O/100 mM KsPOy, pH=9).

- Method 3:The extraction was done by adding 20 mL of ultrepuater to each
sample. After that, they were shaken during 60 anid50 rpm, sonicated twice for 15
min and then centrifuged at 3000 rpm. An aliquob ofiL was taken from the
supernatant and treated with 5 mL of hexane antikéhe darkness overnight. An
aliquot of 2 mL of each sample was taken from tq@esnatant and added to 1 mL of

buffer solution (100 mM N#,0;- 10H0O/100 mM KPO,, pH=9).

- Method 4:Samples were extracted with 20 mL of ultrapureawakhen they were
shaken during 60 min at 250 rpm and sonicated tdigang 15 min and centrifuged at
3000 rpm. An aliquot of 5 mL was taken from theexmatant and treated with 0.01

g/mL (Method 4A) or 0.02 g/mL (Method 4B) of actied carbon and kept in darkness
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overnight. After, an aliquot of 2 mL of each extra@s filtrated through a 0.2&n
nylon filter to remove the activated carbon. ThemL of buffer solution (100 mM

NaB4O7- 10H0/100 mM KPQy, pH: 9) was added to the samples.

Control samples to evaluate the matrix effect wendormed for each method,
which consisted of plant samples treated in theesaay as described in each method,
but the [1,2X°C **N]-Gly aliquot was added to the final extract ob& after the
extraction. A standard curve for glyphosate and AM#th six concentrations (0.5, 1,
10, 20, 50 and 100g/L) was prepared for the evaluation of each metkaah point of
the standard curve had an equivalent amount of'fG;2°N]-Gly to that of the final
concentration of the samples. After the extracsitaps mentioned above, all samples
and the solutions of the standard curve were d&zecwith 2 mL of a solution of 1
mg/mL of 9-fluorenylmethylchloroformate (FMOC-CI) acetonitrile in darkness
during 24 h. After that, the samples and the stahdarve were shaken for 3 min with 5
mL of dichloromethane and centrifuged at 3000 rphe hydrophilic phase in all cases
was filtrated through a 0.28n nylon filter and disposed into a 1 mL vial for BHC-
MS/MS determination. Analyses were performed bgating 20 pL of the final extract
in the UHPLC-MS/MS system (Watérécquity) calibrated for positive detection,
using a Waters® Acquity® UPLC column (C18, 1.7 |5 x 2.1 mm). The mobile

phase consisted of a gradient of water-methanoM i 4(CH3;COO)].

The limit of detection (LOD), defined as the minimwoncentration at which
the analyte signal differs from noise, was obtaiw#tl the lowest concentration which
signal/noise ratio was 3. The limit of quantificati(LOQ) was established as the
minimum concentration validated by the method u$imtified samples with
satisfactory recovery (between 70% and 120%) andracy (Relative Standard

Deviation, RSD< 20) (Ibafiez et al., 2005).
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2.3.2. Surface water and sediment samples

A subsample of 2 mL of surface water and 5 g ofrsedts were used for
analysis. The surface water and sediment samplesfartified with 10uL and 50uL
of 1 pg/mL stock solution of [1,23C,™N]-Gly, respectively, to determine matrix effects
and recovery. After 30 min, the liquid and solidngdes were extracted with 1 mL and
25 mL of buffer solution (100 mM NB,O;- 10HO/100 mM KPO,, pH= 9),
respectively. After that, the sediment samples gerecated three times for 15 min and
centrifuged at 3000 rpm. An aliquot of 2 mL wasailakrom the supernatant. A
standard curve with six points, 0.5, 1, 10, 20aB8 100ug/L of glyphosate and AMPA
was prepared with each set of surface water anthsat samples, with an equivalent
amount of [1,2"*C,">N]-Gly in each point of the curve. After that, sacé water and
sediment samples and the standard curve solutiens aerivatized with 2 mL of a
solution of 1 mg/mL of FMOC-CI in acetonitrile irackness during 24 h. Then, samples
and the standard curve solutions were shaken flan3vith 5 mL of dichloromethane
to end the clean-up step. The samples were ceggdfat 3000 rpm, the hydrophilic
phase obtained was filtrated through a u&2nylon filter and disposed into a 1 mL
vial for UHPLC-MS/MS determination. Analyses weexfprmed by injecting 20 pL
of the final extract in the UHPLC-MS/MS system asdatibed in the Plant samples
section. The LOD and LOQ for both glyphosate andm™m®wvere 0.1 and 0.5 pg/L in

surface water and 0.5 and 3 pg/Kg in sediments.

