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Emergence of helicity in rotating stratified turbulence
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We perform numerical simulations of decaying rotating stratified turbulence and show, in the Boussinesq
framework, that helicity (velocity-vorticity correlation), as observed in supercell storms and hurricanes, is
spontaneously created due to an interplay between buoyancy and rotation common to large-scale atmospheric
and oceanic flows. Helicity emerges from the joint action of eddies and of inertia-gravity waves (with inertia and
gravity with respective associated frequencies f and N ), and it occurs when the waves are sufficiently strong. For
N/f < 3 the amount of helicity produced is correctly predicted by a quasilinear balance equation. Outside this
regime, and up to the highest Reynolds number obtained in this study, namely Re ≈ 10 000, helicity production
is found to be persistent for N/f as large as ≈ 17, and for ReFr2 and ReRo2, respectively, as large as ≈ 100 and
≈ 24 000.
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I. INTRODUCTION

Symmetry breaking is a fundamental concept which has
been quite fruitful in many physical applications [1]. For a fluid
the simplest way to break symmetry is to introduce helicity.
In that case, the velocity covariance tensor is still expressible
in terms of the magnitude of the distance between points, i.e.,
the fluid still has isotropic statistics, but mirror symmetry is
broken whereby the covariance matrix has an antisymmetric
component which can be shown to be proportional to the
total helicity HV = 〈u · ω〉, which is defined as the correlation
between the velocity u and its curl, the vorticity ω. Helical
structures abound in nature, from macroscopic organisms
to elastomers; helical structures can cause erosion in river
bends [2], and alter nutrient mixing properties in estuaries,
in particular when interacting with tidal flows [3]. Helical
flows are observed as well in the atmosphere, in dust devils,
tornadoes, and hurricanes [4].

Helicity is an invariant of motion of the nondissipative fluid
equations involving the topology of field lines [5], including
in the presence of rotation, but not with stratification, where
instead the potential vorticity is invariant and is essential
in determining structures such as sharp jets in planetary
atmospheres [6]. Invariants are known to play a fundamental
role in turbulence since the nonlinear terms have to preserve
such invariants at the level of triadic interactions in the
incompressible case. However, helical (corkscrew) motions
do not seem to alter the dynamics of homogeneous isotropic
turbulence in the absence of both rotation and stratifica-
tion, with the kinetic energy and helicity spectral densities
[respectively, EV (k) and HV (k), with

∫
EV (k)dk = 1

2 〈u2〉 and∫
HV (k)dk = HV ] both following a Kolmogorov spectrum.

This implies a slow ∼ 1/k decay of the relative helicity in
Fourier space

�̂(k) = HV (k)

kEV (k)
,

with σV (x) = cos(u,ω) the degree of alignment between
velocity and vorticity in configuration space. However, it is
straightforward to show that helicity is created point-wise by
the alignment of vorticity and pressure or shear gradients [7],
and it is observed to be strong (σV ≈ ±1) in the vortex
filaments that are ubiquitous in isotropic fluid turbulence at
a small scale.

Invariants are also the stepping stone to determine inertial
range behavior in turbulent flows; this principle is at the basis
of statistical mechanics that has proven useful in predicting, for
example, the inverse cascade of energy for a two-dimensional
fluid [8]. In fact, a recent direct numerical simulation of
the ideal three-dimensional fluid equations in the absence
of waves showed that, at intermediate times, a Kolmogorov
spectrum develops at large scale, the effective dissipation for
the large-scale fluid being produced by the eddy viscosity
emanating from the small-scale equilibrated modes [9]. How-
ever, nonconserved quantities can also play an important role
through other mechanisms such as interactions with waves and
large-scale hydrostatic and geostrophic balance [10].

When the fluid is conducting, magnetic helicity is an
invariant in the ideal case and is central to minimum energy
equilibria in plasmas such as in spheromaks, or in solar coronal
mass ejections [11]. It is also known that the generation of
large-scale magnetic fields occurs due to small-scale mechanic
helicity HV , and that in the presence of both rotation and
stratification, helicity is created and thus a dynamo is facilitated
in a wide variety of astrophysical settings [12]. In the context
of this work, it is important to note that although in this case
the mechanic helicity is not an invariant any longer, it still
plays an essential role in determining the scaling of the fields
at large scales.

