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1. Introduction

The spectral lines emitted by laboratory and astrophysical plas-
mas show variations with respect to its emissivity profile e(y) (pro-
portional to the line shape factor P(y), see Eq. (1)), due to the physical
conditions (parameters) of the source [1]. For example 1) the full
width at half maximum(FWHM) of the optically thin line is propor-
tional to the electron density ne, when it is broadened by the Stark
effect1, 2) if the emitting plasma core is surrounded by a colder one,
the profile will show a dip at the line center [2], 3) when the ionic
density ni is important, the profile will show an asymmetry, specially
for lines arising from higher levels [3], 4) specially, the asymmetry is
also present in those profiles called “autoionizing” [4], 5) line shifts
due to high electron densities can be observed [1]. All the above
effects often occur simultaneously in plasmas produced by laser or
high current pinch experiments.

In all the mentioned cases, it is paramount to recover the emis-
sivity profile, in local thermodynamic equilibrium (LTE) or not [5].
In fact, the FWHM of the thin line is proportional to ne (when Stark
effect is dominant) and the ratio between integrated intensities is
equal to the corresponding ratio of transition probabilities Ivu/Ipo ∝
Avu/Apo (in addition to a Boltzmann factor). Moreover, the emissivity
line profiles are needed for the quantification of traces of elements
of interest in a wide range of samples such as metallic alloys, soils,
liquids, and air.

The objective of this work was to construct an analytical for-
mula to fit the line profiles measured from plasmas with typical

* Corresponding author.
E-mail address: ddiaz@exa.unicen.edu.ar (D.D. Pace).

1 In laser produced plasmas, the lines become narrower at later times (microsec-
onds or higher) and in this scenario Stark effect is negligible.

temperatures and electron densities of 1 eV and (1016–1017) cm−3,
respectively. To this aim, the different physical mechanisms affect-
ing the emissivity line profiles (i.e. background due to continuum,
self-absorption, self-reversal, asymmetry, and noise) were taken into
account. Our approach was based on a pseudo-Fano function and it
will be useful to 1) generalize the expression due to Kielkopf and
Allard [6] to Voigt profiles when the Gaussian component, given by
the Doppler broadening and/or the monochromator slit, is impor-
tant; 2) avoid the problem of solving a convolution integral; and 3)
further extend the treatments of Zwicker [2] and Cowan-Dieke [11]
for the cases when the self-absorption dip is not coincident with
the emission peak. Moreover, the emissivity profiles can be retrieved
from the fitting of the experimental lines. The validity of the pro-
posed model was verified by determination of the relative gA values
of five Co I lines which was compared with those reported in NIST
database [12].

2. Line profile for an arbitrary optical thicknesses

The spectral line profile with an arbitrary optical thickness t can
be written in several equivalent forms. Starting from the general
expression in terms of the emissivitye(y) and the opacity j(y) for a
homogeneous slab of thickness L, and integrating along the line of
sight it results [7]

I(y, L) =
e(y)
j(y)

{1 − exp[−j(y)L]}; (1)

where e(y) and j(y) are both proportional to the normalized emis-
sivity line profile P(y). As one of the authors has shown in Refer-
ence [8], when P(y) is Lorentzian, I(y, L) can be put in terms of the
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optical thickness t(y, L) = j(y)L and, in order to have an intensity
profile normalized to unity, it must have the following functional
form

I(y, t0) =

{
1 − exp

[
−t0

c2

(y2+c2)

]}
pct0M (1/2, 2, −t0)

, (2)

being t0 the maximum optical thickness which is a combination of
universal constants as well as source parameters (Ni, L, T, etc.) [8], c
the HWHM, and M(1/2, 2, −t0) a confluent hypergeometric (or Kum-
mer) function. Expanding Eq. (2) in series up to first order around t0,
we have

Ithin(y) =
c

p(y2 + c2)
≡ L(y), (3)

which is a Lorentzian function normalized to the unity. Then, Eq. (2)
can be put, in general, in terms of the thin line profile Ithin(y):

I(y, t0) =

{
1 − exp

[
−t0cpIthin(y)

]}
pct0M (1/2, 2, −t0)

(4)

The profiles given by Eq. (2) or (4) refer to spectral sources that,
eventually, can lead to self-absorption, when j(y)L � 1 [7,9].