2.4. Data analysis
2.4.1. Glyphosate and AMPA levels in Ludwigia peploidasiage water and

sediments
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In leaves of.udwigiapeploideghe mean concentration of glyphosate and
AMPA were calculated using all data. In samplesnetibe glyphosate and AMPA
levels were below the LOD, values were set to 28feen the concentration of the
compound was below the LOQ, the concentration watoshe LOD value (censored
value).

In surface water and sediments samples, whenvetslef glyphosate and
AMPA were below the LOQ, censored values were uasgdhe same criteria of the

leaves samples.

2.4.2. Relation between glyphosate levels in surface wateediment and Ludwigia
peploides leaves
A linear regression was used to evaluate the ogldietween glyphosate
concentration in surface water or sediment (aspaddent variables), and glyphosate
concentration in leaves dlidwigia peploidegas dependent variable). The analyses

were done with a significance level of 0.05.

2.4.3. Bioconcentration Factors (BCFs) and Biota-Sedim&ectumulation Factors
(BASFs) determination
The BCF and BSAF were determinate for each sampiteg They were
calculated as the ratio between the average glgbbas AMPA concentrations in the
leaves divided by the glyphosate or AMPA conceidretin surface water (BCF) or

sediment samples (BASF).

3. Results and Discussion

3.1. Surface water and sediments physico-chemrioglgpties
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Table 1 shows the physico-chemical properties ofasa water and sediment
obtained from all sampling sites. Surface water siaghtly alkaline to alkaline, with a
range of pH= 7.70 — 9.65, and with low electrioahductivities near to 1 mS/cm. These
values are in agreed with other data obtainedeaséime stream (Pérez et al., 2017) and
to other streams of the southeast Pampas (Romanedli, 2011). Sediments at both
sites were slightly alkaline with a range of pH83 - 8.41 and with conductivities of
0.28 - 0.48 mS/cm. Sediments were characterizekigly total organic carbon (TOC)
content, ranging between 1.70 - 6.20%, and as skaaly and sandy silt loam, with a
distribution particle size about 32.19 — 67.29%sahd, 19.94 — 35.60 % of silt and

12.29 — 28.69% of clay (Table 1).

3.2. Glyphosate and AMPA determination and anadytigethodology

Due to the lack of a consensus methodology on arsaty glyphosate and its
metabolite AMPA in plants, different methods wesed for glyphosate extraction.
Method 1, based on an alkaline extraction buffad & low recovery rate < 20 % and
high matrix interference (70%) (Table #).Method 2, based in an agueous extraction,
the matrix interference was reduced at 50%, howtineerecovery of spiked samples
with [1,2-*C,>N]-Gly was similar to Method 1. This aqueous exi@tincreased its
recovery when the extracts were treated with hexiiethod 3) however the
interferences were not reduced significantly (T&})leThe method based in an aqueous
solution extraction and a clean-up with 0.01 g/niladivated carbon was optimal
(Method 4). This method was found to be precisé) wiatrix effect < 20% and
accurate, with satisfactory recoveries for spikaahgles higher than 110 + 23 % (Table

2). The LOD and LOQ of glyphosate and AMPALipeploidesvere set in 419/Kg

and 12ug/Kg dry weight, respectively.
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These results are in agreement with other studieg similar methods
developed for some terrestrial crop plants (Herearet al., 2000; Goscinny et al,
2012), in which the extraction was made usinggueaus phase. The main problem of
the extraction with aqueous solution is the preseriother water-soluble component
that will interfere in the analysis. To reduce #egerferences from the matrix a clean-
up step is necessary. It is possible to clean-tip @rganic solvents, e.g. for tissues with
high content of proteins and lipids (Goscinny et2012), or with sorbents, e.g.
activated carbon is used to remove chlorophyll athér pigments, because chlorophyll
has strong affinity for activated carbon (Agile216).