Rotating stratified turbulence is important in the atmosphere
and oceans, playing a crucial role in their dynamics. In the
presence of waves, advective nonlinear interactions responsi-
ble for the complexity of turbulent flows have to compete with
the waves and an equilibrium can be reached at some scale and
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broken at others, the best known example perhaps being the
difference between the Garret-Munk and the Phillips spectra
in internal waves in lakes or the oceans [13,14], where wave
coupling in resonant triads leads to mixing (like in coastal
currents [15]), to vertical dispersion [16], and to enhanced
dissipation [17]. A particular set of modes plays a major
role in the so-called slow manifold for which the frequency
of the waves tends to zero, and only turbulent interactions
and standing potential vorticity modes remain. When rotation
(only) is present in the fluid, strong relative helicity can alter
the scaling of the distribution of energy among scales and lead
to the occurrence of helical long-lived structures [18].

What happens when stratification is also included? In the
remainder of this paper, we address the question of rotating
stratified turbulence in the absence of forcing (as studied for
example in [19,20]), but concentrating on the creation of
helicity and on the link between the evolution of helicity
and the balance of forces such as rotation, stratification,
inertia, and pressure gradients, at scales large enough that
the effect of nonlinearities (inertia) is small. In the limit of
zero nonlinearities, the resulting geostrophic balance is crucial
for weather forecasting and simulations of climate change.
However, the consequences of the interplay between rotation
and stratification, as far as helical motions are concerned,
have been mostly ignored except for the pioneering work of
Hide [21]. In spite of this, helicity was hypothesized to be
important in the atmosphere in the dynamics and persistence of
rotating convective storms [22], on the basis of the weakening
of nonlinear interactions in the so-called Lamb vector u × ω.

It is also interesting that helicity is measured in the context
of forecasting storms and tropical tornadoes, in particular in the
presence of strong shear, and it can be used as an indicator of
storm occurrence [23]. Note that it has been shown that in some
cases (using a specific fully helical Beltrami forcing function)
that shear is created at large scale in a rotating flow [24].

Since helicity in rotating and stratified flows is no longer
an invariant even in the absence of dissipation, its presence
in these atmospheric storms can be accounted for, but the
physical mechanisms governing its creation, and the structures
associated with it, remain unclear. In this paper, we perform a
parametric study using direct numerical simulations in which
we vary both rotation and stratification. In that framework, we
show that a strongly rotating stratified flow can spontaneously
create helicity at large scales.

II. EQUATIONS AND NUMERICAL PROCEDURE

A. Boussinesq equations and parameters

We integrate the incompressible Boussinesq equations in
the rotating frame, with constant (solid body) rotation � and
gravity g, anti-aligned in the vertical (z) direction, with θ the
buoyancy (in units of velocity), w the vertical velocity, P the
pressure, ν the viscosity, and κ the diffusivity

∂tu + u · ∇u − ν	u = −∇P − Nθez − 2�ez × u, (1)

∂tθ + u · ∇θ − κ	θ = Nw, (2)

∇ · u = 0 . (3)

We write u = (u,v,w) and we take a unit Prandtl number ν =
κ . The Brunt-Väisälä frequency is N = [−g∂zθ̄/θ ]1/2 where
θ̄ is the background imposed stratification. In the general case,
one has inertia-gravity waves of frequency

ωIG = k−1
√

N2k2
⊥ + f 2k2

z

with f = 2� (see, e.g., [19,25]).
The Froude, Rossby, and Reynolds numbers are defined,

respectively, as

Fr = u0

NL0
, Ro = u0

f L0
, Re = u0L0

ν
,

with u0 = 1 and L0 = 2π/k0, respectively, the r.m.s. velocity
and the scale of the initial conditions. These parameters vary
in the range 0.0063 � Fr � 0.2, 0.0063 � Ro � 3.24, and
Re ≈ 4000 for grids of 2563 points, while Re ≈ 10 000 using
5123 points. Decay is left to occur for 3.6 to 7.2 turn-over
times τNL = L0/u0. The initial velocity field is random, with
all three components nonzero, and it is centered around wave
numbers k0 = [1,2]. At t = 0, θ = 0, and HV ≈ +0.2. Other
initial values have been used as well to ascertain that the
results are insensitive to them. Note that we do not attempt
to take initially a balanced flow; for the time-stepping point
of view there is no need to do so since the resolutions we
employ are high enough that the relatively small Froude and
Rossby numbers we simulate can be handled with an explicit
time stepping resolving the smallest eddy-turn-over time
and the smallest Brunt-Väisälä, inertial, and inertia-gravity
frequencies. Furthermore, the generation of gravity waves that
compete with turbulent eddies is part of the overall dynamics
of such flows as the Reynolds number increases.