It should be noted that for individual profiles could be convenient
to use normalized profiles, as given by Eq. (2) or (4). On the other
hand, when comparing different lines such normalization does not
make sense and it is better to rewrite Eq. (4) as

I(y, t0) = Constant ×
{

1 − exp
[
−t0cpIthin(y)

]}
, (5)

being Constant a scale factor.

3. The generalized Voigt profile

The Voigt profile V(x) is the convolution of a Gaussian, G(x), with
a Lorentzian, L(x). The corresponding expressions normalized to the
unity are, for lines centered at x = 0 (to simplify the notation; later,
it can be changed to x − x0)

G(x) =
1√
pwG

exp
[
−(x/wG)

2
]

(6)

being wG = cG/
√

ln 2 and cG the corresponding HWHM. Analo-
gously

L(x) =
1

pwL

w2
L

x2 + w2
L

(7)

with wL = cL. Calling a = wL/wG, we can write V(x) in the form

V(x) =
a

p3/2

∞∫
−∞

exp
[
−((x − x′) /wG)

2
]

x′2 + w2
L

dx′. (8)

To take into account that the plasma could be optically thick
(t > 1) and, additionally, with a possible external colder region,
in such a way that self-reversal be possible and, at last, a possible

asymmetry due i.e. to the ionic density, the convolution integral can
be generalized in the form

V(x) =Constant ×
∞∫

−∞
e−[(x′−x)/wG]2 [

1 − e−t0c
2/(x′2+c2)

]

× (1 + Basymx′) e
− Aautow2

a
(x′−da)2+w2

a dx′. (9)

In the above equation we have 1) the Gaussian Kernel to con-
volve:

exp
(
−[(x′ − x) /wG]2

)
,

2) the profile I(y) given by Eq. (5), 3) the asymmetry term (1 +
Basymx′), and 4) the self-reversal term:

exp
[
−Aautow2

a/
(
(x′ − da)

2 + w2
a

)]
,

where wa is the HWHM of the self-reversal profile occurring at the
position da.

From a practical point of view, fitting an experimental line by
using the previous convolution integral, i.e. Eq. (9), is very cumber-
some. Therefore, we postulate in the following section an analytical
function that allows a relatively simple fit of measured line. The
last step will be to recover the emissivity line, with no asymmetry
(Basym = 0), with no self-absorption (Aauto = 0) and also t � 1. This
will make feasible the estimation of the relative gf values and its well
known applications to the spectrometry.

4. Fano and pseudo-Fano profiles

Fano (or Beutler-Fano) profiles, Fq(x), had been widely used for
auto-ionization studies [4], as well as in applications in a multitude
of physical systems [10]. Fq(x) is given by an expression of the type

Fq(x) =
A(x + q)2

(x2 + w2)
. (10)

The maximum value of Eq. (10) occurs when x = w2/q, whence
Fq(w2/q) = A(q2 + w2)/w2 and, when q = 0, F0 = A. the minimum
occurs when x = −q, ∴ F(−q) = 0. The case q = 0 produces a typ-
ical symmetrical absorption profile; for other q values, the profile is
highly asymmetrical, unless for q → ∞ in that the profile becomes
symmetrical. The width of the curve Fq(x) is FWHM = 2w.

As in this work we are interested in emission lines, with proba-
ble contributions due to the self-absorption of the source as well as
probable self reversal due to absorption by cooler outer region [7,9],
we modify the previous expression as follows:

F(A, q, w; x) = A

[
1 − (x + q)2

(x2 + w2)

]
, (11)

in such a manner that when q = 0 we have a Lorentzian curve:

F(A, 0, w; x) =
Aw2

x2 + w2
, F(A, 0, w; 0) = A. (12)

Eq. (11) is a very reasonable generalization of the Lorentzians and,
therefore, can be a good description of Voigtian curves when wL >
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Fig. 1. Synthetic Voigt profile with a = wL/wG = 0.5 (basically a Gaussian) with
added noise (open circles). The line is the fit using our approach, with p = 0.

wG, eventually asymmetrical, until now with no self-absorption,
which will be accomplished in a later section.