In the present study, the best result for the etitra of glyphosate and AMPA
was obtained with activated carbon at 0.01 g/m&aabent of photosynthetic pigments.
However, a high concentration of this sorbent (02L, Method 2B) can interfere in
the analysis, increasing the matrix effect (TableThe excess of activated carbon can
interact with glyphosate molecules, increased th&imeffect (Table 2) Therefore,
Method 4A was used for the further analysis of glygate and AMPA in environmental

samples of.. peploides

3.3. Glyphosate and AMPA in environmental sampiésidwigia peploides, surface
water and sediment
In the present study, both glyphosate and AMPA wetected in 75% of the
surface water samples and in 100% of the sedinaenples. The glyphosate
concentrations in surface water varied betweerl 6 pg/L, and AMPA levels varied
between 0 — 0.10 pg/L (Table 3). In sedimentsgtizehosate and AMPA levels varied
between 3.00 — 10.50 pg/Kg and 3.50 — 93.50 pghggvaight, respectively (Table 3).

The occurrence of glyphosate and AMPA in surfaceemand sediments from El
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Crespo stream are in agreement with its massivenube watershed. In fact, this
compound was the main herbicide used in El Cresggershed in the past campaign
2014 — 2015 (SIIA, 2016). The commercial formulatiavith 54% of active ingredient
were the most commonly applied by the farmers @étal., 2017). The area of El
Crespo upper basin sowed with glyphosate-resistapt (i.e. soybean and maize) was
approximately 147.44 Kfm(SIIA, 2016). In general, there are three appilicaperiods

of glyphosate: one during the fallow period in winspring, the second before sowing,
and the third during the growth stage of maize soyben, reaching the total annual
application dose of 5 L/ha on these transgenicc(Bgrez et al., 2017).

Glyphosate detection frequency in leave&.gbeploidesvas 94.12% while
AMPA residues were not detected in the leaves @ ahl Glyphosate levels varied
from 4.00 -108.00 ng/Kg dry weight in leaves (TabjeGlyphosate concentration in
leaf tissue was directly related to glyphosate eafration in surface wateR{ = 0.591,

p < 0.001) (Fig. 3A), while there was no relatiortwglyphosate concentration in
sedimentsR? = 0.013,p = 0.689) (Fig. 3B). These results indicate thathigher the
glyphosate levels in water, the higher the glyph®sancentration in the leaves.

Glyphosate was detected in all sampling sites whgreploidesvas collected,
including S8 where it was never applied. Howevgmplgosate residues have been
detected at site S8 in surface water and sedinhgrasprevious study as a result of
downstream transport from the upstream agriculfigllds (Perez et al., 2017). The
levels of glyphosate in the leaves did not showfandd pattern in relation with the land
uses in the watershed. At site S8, the levels wiendar or lower than in sampling sites
located near croplands. Site S5 had the highestecwration of glyphosate in leaves
(100.00 + 11.3ug/Kg) and in surface water (1ug/L) (Table 3). In the rest of the

sampling sites different uptake routes could hardrdbuted to the accumulation of
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glyphosate irL. peploidesin S1 and S2, where glyphosate in water was utheer
detection limit, incorporation from the sedimentaots or the deposition from spray
drift in the floating leaves could have occurred.

The plants were healthy at macroscopic level; thdynot present chlorosis
symptoms which could be related to the wiltingloé teaves that produce the contact to
herbicides. However, it is possible that the presesf glyphosate residues could induce
sublethal effects at different suborganism levasdsit was reported in others species
(Boutin et al., 2014) or hormetic effects, suchhesincrease of biomass growth that has
been studied in terrestrial species (Cedergreah,e&2007; Cedergreen, 2008). The
effects of herbicides in non-target plants is enmgrgs one of the central issues in
biodiversity conservation. Therefore the evaluabbadverse and hormetic effects of
glyphosate in aquatic macrophytes will be the faafulsiture risk assessment studies.

Koskinen et al. (2016) reported that there are ssimgies about the
determination of glyphosate occurrence and levefdants material, however to our
knowledge, there are nio situstudies about the bioaccumulation of this herbiadan
aquatic macrophyte. In the present study, we etedue glyphosate and AMPA
bioconcentration and bioaccumulation in leavek.qfeploidesthrough the BCFs and
BSAFs. The BCFs and BSAFs of glyphosate showed wadiations, while both
parameters for AMPA were impossible to calculaggduse AMPA residues were no
detectable in the leaf tissue (Table 3). In S1%&2dhere was no detection of glyphosate
in surface water, therefore, it was not possiblealgulate the corresponding factors.
Anyway, BCFs values obtained in S3, S4, S5, S@&rl’'S8 were higher than the
BSAFs from the same sites (Table 3), indicating tiigphosate bioavailability is
provided by the molecules dissolved in the surfaater more than in the sediments. It

Is important to note that the commercial glyphosatmulations contain surfactants
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(e.g. polyoxyethylene tallow amine, also known &&R) to enhance foliar uptake.
Residues of POEA has been detected in agricukoi of USA (Tush and Meyer,
2016). Therefore, it is possible that there aréastants present in the agricultural
stream that may also favor glyphosate uptake gdwgds of aquatic hydrophytes.