In the ideal (ν = 0) case, potential vorticity

q = −f N + f ∂zθ − Nωz + ω · ∇θ

is a point-wise invariant, and the total (kinetic plus po-
tential) energy ET = EV + EP is conserved as well (with
EP = 〈θ2〉/2), with the respective enstrophies (proportional
to dissipation when ν �= 0 and κ �= 0)

ZV = 〈ω2〉 , ZP = 〈|∇θ |2〉.
Note that q is quadratic and thus its L2 norm is not conserved
in general by the truncation of Fourier space used in any
spectral method; however, the nonlinear term ω · ∇θ can be
neglected in the presence of strong rotation and stratification
[26], resulting in a quantity whose L2 norm is conserved after
truncation of Fourier space.

B. GHOST code and the runs

The numerical simulations have been carried out using the
Geophysical High-Order Suite for Turbulence (GHOST) code.
GHOST is a pseudospectral framework that hosts a variety
of partial differential equation (PDE) solvers optimized for
studying turbulence in a [0,2π ]3 triperiodic box, and with
second- or fourth-order explicit Runge-Kutta time stepping
schemes. Using a cubic box and an explicit time stepping
method allows in principle, given the parameters are right,
for resolving all scales including the Ozmidov scale and
beyond, when isotropy recovers (see, e.g., [27] for the purely
rotating case). A classical 2/3 de-aliasing rule is used, meaning
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TABLE I. List of runs analyzed in this paper with some charac-
teristic parameters: Run number nR , linear resolution np , Reynolds
Re, Froude Fr, and Rossby Ro numbers. A star in the “in” column
indicates points that are in the scatter plot with N/f < 3, and two
stars indicate those in the plot with ReFr2 < 20 or ReRo2 < 20
(see Figs. 4 and 5).

Fr Ro in
nR np = 2563 ; Re = 4189

1 0.0063 0.0063 *, **
2 0.0063 0.0127 *, **
3 0.0063 0.0190 –
4 0.0063 0.0507 –
5 0.0063 0.0728 **
6 0.0063 0.1013 *, **
7 0.0084 0.0084 *, **
8 0.0127 0.0063 *, **
9 0.0127 0.0127 *, **
10 0.0127 0.0190 *, **
11 0.0127 0.0253 *, **
12 0.0127 0.0317 **
13 0.0127 0.0384 **
14 0.0127 0.0507 –
15 0.0127 0.1013 –
16 0.0127 0.1458 –
17 0.0127 0.2111 *, **
18 0.0253 0.0253 –
19 0.0253 0.0507 –
20 0.0253 0.1013 –
21 0.0253 0.2026 –
22 0.0253 0.2913 *, **
23 0.0253 0.4054 –
24 0.0507 0.0507 –
25 0.0507 0.1267 –
26 0.1013 0.4224 –
27 0.1013 0.8444 *, **
28 0.1013 1.1515 *
29 0.1013 1.6888 *
30 0.1266 0.1266 –
31 0.2026 0.2026 –
32 0.2026 0.6079 –
33 0.2026 0.8106 –
34 0.2026 1.6888 –
35 0.2026 2.3268 *, **
36 0.2026 3.2428 –

np = 5123 ; Re = 10649

37 0.0063 0.0127 –
38 0.0063 0.0190 *
39 0.0127 0.0190 *, **
40 0.0127 0.0317 *, **
41 0.0127 0.0443 **
42 0.0127 0.0633 *, **
43 0.0127 0.1013 –
44 0.0253 0.0507 *, **
45 0.1013 0.4053 *

that for a given resolution of np points per dimension,
the maximum available wave number is kmax = np/3. The
code uses a hybrid MPI/OpenMP parallelization scheme [28]
(MPI is the Message Passing Interface library, and OpenMP

stands for Open Multiprocessing, an interface to program
shared memory environments). The code also has a third
level of parallelization with the recent addition of support for
graphic processing units (GPUs) and accelerators for the fast
Fourier transforms (FFTs). Note that the MPI communication
required to complete the multidimensional Fourier transforms
is all-to-all. The code uses a “slab” (one-dimensional) domain
decomposition among MPI tasks, and OpenMP provides a
second level of parallelization within each slab or MPI task.
The code can compute in double or single precision based on
resolution. GHOST performance has been tested on a variety of
platforms, and has been shown to scale linearly up to 98 304
processors, with grids up to 61443 points. Data are stored
at regular intervals and postprocessed, both for quantitative
analysis and visualization, the latter being performed using
the VAPOR visualization software [29].