A better generalization of Eq. (11), also useful when wL < wG is

Fthin(A, q, w; x) = A

{
1 −

[
(x + q)2

(x2 + w2)

]p}
(13)

with p ≈ 1, because this gives a better fit in the wings of the
Voigtians. Examples showing that our formula (Eq. (13)) can repro-
duce Voigt profiles with different values of wG/wL are presented in
Figs. 1 to 2. This shows the superiority of Eq. (13) with respect to
Eq. (11).

Additional examples of synthetic profiles, now generated using
Eq. (9), are shown in Figs. 3–5.

-10 -5 0 5 10

0.00

0.04

0.08

0.12

0.16

In
te

n
s
it
y
 (

a
r
b
it
r
a
r
y
 u

n
it
s
)

 (arbitrary units)

Fig. 2. Synthetic Voigt profile with a = wL/wG = 2 (basically a Lorentzian). The
points are the values after Eq. (9) whereas the lines are the fits according to our
approach, with p = 0.
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Fig. 3. Synthetic profile without dip (Aauto ≈ 0). The points are the values after Eq. (9)
whereas the lines are the fits according to our approach, with p = 0.

5. The construction of our formula

From the two previous subsections, specially Eqs. (4) and (13), we
make the proposal that if a line could reach self-absorption (t0 
 1)
and could have a certain asymmetry (i.e. due to ionic broadening),
then its intensity profile can be described by a pseudo-Fano function
of the form

F(. . .) = B

{
1 − exp

[
−A

(
1 −

(
(x + q)2

(x2 + c2)

)p)]}
(14)

where A plays the role of t0 (as we will see in §5.1) and B is a scale fac-
tor, q measures the asymmetry, c gives the HWHM of the recovered
emissivity line. In real spectra x should be substituted by (x − x0 − d)
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Fig. 4. Synthetic asymmetric profile, multiplied by (1 + 0.75x), with no self-
absorption. The points are the values after Eq. (9) whereas the lines are the fits
according to our approach, with p = 0.
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Fig. 5. Synthetic asymmetric profile, with self-absorption and noise. The points are
the values after Eq. (9) whereas the lines are the fits according to our approach, with
p = 0.

where d is the possible shift by plasma effects [1] and x0 indicates the
non-perturbed position of the line.

Based in the previous work of Kielkopf and Allard [6], we must
add the self-reversal factor, due to the external cooler plasma,
whereas the self-absorption occurs in a position da

Fabs = exp

[
− Aautow2

a

(x − da)2 + c2
a

]
; (15)

which generalize the classical treatments of Bartels [2] and of
Cowan-Dieke [11], for which the dip is at da = x0.

Finally, we write a general expression for the line profile as a func-
tion of several parametersA, B, q,c, d, Aauto, p,ca, da, C (x0 is known
from tables)

F
({

A, B, q,c, d, Aauto, p,ca, da, C
}

, x
)

=

= C + B

{
1 − exp

[
−A

(
1 − (x + q)2

x2 + c2

)p]}
exp

[
− Aautow2

a

(x − da)2 + c2
a

]
.

(16)

Before applying our proposed formula (Eq. (16)) to experimental
lines, we have verified that it describes a wide range of possible emis-
sion profiles. Such verifications are presented in Figs. 1–5, as was
mentioned above. It should be mentioned that, despite the appar-
ently high number of parameters, several of them can be readily
estimated from the experiment, and later released if necessary, as
explained immediately in §6. In many cases of lines obtained by Laser
Produced Plasmas, only four parameters are generally needed.

5.1. A plays the role of t0

In the case of a line given by the Eq. (5) the peak intensity is, when
there is no self-absorption

I(0, t0) = Constant × {
1 − exp [−t0]

}
,

Table 1
The results for the parameters corresponding to the transition k = 340.5 nm, after
the maximum likelihood estimation using the Monte Carlo Markov chain method.

Variables h0 Marginal median Credibility interval

A 0.1369 0.1393 [0.12,0.17]
q 0.0092 0 [−0.0103, 0.0102]
1 0.1274 0.1312 [0.11,0.18]
d 0.0584 0.0584 [0.57,0.59]
Aauto 0.4176 0.4103 [0.319,0.421]
1a 0.0370 0.0325 [0.02,0.12]
da 0.0218 0.0218 [0.021,0.0225]
C 9e − 9 0.003 [0,0.0065]

whereas, in our formula, when the thin profile is recovered, that is,
when d = 0, q = 0, p = 1, Aauto = 0, da = 0, it turns out that

F (x0) → B [1 − exp (−A)] ,

whereby, we can establish

Constant × {
1 − exp [−t0]

}
= B [1 − exp (−A)] ,

and identify A = t0. Keep in mind that, when the profile is nor-
malized, then B = 1/[pct0M(1/2, 2, −t0)] but, given the different
relative intensities of the transitions, no normalization must be con-
sidered here. Therefore, B is a scale factor, taking into account the
experimental parameters, such as setup, electronic gain, and detector
response.