Glyphosate uptake ib.peploidescould be through the floating leaves or through
the submerged floating roots. The anatomiz.gieploidesalso contributes to
glyphosate uptake because it is characterizedéglisence of cuticle and
amphistomatic leaves (Bedoya and Madrifian, 201at)iticrease the surface exchange
with water. The submerged floating root uptakeaislitated by the presence of
pneumatophores that could be involved in the exghari substances and ions
dissolved in water (Ellmore, 1981; Bedoya and Madin, 2014). The low BSAFs for
glyphosate irL..peploidescould be explained by the strong adsorption ofntlaéecules
to the organic matter fraction of the sediment (&4dl). In this sense, the glyphosate
bioavailability from sediments to roots anchoredh® substrate was low (Table 3).

Residues of AMPA were detected in surface wat&1aiS3, S4, S5 and S7; and
in sediments at all sampling sites (Table 3). ABBIPA concentrations in surface
water were the same to glyphosate at S3, S4 arfd. 8Bug/L). However, AMPA
residues were not detected in leaf tissues ata@ampkng sites (Table 3). The absent of
AMPA in leaves could be due to small differencethigm molecular structure between
glyphosate and AMPA. In this sense, these strulctliifarences could reduce plant
uptake of AMPA, in comparison to the parental coomab Also, the absence of AMPA
in leaf tissues indicates that the bioconcentrbtehgpsate does not metabolize inside
the plants at the AMPA pathway.

In fact, until recently, the metabolic degradatadrglyphosate by plants was

neither well documented nor accepted (Duke and &3v008). Gonzalez-Torralva et
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398 al. (2012) compared the glyphosate metabolism mhistypes of the terrestrial species
399 horseweedonyza canadensi$hey found a complete disappearance of glyphosate
400 from the resistant biotype by conversion into glylake, sarcosine and AMPA within
401 96 hours after treatment. However, in the susckphilotype only glyoxylate was

402  detected. Other studies also describe AMPA deteatiglyphosate-resistant or

403  glyphosate-tolerant plants (Cruz- Hipolito et aD11; Rojano- Delgado et al., 2012).
404  However, information of biotransformation of glygate in susceptible wild aquatic
405 plants is not available in the literature so fartker studies are needed to elucidate
406  AMPA uptake and degradation in aquatic plantk.asploidesAlso, studies about the
407  possible release of glyphosate or its metaboilibetyding AMPA, from the leaves to an
408 agueous media would help to clarify its metabol@mexcretion in this species.

409 The capacity of.. peploidego accumulate contaminants has been demonstrated
410 for organochlorine pesticides (Gonzalez et al. 3}0ihdicating together with our study,
411 the importance of this specie as a biomonitor tweate pesticide levels in a wetland
412  ecosystem. Indeed, due to its broad geographigkdisbn in the Americas, this

413  hydrophyte can be proposed for biomonitoring prograDespite its utility as a

414  biomonitor species, it is also important to hightighat the capacity to bioconcentrate
415 and bioaccumulate pesticides can also be potgnédilerse for the plant itself,

416 increasing the relevance of monitoring studiesaédlanent scale.

417

418 4. Conclusions

419 Concluding, a straightforward and accurate methmgloto extract glyphosate
420 from the hydrophytéudwigia peploidesvas established. This new method allowed the
421  extraction and quantification of glyphosate and AMR leaf tissues ok. peploides

422 and it was validated using environmental samplepeploidesaccumulated glyphosate
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in its leaves, mainly through bioconcentration freanface water. Finally, we propose
the use of this widely distributed species as algbgate biomonitor in freshwater

ecosystems affected by glyphosate inputs.
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Figure 1: Study area of El Crespo watershed and sampliag,sf1 — S7: Agricultural
lands; S8: Natural grassland with extensive livesi@.g. S1, S6, S7 and S8). Double
arrow indicates soybean crops fields. Geographicdinates of sampling sites:

S1: 37° 53 12.01” S; 58° 27" 35.96” VB2: 37° 52" 40.16” S; 58° 26" 50.91" W;

S3: 37° 51" 13.47” S; 58° 24 05.72” V#4: 37° 50° 29.74” S; 58° 25" 08.60” W;

S5: 37° 48 50.40” S; 58° 277 27.51” V#6: 37° 45" 51.64” S; 58° 22" 01.83" W;

S7: 37° 44 16.65” S; 58° 21" 03.64” V83: 37° 34" 04.35” S; 58° 02°43.63" W.