In Table I we give the major parameters of the simulations
used in this paper. Note that we have restricted our analysis
to moderate values of N/f , in particular we have for all
cases N/f � 1/2. This is because, in the purely rotating case
(N → 0), helicity is exactly conserved and thus as one goes
into that parameter regime, the creation of helicity has to
become negligible with decreasing N at fixed f ; furthermore,
many geophysical flows are dominated by gravity waves
except at the largest scales. There are studies that show,
for example, that, for purely rotating flows, a turbulence
regime affected by waves develops for Ro < 0.2, whereas at
intermediate Rossby numbers nonlinear transfer is reduced but
the inverse cascade characteristic of the bi-dimensionalization
of the flow does not take place [30]. Also, for strong waves
(strong rotation or stratification), turbulence barely develops
resulting in steep spectra; this is related to the value achieved
by the so-called buoyancy Reynolds number ReFr2 defined
below, and the equivalent concept for rotating flows, ReRo2.
Considering this region of interest in parameter space, and
given the constraints of computing in three dimensions without
resorting to modeling of the small scales, only a limited
exploration of the parameters is performed.

III. RESULTS

A. Generation of helicity for small nonlinearity

As mentioned in the Introduction, helicity is not conserved
in a rotating and stratified flow, and thus helicity can in
principle be created by the flow evolution. In this section
we briefly show how a balance of the forces at large scales
can result in net helicity of a preferred sign in the flow.
We start from the primitive Boussinesq equations given
above and simplify them using several hypotheses. Assuming
stationarity, weak nonlinearities, and small dissipation at large
scales, it results that the equilibrium level of helicity in
rotating stratified turbulence is proportional to N/f and to
the correlation between buoyancy and vertical shear. A result
consistent with this behavior was originally obtained by Hide
[21].

We start with the momentum equation, Eq. (2). As later
we will compute time averages, we will assume the system
is in a steady state and neglect the time derivative. We will
also consider that the viscous effects are small, and neglect
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the dissipative term. These are the two main assumptions we
are making at this stage. Without any further assumption, we
now compute the vertical derivative of the remaining terms
and take the dot product of the result with the velocity u. We
therefore obtain the following relation:

u · ∂z(u · ∇u) = −u · ∇∂zP − Nw∂zθ − 2u · ∂z(�ez × u),

(4)

where the velocity field u was written with Cartesian compo-
nents (u,v,w).

The last term in this equation is

2u · ∂z(�ez × u) = −f (u∂zv − v∂zu) = f H⊥, (5)

where H⊥ is part of the total helicity density. Indeed, one
can decompose the helicity as HV ≡ 〈H⊥〉 + 〈H+〉, where
the brackets denote an average, and where H⊥ is the helicity
density associated with u⊥, namely

H⊥ ≡ u⊥ · (∇ × u⊥), (6)

and H+ is the remainder, H+ = u∂yw − v∂xw + wωz. With
strong rotation and stratification, H⊥ � H+, and H⊥ alone
essentially determines the total helicity. For example, mea-
surements of 〈H⊥〉⊥,z (where the subindices ⊥ and z indicates
the averages are volume averages performed in the horizontal
and vertical directions) found in modeling simulations of
hurricanes are seen to be two orders of magnitude larger
than 〈H+〉 [31]. Note also that the H⊥ density is proportional
to the so-called (cell-relative) environmental helicity, when
integrated over the vertical (see, e.g., [23]). Using these
observations, we now concentrate on H⊥, which allows us
to derive a simpler expression for helicity production. Thus,
we can write in general from Eqs. (4) and (5) that

H⊥ = − 1

f
[Nw∂zθ + u · ∇∂zP + u · ∂z(u · ∇u)]. (7)

Our next step is to integrate over volume, in which case the
second term vanishes for an incompressible flow, so that after
integration we obtain the general expression

〈H⊥〉⊥,z = −N

f

〈
w

∂θ

∂z

〉
⊥,z

− 1

f
〈u · ∂z(u · ∇u)〉⊥,z. (8)

Equation (8) holds under the assumptions of stationarity,
incompressibility, and negligible dissipation. The second term
is cubic in the velocity and in a turbulent flow proportional to
ε(f Lz)−1, where ε is the energy flux, and Lz a characteristic
vertical scale. For flows with strong rotation and stratification,
this quantity is expected to be small. In fact, we verified
explicitly that in a certain range of parameters (defined in
detail in Sec. III B), the amplitude of the second term in our
simulations is smaller than 10–20% of the first term. As a
result, after neglecting this nonlinear term, we finally obtain

〈H⊥〉⊥,z = −N

f

〈
w

∂θ

∂z

〉
⊥,z

. (9)

This expression was derived before by Hide [21], in a
slightly different form after integrating by parts and assum-
ing periodic boundary conditions, leading to the equivalent
expression

〈H⊥〉⊥,z = N

f

〈
θ
∂w

∂z

〉
⊥,z

. (10)

It should be noted that the original derivation in [21] assumes
the nonlinear term is zero and that the flow is in geostrophic
balance. In that case, from hydrostatic balance ∂zw = 0 and
helicity in the flow vanishes. Small nonlinearities are crucial
to ensure that the second-order correlator in Eqs. (9) or (10) is
nonzero.