6. Fitting methodology

To fit measured spectral lines under the developed approach, the
values of some parameters should be firstly estimated. To this aim,
the following steps were carried out:

1) C (the background) is obtained by fitting the continuum near
the emission line.

2) If the curve is clearly symmetric, then q � 0; when released to
q �= 0, its sign will depend of the asymmetry: to the right or to
the left.

3) The HWHM given by c can be bounded, because the experi-
mental width will be always greater than the true (thin) width
(due to self-absorption).

4) If there are no clearly visible dip, Aauto ≈ 0.
5) The values for d and da were set by simple visualization.
6) The optical thickness is given by A; if the flattening is not

evident, then A � 0.
7) p will have an approximate value near to the unity (p � 1).

6.1. First methodology: fitting four parameters through a least-squares
iterative fitting algorithm

The analysis of the line profiles was carried out based in mod-
eling emission line profiles within the framework of our Eq. (16),
corresponding to a plasma composed (eventually!) of two regions:
a core with a higher temperature surrounded by a periphery with
a lower one. Each region of the plasma was pictured as a homoge-
neous piece in local thermodynamic equilibrium (LTE) characterized
by its own set of plasma parameters and for which the model can
be applied. The values of the plasma parameters inside these regions
are averaged values of the real spatial distributions.

In this approach, the emission intensities of a spectral line was
calculated and matched to their experimental profile through a least-
squares iterative fitting algorithm, based on the calculus of the



G. Baéz et al. / Spectrochimica Acta Part B 135 (2017) 73–81 77

0 2000 4000 6000 8000 10000 12000

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

H
W

H
M

 (
n
m

/1
0
)

Iteration number

Fig. 6. An example of a converged chain.

optical thickness for the core and the periphery regions. The opti-
cal thickness was represented by a pseudo-Fano functions, whose
Lorentzian width is dominated by Stark broadening while the Gaus-
sian width is associated to the instrument profile plus Doppler
broadening contributions. Self-absorption can be quantified and sub-
sequently compensated to retrieve the optically thin line profiles.

The fitting procedure was executed systematically for all the Co
I lines measured. The inputs are the experimental line and its spec-
troscopic data available at the NIST Database. The parameters q,
d, da, B, and C are not fitting parameters and they are estimated
from the measured profiles. Then, estimated ranges of values for
the maximum optical thicknesses; i.e.A, Aauto, and the Stark widths;
i.e.c, ca, are set by the user (typically, A, Aauto = 0.1–10, and c,
ca = 0.01–0.20 nm in our experiment). Then, by varying these four
independent parameters the fitting routine is run until the devia-
tion of the synthetic from the experimental spectrum is minimized
and, hence, the profile that reproduces the measurements is obtained
along with its wavelength-dependent optical thicknesses. In this
way, the output data are the maximum values of the optical thick-
nesses and the Stark widths for the core and the periphery regions,
the total intensity of the line, and the intensity in optically thin
conditions.

6.2. Second methodology: a Bayesian analysis; the role of the noise
statistics

The so-called least square estimation(LSE) is a technique com-
monly used to retrieve hidden parameters given a set of measure-
ments through the following expression

l(h, y) = ||f (h) − y||2 (17)

where f is the model, h is the hidden (or objective) parameter and
y is the data or measurement set. As an example, widely known by
spectroscopists, a set of bell-shaped experimental points could be
fitted by Gaussian, Lorentzian or Voigtian profiles. However, when
the influence of the noise is high, LSE may fail, leading to useless
results. A classic example of this can be seen in the Deconvolu-
tion problem [14]. Given that we may have an instrument response
function(IRF) and a convoluted signal (S), the presence of noise
makes reconstruction of the underlying signal (o) a problem which
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Fig. 7. A resulting marginal histogram (i.e. a histogram of only one variable).