Figure 2: Ludwigia peploides in its natural habitat at some of the samplingssdf El

Crespo stream. Clumps of emergent floating shadots ), floating leaves (D), flower

(E).

Figure 3: Linear regression between glyphosate levels weleafLudwigia peploides

and surface water (A) and sediments (B).



Table 1: Physico-chemical properties of surface water autinsents.

Sampling Surface water Sediments

Ste

pH EC pH EC TOC (%) Silt (%) Clay (%) Sand (%)
S1 8.27 1.19 7.98 0.33 2.20 28.62 16.39 54.99
S2 8.01 0.96 7.89 0.29 3.00 28.07 15.16 56.77
S3 8.71 1.26 7.63 0.48 6.20 39.12 28.69 32.19
S4 7.70 1.50 n.a. n.a. n.a. n.a. n.a. n.a.
S5 8.48 1.15 8.15 0.35 2.60 24.00 23.59 52.41
S6 9.65 0.94 8.41 0.28 1.90 19.94 12.76 67.29
S7 8.56 1.12 8.20 0.34 2.30 31.69 15.39 52.92
S8 8.56 1.12 8.20 0.38 1.70 35.60 13.73 50.66

EC: Electrical Conductivity (mS/cm)
TOC: Total Organic Carbon

n.a.: not analyzed



Table 2. Glyphosate recovery and matrix effect for the edight extraction methods

from leaves of_udwigia peploides.

Extraction Method # Recovery (%) Matrix effect (%)
Method 1 <20 70
Method 2 <20 50
Method 3 40 50

Method 4A 117+ 20 20
Method 4B 110+ 23 40

& Extraction Method; Method 1: extraction in alkalibuffer solution; Method 2:
extraction in aqueous solution; Method 3: extrattioaqueous solution and clean-up
step with hexane; Method 4: extraction in aquealisti®n and clean-up step with 0.01

g/mL (A) or 0.02 g/mL (B) of activated carbon.



Table 3: Glyphosate and AMPA levels lrudwigia peploides (mean + SE), surface water and sediments, andhdeatration factors (BCFs)

(mean = SE) and biota-sediment accumulation fa¢@®AFs) (mean + SE).

_ Glyphosate AMPA
Sampling

Ste Ludwigia Surface water Sediment BCFs BSAF¢ Ludwigia Surface Sediment
peploides (19/KQ) (tag/lL) (Lg/Kg) (L/g) peploides (1o/Kg) water(ug/l)  (1g/Kg)

S1 24.00 + 8.00 n.d. 9.50 n.c. 252+0.84 n.d. 100. 15.00

S2 56.00 £ 5.65 n.d. 10.41 n.c. 5.37 £ 0.54 n.d. d.n 19.30

S3 22.00 + 8.48 0.10 5.00 220.00+60.0 4.40x1.70 n.d. 0.10 4.50

S4 12.00+11.31 0.10 5.50 120.00+80.0 2.2082.1 n.d. 0.10 9.00

S5 100.00 +11.31 1.70 3.00 58.80+4.70  33.3(8f1 3. n.d. 0.10 11.00

S6 2.00+£2.82 0.10 10.50 20.00 £20.00 0.20+0.27 n.d. 0.10 93.50

S7 26.00 + 8.48 0.70 3.00 37.10 £ 8.50 8.66 + 2.82 n.d. 0.10 4.00

S8 34.00 £ 2.82 0.50 5.00 68.00 £ 4.00 6.80 £ 0.56 n.d. n.d. 4.00

& BSAFs without units
n.d.: not detected

n.c.: not calculated
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Highlights

A glyphosate extraction method in the hydrophyte Ludwigia peploides was
developed.

Environmental levels of glyphosate in Ludwigia peploides were measured.
Glyphosate bioconcentration and bioaccumulation in Ludwigia peploides was
calculated.

Ludwigia peploides accumulates glyphosate in its leaves mainly from surface
water.

Ludwigia peploides can be used as a biomonitor of glyphosate levelsin stream

water.