We thus conclude that, if nonlinearities are small, the
production of helicity in strongly rotating stratified turbulence
is such that its equilibrium level is directly proportional to
N/f , and results from a crucial interplay between rotation and
stratification. In the limit of f → ∞ (no stratification), helicity
is exactly conserved. In the limit of N → ∞, stratification
dominates and the evolution of helicity can only be governed
by the nonlinear terms, the buoyancy, and the dissipation [32].
Indeed, in that case dissipation is known to play a role in the
overall dynamics, e.g., in the changes of potential vorticity
once gravity waves start to break [33]. Finally, it is interesting
that N/f scaling has also been advocated, for example, in the
context of statistical mechanics of nondissipative geophysical
flows [34].

B. Nonlinear effects

Small nonlinearities and negligible dissipation are just
the beginning of the story, with these assumptions broken
when overturning takes place. For example, it is known that
in three-dimensional turbulence without waves, the rate of
energy dissipation can be evaluated phenomenologically as
ε ∼ U 3

0 /L0, no matter how high the Reynolds number; this
has been demonstrated using highly resolved direct numerical
simulations [35] up to grids of 40963 points [for the case of a
coupling to a magnetic field, in which case Alfvén waves are
present and interact with the flow, see [36] in two dimensions
(2D), and [37] in three dimensions (3D)].

Similarly, there is a vast literature which concerns itself
with the weak nonlinear coupling of waves, e.g., through
resonant interactions [38], through weak turbulence theory
(see [39] for the rotating case, and [40] for the stratified case),
through turbulence closures [30,41,42], and more recently
through asymptotic approaches [43–45]. In all cases, when
the rotation or stratification is not strong enough and/or when
the Reynolds number is high enough (a situation described
by both the buoyancy Reynolds number RB , and what can be
called the inertial Reynolds number RI , defined as

RB = ReFr2, RI = ReRo2, (11)

being large enough), nonlinear couplings will take place
between eddies and waves, sufficiently so that the energy
will be transferred to small scales in a self-similar manner.
Let us note here that in the following (see also Table I),
RB,I are evaluated at the peak of enstrophy, using dy-
namical variables, i.e., based on the so-called integral scale
Lint = ∫

[EV (k)/k]/EV .
In these cases, that we will broadly call wave turbulence,

the scaling laws for either rotating or stratified flows have
been deduced both phenomenologically and analytically in
the framework of the aforementioned closures and theories,
and a continuous power-law spectrum is expected, steeper
than a Kolmogorov spectrum, because of the weakening of
interactions in the presence of waves. The energy flux ε is also
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FIG. 1. E(k)/kp , where E(k) is the kinetic energy spectrum, averaged for one eddy turn-over time after the peak of enstrophy, and where
p is chosen to compensate for either a wave turbulence law (p = −2, dashed line) or a Kolmogorov law (p = −5/3, solid line); k is the
isotropic wave number. Runs were computed on grids of 5123 points with initial conditions at k0 ∈ [1,2], and Reynolds numbers Re ≈ 10 000.
The dash-dotted line indicates the best fit in the inertial range. Left: N/f = 2.99,ReRo2 ≈ 3.84,ReFr = ReFr2 ≈ 0.43, with Fr ≈ 0.0063 and
Ro ≈ 0.019. Right: N/f = 4.0,ReRo2 ≈ 1749,ReFr2 ≈ 109, with Fr ≈ 0.1 and Ro ≈ 0.4. Note the steeper spectrum for moderate N/f and
low ReFr2,ReRo2, and a scaling close to a Kolmogorov law for larger N/f and substantially larger ReFr2 and ReRo2.

typically reduced, in general by a factor that is proportional
to the ratio of the eddy-turn-over time to the time scale of the
waves. Thus, we are in the presence of turbulence, but not
the classical Kolmogorov turbulence, rather a wave turbulence
regime that breaks down at small scales (beyond the Ozmidov
scale). Two typical cases of the isotropic energy spectra are
shown in Fig. 1. We observe well-developed kinetic energy
spectra, rather steep for N/f < 3 [E(k) ∼ k−2], whereas the
power law is closer to a Kolmogorov law for N/f = 4. In both
cases, the dissipation scale η (evaluated using a Kolmogorov
spectrum) is barely resolved: One finds η ≈ 0.041 and kη ≈
154 for the case where N/f = 2.99, and η ≈ 0.044 with kη ≈
144 for the case where N/f = 4.0. Note that in the latter
case, the turbulence is stronger and the spectra are not quite
as well resolved, but the point of this study is not to examine
Kolmogorov turbulence; in the presence of waves, one can
simulate higher Reynolds numbers at a given resolution than
in the absence of waves, again the set of governing parameters
being ReFr2 and ReRo2 rather than Re.