can not be tackled with LSE, even when we have the analytical
solution of the problem

o = F−1
{ F{S}
F{IRF}

}
(18)

where F is the Fourier Transform. This is caused by the fact that
many signal can be convoluted with the IRF and produce very sim-
ilar results. So similar, that LSE can not “see” the true value leading
to unphysical solutions. From a classical point of view, to solve LSE
is equivalent to solve the so-called maximum likelihood estima-
tion(MLE) problem. In MLE, the main question to be answered is as
follows: given a measurement y, and a model f, which is the value of h
that maximizes the likelihood?, or, which is the value of h that makes the
model resemble more the data?. The likelihood can be stated as [13]

p( y|h) ∝
exp

(
− 1

2 ||f (h) − y||2
)

Z
(19)

with Z the normalization constant that makes the likelihood have a
integral of one. The philosophy of the question shows us the under-
lying problem of both, LSE and MLE, we have to trust in the data. In
some situations, we can do this but, as in the deconvolution example,
this will eventually lead us towards failure.

Situations like deconvolution fell in a branch of mathematics
named inverse problem theory, which aimed to solve problems of this
nature. The main characterization was given by Hadamard [22] who
stated the three situations that can lead to get an inverse problem.
Namely, if we have a function (model) f, data y and unknown h and
occurs any of the following:

• f(h) = b has a solution.
• That solution is unique.
• The solution depends continually in the data, then we are in the

presence of an inverse problem.

In other words, what we are saying is that our model is not injec-
tive (different values of h produces the same value of y - y = h2, for
example) or it is too sensitive of small variations, meaning that little
changes in y will produce big changes in h. This is the main problem
with measurements. There will always be noise which produces lit-
tle changes in the measurement, leading to an inverse problem. To
suggest a solution, Tikhonov regularization(TR) [14] can be used.
However, we will use a more powerful technique which allow us to
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Fig. 8. Line k = 340.5 nm obtained through the LIBS technique, showing the charac-
teristic dip of a strongly absorbed line from an inhomogeneous plasma. The full line
indicates the fit using our approach, with p = 1.1, whereas the dashed line shows the
recovered thin line.

recover more information than TR and deterministic counterparts.
Bayesian analysis relies on probability and statistics theory and is a
tool which gives relation between two events. If A, B are two events of
interest, Bayesian Theory states, in classical terms, that if p(A) is the
probability that event A occurs, p(A|B) is the probability that event A
occurs given B occurred and p(A|B)p(B) is the probability that both
events AandB occur, then p(B|A) is the probability that event B occurs
given A occurred:

p(B|A) =
p(A|B)p(B)

p(A)
. (20)

As an example, let us consider the following situation: let A and B
denote the events the patient presents a set of symptoms, cough, fever,
etc and the patient has a flu, p(A) is the probability that the patient
has the symptoms, p(B) is the probability that the patient has a flew
and p(A|B) is the probability that the patient presents the symp-
toms given that he has a flew. From the classical point of view, this
probabilities would be estimated from general databases, but this
information is synthesized and does not take into account particular
information that could be of interest for the doctor.

But, being Bayes theorem deduced from the postulates of the
Probability Theory, a new point of view was introduced in the last
years: the subjective probability or, in other words, the scientific
reasoning in conditions of uncertainty. Bayes theorem is an amaz-
ingly powerful tool, because it allow us to relate causal and inversely
causal events, as long as we are able to code them through proba-
bility functions. This is the main tool used in Bayesian Analysis to
perform inference [15], i.e. to discover what event B produced A. As
can be seen in Eq. (20), there are four ingredients needed. Namely,
the likelihoodp(A|B) which relates the events A and B by telling us
how likely A and B are, the evidencep(A) which tells us how likely
the event A is to happen, the prior informationp(B) where we can say
what we do know about the event B, which is the variable of inter-
est and, finally, the posterior distribution where all this information is
coded and tell us what is the distribution of the event B given that event
A happened?

