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as well as modifying the metabolic functions of these important 
microorganisms which has lead to improvements in health and 
food technology [3,4]. The oral administration of live recombinant 
microorganisms such as LAB can be considered as bio-drugs or 
bio-pharmaceuticals. This strategy can be used not only in the 
prevention or in the treatment of different diseases, but also in the 
development of innovative drugs and vaccines [5,6]. DNA vaccines 
are constructions based on plasmids that combine sequences that 
allows its replication in different bacterial species (including E. coli 
and LAB) with others that are necessary to express the transgenic 
of interest in vertebrate cells after delivery [7]. These kind of 
vaccines using LAB as delivery vehicles are extremely safe and 
because they cannot revert to a disease causing form (as occurs 
with viral vector) since they only encode and express the target 
antigens and not virulence factors [8]. Only a handful of groups 
are performing DNA vaccine design vectors that can be delivered 
by LAB. One is being led by Dr. Desai; who recently published the 
construction of the p PERDBY plasmid, in which the reporter gene 
is in the backbone of the plasmid allowing the cloning of the gene 
of interest in frame with a reporter gene [9]. Our group, led by 
Dr. Azevedo developed in 2009, the p Valac vector, the first vector 
designed for DNA vaccines to be delivered by LAB [10]. Recently 
we have published a new DNA vaccine vector called pExu [11]. 
The pExu vector has some attractive characteristics, such as 
containing the theta origin replication which offers a higher 
structural and segregation stability, and has showed exceptional 
results in in vivo test[11], and can also stably maintain large 
heterogonous DNA inserts [12,13]. All of these plasmids are only 
being used in “proof- of- concept” studies since these vectors 
having antibiotic resistance markers that for legal and ethical 
reasons are not acceptable which might compromise their 
applications in health treatments. For genetically modified LAB 

to be used, the development of food-grade cloning systems and 
biological containment systems are part of the solution for these 
to be approved for use in human trials. Johansen (1999) defined 
food-grade recombinant microorganism as those that contain 
DNA from the same genus or from other GRAS microorganisms 
[14]. Some food-grade vectors have been constructed for LAB, 
but only for the production of heterologous proteins [15-17], 
not to deliver foreign DNA. The design of these vectors is based 
on the replacement of antibiotics resistance selection markers; 
however, other properties need to be considered in order to 
construct effective food-grade vectors to be used as DNA vaccines. 
The size, the number of copies of the plasmid, the ability to 
correctly translate the protein of interest in host cell, as well as 
their low capacity of recombination with host’s DNA are some 
characteristics that need to be considered. The use DNA delivery 
vectors by LAB does not require complex technologies and can 
even replace the industrial production of certain proteins that 
require expensive purification protocols since the host cells 
would produce the protein of interest for themselves.

Discussion
The necessity to go beyond the “proof-of concept” stage needs 

to be resolved. Plasmid replication has an important impact on 
DNA vaccines. Vectors with RCR replicas, due to accumulation of 
ss-DNA intermediates, usually have low segregational stability 
[18,19] as they appear to lack a partitioning function. Plasmids 
are probably randomly distributed over daughter cells [20], and 
the insertion of external DNA may contribute to reducing their 
stability even more [21]. On the other hand, theta-replicating 
plasmids don’t produce ss-DNA intermediates, offering better 
structural and segregational stability and allowing to maintain 
bigger foreign DNA inserts [12,13], facilitating cloning techniques. 
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Introduction
 Lactic Acid Bacteria (LAB) have been bioengineered for mucosal 

delivery of prophylactic, pro-inflammatory and useful molecules 
that include bioactive peptides, cytokines, enzymes, allergens and 
DNA. One of the many benefits that have been attributed to these 
has been the modulation of immune responses. Regarding LAB as 
a means of delivery, it is important to highlight that this bacteria 
have the ability to resist gastric and bile juices allowing their 
survival and transit through the gastrointestinal tract [1,2] and 
conferring them the capability to delivery molecules directly at 
the intestinal mucosal surface. The Food and Drug Administration 
(FDA) of the U.S.A. consider Lactobacilli and Lactococcus lactis 
safe or “GRAS” (Generally Recognized as Safe), and according to 
with European Food Safety Authority (EFSA), these species have 
fulfilled the criteria of the competent Qualified Presumption of 
Safety (QPS) status. Increase knowledge in genetic engineering 
technologies have made it possible to incorporating new genes, 
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The copy number of the plasmid is of great importance for 
plasmid delivery strategies and it is obvious that higher number 
lead to better success rates [22]. Plasmids with theta origin 
replication have higher copy numbers, are more structurally and 
segregationally stable and thus constitute an interesting tool for 
improve plasmid delivery.

The size of the vector and the plasmid copy number of bacteria 
are closely related to the replication origin, where the biggest size 
has been described for theta replication. Although plasmid size 
is relevant on gene transfer, it is assumed that smaller plasmids 
are can more easily find the nucleus through the viscous cytosolic 
environmental, and easily achieve the cell nucleus, as well as for 
manipulation like cloning strategies and transformations steps in 
lactococci [10,23,24]. Furthermore, the stability of the vector is 
very significant at the time of choosing DNA vaccines. We were 
able to show this with an in vivo test using the pExu vector (Kb 
8,000). Although it is a large plasmid, it shows excellent expression 
of eGFP in eukaryotic cells [11]. Most researchers encourage the 
minimization of vectors size, by removing extra non-functional 
sequences like those that encode ORFs that may be expressed 
in the host organism (cryptic ORFs, for example) [25,26]. Other 
authors showed that small vectors can lead to higher transgene 
expression, making the transfection into the host cells more 
effective [27,28]. 

The substitution of the antibiotic selection marker can also 
increase the expression in host organism [29]. In fact, this issue 
is one of the most relevant and the current aim for the design 
food-grade vectors to be used in human. Selection markers are 
of great importance in recombinant DNA technology. The FDA 
and the European Union (EU) have supplied guide documents 
with information and considerations about vector design for 
plasmid vectors planned for human use [30-32]. Antibiotics 
resistance genes as a selection marker are not acceptable for 
clinical trials due to the risk that the vector strains could spread 
into the environment, as well as the potential horizontal gene 
transfers possibility which could provide pathogenic bacteria 
with resistance to antibiotics that are used for patient treatment 
[33]. In fact, the design of antibiotic-free plasmid, either gene or 
protein delivery using bacterial would be advantageous because it 
would increase their biosafety. With this aim, several alternatives 
are being considered, such as immunity markers and bacteriocin 
production [31,32]; however, studies showed these had limited 
efficacy [26,34]. One promising strategy is auxotrophy: modifying 
the bacterial strains by generating a non-sense point mutation or 
deletion of an essential chromosomal gene. To restore the growth 
of the bacteria, a plasmid carrying the deleted/mutated gene 
would be introduced together with the therapeutic gene to be 
expressed. Several genes have been studied for this approach by 
LAB [35,36]. The challenge is now developing auxotrophic strains 
to be used as DNA vaccines that can be efficiently delivered by 
LAB. 

Conclusion
 LAB have been used for a long time in food to enhance flavors 

as well as to offer health benefits and has nowadays seen a rise 
interest in their use in medicine. Nevertheless, it is necessary 

to improve new generation vector designs that could be used in 
novel biotechnology products such as DNA vaccine. Optimizing 
vector construction with increased transgene expression, the 
removal of antibiotic resistance markers, maintaining plasmid 
stability and safety for host are targets that need to be reached. 
It is also important to determine the best delivery platforms to 
ensure the safety of DNA vaccines for prophylactic or therapeutic 
uses in human diseases.
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