We do not intend to perform a detailed analysis of wave-
mode and vortical-mode perpendicular and parallel energy
and helicity spectra here, but rather show that turbulence
and helicity develop in the flows we study. There are several
examples in the literature of such studies at high resolution for
the energy [i.e., E⊥,‖(k⊥,k‖), see, for example, [46–48] for the
purely stratified case, and [27] for rotating turbulence]. In our
case, the choice of isotropic spectra is sufficient to show that
there is indeed for these parameter regimes power-law spectra
that develop through nonlinear mode coupling. These spectra
may display intermittency at small scale, a phenomenon that
would require substantially higher numerical resolutions to
study.

As noted in Sec. III A, when the Reynolds numbers are
increased, the amplitude of the nonlinear term can be expected
to increase, and helicity (restricted to its evaluation using only

u⊥) should be given by Eq. (8) written above, which is the
general expression with only the assumption of stationarity and
no dissipation. In the simulations presented in the following
section, we compared the ratio of the second term to the first
in Eq. (8). For simulations with 0.5 � N/f � 3 and with
ReRo2 < 20 and ReFr2 < 20, the amplitude of the second
term is smaller than 10–20% of the first term in most of the
runs, and increases for runs with larger values of N/f .

Therefore, we can expect that for very small values of the
control parameters, and for flows for which the geostrophic
and hydrostatic balance holds, the latter implying ∂zw = 0, the
helicity should remain zero. As fluctuations develop, and as
weak nonlinear perturbations come into play, small departures
from geostrophy will develop allowing for nonzero correla-
tions between buoyancy and vertical velocity, as appears in
Eqs. (9) and (10), and as can also be expressed in two-scale
turbulence closure formalisms. In that case, we can expect
helicity to develop. Helicity should be created at large scales,
where rotation and stratification dominate over the nonlinear
term, and may be transferred to smaller scales. Finally, for runs
with stronger nonlinearities and large values of the control
parameters, we can expect deviations from the prediction in
Eqs. (9) and (10), associated with the extra term in Eq. (8). A
detailed study of these deviations is left for future work.

IV. PARAMETRIC STUDY

We have performed nine runs on grids of 5123 points, and
36 runs on 2563 grids, up to the peak of dissipation and beyond,
with similar (but not identical) random initial conditions and
N/f ∈ [1/2,16.7].

Figure 2 gives the temporal evolution of helicity (top and
middle) for several runs at either fixed Fr or fixed Ro, and
of kinetic enstrophy ZV (bottom) for several flows at fixed
Fr; the potential enstrophy ZP shows a behavior similar to
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FIG. 2. Top and middle: Temporal evolution of the total helicity
HV in several runs with different values of Fr, Ro, and N , as given
by the labels. Note that the time averaged value of HV is negative,
indicating negative helicity prevails in these runs even when the initial
value of the helicity is positive. On top are runs with the same Fr
whereas in the middle, runs with N/f = 1 but with different Fr are
shown. Bottom: Time evolution of the kinetic enstrophy ZV in runs
with Fr ≈ 0.01 and N = 12.56, and with different values of Ro. In
all panels, oscillations are due to gravity waves, with their period
proportional to N .

ZV , with slightly smaller values. Note that in all quantities the
oscillations are due to gravity waves because of the fact that
our initial conditions are chosen to be unbalanced, and their
periods are proportional to N . Across all runs, the maximum of
ZV varies from 30 (for weak waves) to ≈ 2.5, corresponding to
the smallest Froude number considered. The time to reach this
maximum varies from 1.5 to 3.2 τNL. The growth of enstrophy
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FIG. 4. (Color online) Variations of r = −〈H⊥〉⊥,t /〈w∂zθ〉⊥,t

[see Eq. (9)] with vertical layers of index zn; n ∈ [1,256] is the index
of the vertical plane, and the data are temporally averaged around
the peak of enstrophy. The horizontal lines give the geostrophic
balance prediction. Both runs are performed on grids of 2563

points with Re ≈ 4 × 103,Fr = 0.0127, and ReFr2 ≈ 0.672. Top:
N/f = 1.5,ReRo2 ≈ 1.51. Bottom: N/f = 16.7,ReRo2 ≈ 186.6. In
the latter case, the prediction stemming from assuming weak
nonlinearities no longer applies.

is typical of a turbulent flow, and is due to vortex stretching.
The growth in the presence of waves is weaker, a characteristic
of a wave turbulence regime.