Following with the example of the doctor, p(A) stands for the evi-
dence (the patient arrived with probability different from zero of
having a flew), p(B) stands for the prior information (the doctor know
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Fig. 9. Line k = 352.6 nm obtained through the LIBS technique. The full line indicates
the fit using our approach, with p = 1, whereas the dashed line shows the recovered
thin line.

the patient and the environmental context) and p(A|B) stands for the
likelihood, the symptoms make likely to have a flew, and that is what
the doctor learned in Medical School. The main difference with the
classical approach lies in how do we calculate the probabilities. We
may use the information of databases, but there are several factors
that may not be taken into account by statistics and that the doctor
considers important when he has to make a diagnosis. As an extreme
example of this would be in the situation when we face an illness
that is so rare that there may be only a few documented cases, or
in the presence of a new illness. Let us suppose that we only had
20 documented cases of such illness, the statistics may not be very
reliable (in the sense that large variance may be expected). But, if we
get to contact a specialist in the illness, who may have been in contact
with some of the patients who had this rare disease, he may be more
useful in the sense that he may be able to “see” things that a regu-
lar doctor may not have seen given his experience and the novelty of
this disease.

To lead Bayes theorem towards our application we have to define
our events A and B. This is done via random variables H which is the
collection of all possible values of our parameters and Y which is the
collection of all possible measurements. When we get a measure-
ment the random variable Y gets a specific value, i.e. Y = y, when we
use a specific value of h it also instantiates in H = h. We have a model
(in our particular application, the model is Eq. (16)) that relates the
hidden parameters h with the measurement y through the relation

p(Y = y|H = h) ∝ exp(−||f (h) − y||2); (21)

the exponent is, exactly, the operator used in LSE, and here is
where we can see how Bayesian Theory generalizes LSE. This is
also the likelihood used in MLE (and this is why both methods are
equivalent, minimizing the exponent is the same that maximizing
the likelihood). The likelihood, stated this way, obtains information
through the statistics of the noise which, depending of the acquisi-
tion devices, can be stated as normal. The main advantage of Bayes
Theorem is the prior information term, where we can code knowl-
edge previously acquired or predicted by theory, physical behaviour,
etc. A canonical example is to use a Uniform distribution over the
variables hi. This distributions assigns the value 1 when h is in an
interval [a, b] and 0 otherwise. This distribution does not assign any
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Fig. 10. Line k = 352.9 nm obtained through the LIBS technique. The full line indi-
cates the fit using our approach, with p = 1.25, whereas the dashed line shows the
recovered thin line.

special weight to values inside the interval, which means that every
point inside the interval is as probable as any other. This density
is useful in establishing bounds, and we can use them when we
only know bounds. Another useful density is the Normal Distribu-
tion, where we state that we know that our variable is more likely to
be near the mean, and with 99.74% probability, within the interval
[l − 3s , l + 3s]. The knowledge of the distributions helps us set the
values of the parameters (a, b in the Uniform, l,s in the Normal) and
an analysis must be performed in order to choose. We have shown
two examples of prior distributions, but we can combine them (Uni-
form × Normal) or use another kind of distribution depending of
the variables. The evidence is not easy to get, because we will need
good integration skills and can be very difficult in highly dimen-
sional spaces (i.e. when we have many unknown variables). But this
will not be a problem because the method of Monte Carlo Markov
chain [14,16] (MCMC) does not need the evidence p(A) (see Eq. (20).
And this is the last tool needed to perform this Bayesian Analysis,
which is the study of the posterior distribution. If we had an analyti-
cal posterior, we could calculate the mean, the median, the mode, etc,
which would give us point estimates. This estimates are used to sum-
marize in a single value, all the information of the distribution. More
information can be obtained from interval estimates, which give us
information such as the probability that the value x lies in the interval
[c, d] is p-percent. This kind of information is crucial, because we get
a tool to analyze the performance of our methods (experimental and
processing). In general, there is no hope of getting analytical posteri-
ors, and this is where MCMC enters. MCMC is a numerical technique
used to explore a given distribution (even in non-Bayesian analy-
sis), it starts in an initial distribution and advances iteratively until it
reaches the objective distribution, once there it moves and return a
sample that represents the entire objective distribution. In a certain
sense, it is a procedure similar to what we do with a known distri-
bution. If we generate random samples from, for example, a Normal,
Uniform, Gamma, Exponential, etc distribution and then we generate
a histogram with the random samples, we get something that resem-
bles the distribution that generated the data, and we could perform
an analysis using that sample. MCMC does exactly the same but it can
work in any distribution. The only disadvantage is that, depending
on the nature of the objective distribution, it can be computationally
expensive. At the end of the procedure we get a sample where we
can perform an analysis (for example, calculate the mean) and we get
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Fig. 11. Line k = 356.9 nm obtained through the LIBS technique, recorded in the
plasma nucleus. The full line indicates the fit using our approach, with p = 1, whereas
the dashed line shows the recovered thin line.

the mean of the posterior distribution, or we can calculate marginal
confidence intervals, to see each variable apart.

In this work, we have used the likelihood stated in Eq. (21), the
a priori distribution is a normal distribution for each variable (i.e.
assuming they are mutually independent), finally getting

p(H = h|Y = y) ∝ exp(−||A(h) − y||2) ×
10∏

i=1

N(hi; li,si) (22)

where
∏10

i=1 N(hi; li,si) is a product of normal density distributions
of mean l i and standard deviation s i, and MCMC was used to get the
results shown in Table 1. In Figs. 6 and 7, an example of a converged
chain is shown and a resulting marginal histogram (i.e. a histogram
of only one variable) is shown. This information is used by an analyst
to perform whether our information state has improved and how it
did improve.

This sub-problem can be tackled with any optimization toolbox,
in this work, we used a multi-start algorithm finding the MLE [13,14]
. Once we have obtained the MLE, we use it as an initial point for a
MCMC run. As an example, we show in Table 1 the results for k =
340.5 nm (with p = 1).

The moral of this methodology is that, when we are in the pres-
ence of a complicated model f given, in our case, by the Eq. (16),
a good practice is to start with a LSE iterative fitting and use the
retrieved parameters in a posterior Bayesian analysis.

6.3. Applications

In order to evaluate the validity of the method, our proposed
formula (Eq. (16)) was applied to experimental lines recorded from
two different plasmas types: 1) laser generated plasmas on metal-
lic alloys [17], and 2) pinch discharges with relatively high peak
currents (up to 1 kA) in capillaries tubes [21]. In the first case, the
transitions recorded were resonant or near-resonant that showed
notorious dips as well as small asymmetries. Hence, the plasma
plume can be figured out as composed by a hotter central region
surrounded by a colder external one. In the experiment, a pulsed
Q-switched Nd:YAG laser (k = 1064 nm) with pulse width of
7–8 ns and a repetition rate between 1 and 20 Hz was focused on the
metallic alloy with a lens of 10 cm focal length. The detection system
consisted in a monochromator Jovin-Yvon with a resolution of 0.01
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Fig. 12. Line k = 399.5 nm obtained through the LIBS technique; a peak shift is
observed. The full line indicates the fit using our approach, with p = 1, whereas the
dashed line shows the recovered thin line.

nm (at 300 nm), with a slit width of 40 lm and a photomultiplier
Hamamatsu IP28. The signal was processed by a gated integrator and
boxcar averager triggered externally from the laser Q-switch output
at a delay time of 1.5 ls and a gate width of 30 ns. In the second
case, the lines measured showed clears broadenings and asymme-
tries. The experiment was carried out with a pyrex tube of 3 mm
internal diameter with two tungsten electrodes 80 cm apart. The gas
pressure was maintained between 0.06 and 0.5 mbar by employ-
ing a conventional vacuum system. The excitation was obtained by
discharging a capacitor of 40 nF charged up 12 kV giving us a peak
current between 140 and 1000 A. The current was observed by using
a Rogowski coil and indicated a pulse oscillation period of 2.5 ls. The
monochromator and the boxcar were the same as above.

After obtaining the fitted parameters, the thin lines were recov-
ered making C = 0, A � 1, d = 0, q = 0, p = 1, da = 0 and
Aauto = 0. If Aauto = 0, we do not need the values of ca and we
can make with impunity ca = 1). Then, the peak of the recovered
line F(A, B, 0,c, 0, 0, 1, 1, 0, 0|x) = BA (making A � 1). As examples, in
Figs. 8–12 we show the experimental, the fitted and the recovered
profiles for five Co I lines. Additionally, in Fig. 14, the strongly asym-
metric line 508.0 nm corresponding to Xe II spectrum, obtained in
high current capillary discharges is shown.