The overall structures in this type of flows are shown in
Fig. 3, which displays the volume rendering of buoyancy
right after the peak of enstrophy for a run with Fr = 0.1 and
N/f = 4 (left), and for a run with Fr = 0.025 and N/f = 2
(right), both performed on grids of 5123 points and with
identical initial Reynolds numbers. The 3D rendering puts
in evidence the stratification and the presence of large-scale
layers; small-scale features with curved ribbons also occur for
the run with smaller stratification. The run with Fr = 0.1 shows
strong turbulent fluctuations, whereas the run with Fr = 0.025
is smoother, with weaker small-scale fluctuations.

We now examine the relation given by Eq. (9). In Fig. 4
is given the variation with the vertical index zn (i.e., the

FIG. 3. (Color online) Visualization of the buoyancy θ in runs with 5123 grids, for Re ≈ 10 000, Fr = 0.1, and Ro = 0.4 (left) and for the
same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and light (green) strata represent
respectively positive and negative variations in θ around its mean, with sizable fluctuations and structuring, and with more turbulent eddies at
higher Froude number.
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vertical grid point, in runs with np = 256) of the ratio
r = −〈H⊥〉⊥,t /〈w∂zθ〉⊥,t . The subindex t indicates the quan-
tities were not only averaged in planes perpendicular to z, but
also averaged in time over the peak of enstrophy. The ratio is
shown for two runs with different values of N/f , namely
1.5 (top) and 16.7 (bottom); the horizontal line gives the
prediction based on weak nonlinearities, i.e., N/f . One ob-
serves regular variations around the mean value in the vertical,
so in the following we shall perform vertical averaging as
well. These fluctuations are likely associated with alternating
quiescent and turbulent patches where the advection term is
strong. In spite of these fluctuations, the run with N/f = 1.5
shows good agreement with the prediction based on weak
nonlinearities, while the run with N/f = 16.7 does not. After
performing a detailed analysis of all the runs, it is found that for
all runs a good agreement with Eq. (9) is obtained for N/f < 3;
it is also fulfilled when ReRo2 < 20 together with ReFr2 < 20,
i.e., for strong enough waves and weak nonlinearities as
explained in the previous section. Note that the importance of
the buoyancy Reynolds number has been identified previously,
e.g., in the context of an emphasis on the role of anisotropy
and the onset of Kelvin-Helmholtz instabilities due to vertical
shearing [49].

Given the measurable vertical variations observed in Fig. 4,
and following the expression in Eq. (9), we display in
Fig. 5 (top) a scatter plot of 〈H⊥(t = 0)〉⊥,z − 〈H⊥(t)〉ξ as a
function of N/f 〈w∂zθ〉 for all runs with N/f < 3; ξ =⊥ ,t,z

represents averaging on horizontal planes, for half an eddy-
turn-over time after the maximum of enstrophy, and over
all the vertical planes as well. This allows for smoothing
over temporal variations due to gravity waves, and over the
vertical inhomogeneities of the flow that are inherent in
strongly stratified flows as discussed before. The symbols
in Fig. 5 indicate different Froude numbers, and the filled
symbols are used for runs on grids of 5123 points. For the
runs with N/f < 3, all points lie close to a straight line with
slope one, showing that the helicity created and the source of
helicity according to Eq. (9) are linearly correlated. The result
presented in the figure is robust for different choices of range
over which the temporal average is performed, with windows
of 0.5, 1 and 1.5 eddy-turn-over times after the peak of the
enstrophy. When averaging over later times, say from 3.6 to
7.2, good agreement with the prediction of helical geostrophic
balance also holds, in part due to the fact that at late times,
the Reynolds number has decreased and waves are now more
easily predominant, with smaller Froude and Rossby numbers.
It is interesting that the range of validity in N/f corresponds
in part to the range identified in [50] on the basis of a lack of
resonant interactions for these parameters.