7. Transition probabilities of Co I lines

The transition probabilities Aji (or the related oscillator strengths
fji) are important spectroscopic quantities for modeling of both astro-
physics and laboratory plasmas.In this work, we measured five Co
I lines measured by LIBS technique. The spectroscopic parameters
were taken from NIST Database, where the probability transitions
have an accuracy of 18–25%. In our work we have considered the
lines with k/nm = 340.5, 352.6, 356.9, 389.4 and 399.5, obtained
with the LIBS technique, with the electron temperatures estimated
(in first instance) in the range kT = 0.50 − 1.25 eV [17]. In the ideal
regime under thin and LTE conditions, the giAik value for a transition
i − k respect to another transition j − l is given by [7]

giAik = gjAjl

(
Iik

Ijl

)(
yik

yjl

)
exp

[−(Ej − Ei)/kT
] ; (23)

where the intensity ratio can be experimentally obtained from the
corresponding areas under the recovered thin profiles and the gjAjl
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Fig. 13. The ratio between our gf values and the corresponding NIST ones, for kT =
0.75 eV. Dotted lines indicate ±30% deviations (the sum of the respective relative
errors, of the order of 15% [12]). The squares indicate kT = 0.75 eV, the circles
kT = 1.00 eV and the stars kT = 1.25 eV.

values for the reference transition is taken from NIST Database. In
our case, the line 352.6 nm (gjAjl = 1.3 × 108s−1) was selected as
reference and the giAik values were calculated for the other 4 lines.
The mean values and their corresponding dispersion are, for differ-
ent temperatures the following: for kT = 0.50 eV: 1.96 ± 0.72, for
kT = 0.75 eV: 1.36 ± 0.48, for kT = 1.00 eV: 1.14 ± 0.40 and
for kT = 1.25 eV: 1.03 ± 0.37. From the above values, we con-
sider that it is reasonable to discard the value kT = 0.50 eV. Indeed,
the coexistence of Co I and Co II lines would indicate that a value
kT = (1.00 ± 0.25) eV is in accordance with preliminary estimates
based in Saha’s relationship. We see that, for the above tempera-
ture range, the ratio giAik|our/giAik|NIST ≈ 1 for four of the five lines
(see Table 2 and Fig. 13). Although two of us (DDP and HODR) were
co-authors of some works using the self absorbed lines [18–20], we
think that our present work can be a complement to that approach.
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Fig. 14. The strongly asymmetric line 508.0 nm corresponding to Xe II spectrum,
obtained in high current capillary discharges (see text for experimental details). The
full line indicates the fit using our approach whereas the dashed line shows the
recovered thin line.
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Table 2
The comparison between the gA values tabulated in the NIST repository [12] and
our values, for five lines of Co I. The superscripts indicate the three considered
temperatures: 0.75, 1.00 and 1.25 eV.

k/nm (Co I) gANIST/s−1 gA0.75
our /s−1 gA1.00

our /s−1 gA1.25
our /s−1

340.5 1.0 × 109 1.0 × 109 7.5 × 108 6.7 × 108

352.6 1.3 × 108 1.3 × 108 1.3 × 108 1.3 × 108

356.9 1.2 × 109 1.2 × 109 9.5 × 108 8.0 × 108

389.4 5.5 × 108 7.0 × 108 5.6 × 108 4.8 × 108

399.5 2.5 × 108 4.8 × 108 4.0 × 108 3.6 × 108

7.1. Asymmetric lines

In the Reference [21] we used high current pinched discharges to
measure XeII lines with relatively high gas densities. Increasing one
or both, the gas density and/or the peak current, asymmetric profiles
and line shifts were recorded. In Fig. 14, the experimental profile and
the recovered one are shown. In this case, a Lorentzian emissivity
profile can not be assumed because asymmetry and shift of the line
are clearly observed.

8. Conclusions

A method for the analysis of line profiles based in the pseudo-
Fano function was developed, which results of more simple appli-
cation than the Voigt function usually employed in Spectroscopy to
represent the line shapes. A pseudo-Fano function was constructed
which describe properly the different effects occurring in plasma
sources and subsequently reflected in the measured profiles. The
method was successfully evaluated for Co I lines recorded from a
LIBS experiment and for a Xe II line from a high-current pinched
discharge. In addition, the optically thin lines were retrieved and
used for the determination of the gA relative ratios of the Co I lines.
With respect to the determination of the plasma temperature, our
work can be a complement of the use of self absorbed lines. Over-
all, the good general agreement found between the proposed model
and the experiments demonstrated its suitability for spectroscopic
applications.
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