We also show in the shaded insets of Fig. 5 (top, middle)
the same quantity for all the runs (i.e., all values of N/f ,
corresponding to all 9 runs with 5123 points and 36 runs
with 2563 points). For N/f > 3, the creation of helicity still
occurs, though not quite at the level predicted by Eq. (9).
The middle graph in Fig. 5 gives the same scatter plot
but thresholded for the buoyancy and the inertial Reynolds
numbers, ReFr2,ReRo2 < 20 (the inset shows again all points
for comparison). In both cases of thresholding, about half the
points are selected (roughly, 20), and the points in common
between the top and middle scatter plots are 80% (namely,
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FIG. 5. (Color online) Helical geostrophic balance 〈H⊥(t =
0)〉⊥,z − 〈H⊥(t)〉ξ as predicted by Eq. (9), temporally and vertically
averaged for runs with N/f < 3 (top). In the shaded insets, the same
data are given for all 45 runs of this study. Each symbol corresponds
to a value of Fr (see labels), and the nine solid symbols indicate runs
on grids of 5123 points at higher Reynolds numbers. In the middle
graph, the points are selected using ReFr2 < 20, ReRo2 < 20 (the
inset shows again all points for comparison). For completion the
same scatter plot as a function of N/f only, using the same symbols,
is given at the bottom.
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16, see Table I). We can interpret this fact by saying that
scales (temporal and spatial) are not sufficiently separated and
it is difficult to sort out what may be the dominant effect
for flows to obey the relationship of Eq. (9): a comparable
rotation and stratification, or simply a low buoyancy Reynolds
number. Finally, for completion, we give in Fig. 5 (bottom)
〈H⊥(t = 0)〉⊥ − 〈H⊥(t)〉ξ as a function of N/f alone. Note
how most of the points pile up near negative values, even
for large values of N/f . Since a growth of net helicity,
and similarly of relative helicity, is not observed in freely
decaying 3D homogeneous turbulence, with no rotation and
no stratification, this further confirms that the production of
helicity is characteristic of the regime under study. We finally
note that it seems to be controlled more by the imposed
stratification than by the Rossby number, in agreement with
the fact that in rotating turbulence, helicity is conserved in the
absence of dissipation.

V. CONCLUDING REMARKS

A parametric study of decaying rotating stratified tur-
bulence shows that helicity is spontaneously produced at
large scales, and that for N/f < 3 (or, ReFr2 < 20 together
with ReRo2 < 20), its value is associated with correlations
between buoyancy and vertical shear, as derived in [21] (for
nonstratified flows see [44], and for the magnetic case see [51]).
This creation of helicity still takes place for larger values
of N/f , and thus confirms the possibility, for geophysical
and astrophysical flows, that the combination of rotation
and stratification creates helicity which in turn can be the
source of large-scale magnetic fields, as observed in stars
and planets. Helicity production in rotating stratified flows
can also be related to the observation of large-scale helicity
in the atmosphere of the Earth, although it is not occurring
in our study through an instability involving anisotropic
small-scale helicity as studied before in [52,53], but rather
through a quasilinearization of the large-scale dynamics. Such
large-scale helical flows might be relevant to the persistence
of large-scale convective storms and to the onset phase of
hurricanes [4,53]. It has also been shown that helical motions
can be associated with the spiral rainbands of hurricanes when
taking moisture into account in the dynamical equations [31].
The observed saturation in the level of helicity for larger
values of N/f and for sufficiently strong stratification can
likely be understood in terms of the presence of vertically

sheared horizontal flows in that regime (see, e.g., [43,50]),
a tendency that persists in the absence of rotation [54].
The generation of helicity requires an interplay between
stratification and rotation, and when stratification dominates,
vertical and horizontal motions are less correlated. For large
values of ReFr2 and ReRo2, the deviations from the prediction
assuming weak nonlinearities can also be associated with
an increase of the amplitude of the nonlinear term in the
momentum equation, as verified in the simulations by direct
estimation of the amplitude of the different terms in the
equation for the helicity. The fact that rotating stratified flows
can spontaneously produce large-scale helicity opens new lines
of research and questions. For example, is there a detailed
role to be played by potential vorticity conservation on the
emergence of helicity? How would the inclusion of either
shear, radiation, moisture, or some general forcing in Eq. (3)
modify these results? And finally, how would turbulence affect
significantly the creation of helicity, as the Reynolds numbers
are further increased? Indeed, mixing is thought to have two
transitions in terms of ReFr2: In the presence of an imposed
shear, it was shown in [55] (see also [16]) that below 7,
molecular diffusion is observed, with basically no turbulence;
the intermediate regime 7 < ReFr2 < 100 follows a linear
Osborn diffusion law [56], and above that value, a new regime
is reached with diffusivity scaling as (ReFr2)1/2. The latter
regime is of course what matters for geophysical flows with
ReFr2 ≈ 108, such as in the meridional overturning circulation,
central to climate dynamics. We thus plan to pursue this study
concerning the role of helicity in rotating stratified turbulence
to help decipher the different mechanisms at play, a study that
will eventually lead to better subgrid scale models of such
flows that are needed to obtain a more accurate representation
of enhanced diffusivities in weather and climate models.
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