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We search for the uniform Hartree-Fock ground state of the two-dimensional electron gas formed in semi-
conductor heterostructures including the Rashba spin-orbit interaction. We identify two competing quantum
phases: a ferromagnetic one with partial spin polarization in the perpendicular direction and a paramagnetic
one with in-plane spin. We present a phase diagram in terms of the relative strengths of the Rashba to the
Coulomb interaction and the electron density. We compare our theoretical description with existing experimen-
tal results obtained in GaAs-AlGaAs heterostructures.

DOI: 10.1103/PhysRevB.77.233310 PACS number�s�: 71.10.Ca, 71.70.Ej, 73.21.�b

I. INTRODUCTION

The two-dimensional electron gas �2DEG� is a paradig-
matic system of semiconductor physics and technology. Tra-
ditionally, the electronic spin degree of freedom in this sys-
tem has played a secondary role. This situation has changed
recently with the emergence of the promising field of
spintronics.1,2 The most controllable and often predominant
spin-orbit coupling in semiconductor 2DEGs is the Rashba
interaction.3,4 It is then important to determine the various
many-body properties of the 2DEG in its presence. The
ground state of the uniform 2DEG without spin-orbit inter-
action is not known exactly.5–7 In this Brief Report, we con-
centrate on how the single-particle Rashba term affects
the ground state in the Hartree-Fock �HF� mean-field
approximation.8 While for the uniform electron gas without
spin-dependent potentials, the HF approach yields trivial
single-particle spin-orbitals �plane waves and pure spin
states�, the presence of the Rashba spin-orbit interaction
causes the HF solution to possess an intriguing spin texture
in momentum space. In this Brief Report, we formulate the
HF theory and obtain solutions for the uniform 2DEG with
Rashba interaction. Our main finding is a spatially uniform
ferromagnetic phase, characterized by a net out-of-plane
�OP� partial magnetization appearing in a window of
densities.9

II. HARTREE-FOCK THEORY WITH RASHBA
SPIN-ORBIT INTERACTION

The Hamiltonian of the 2DEG in the presence of the
Rashba spin-orbit interaction is

H = �
i

HR,i +
1

2�
i�j

v�ri − r j� . �1�

The second term gives the interparticle Coulomb interaction
v�ri−r j�=e2 /��ri−r j�, where � is the dielectric constant of
the semiconductor, and the first term is the sum of the
Rashba Hamiltonians of the individual electrons. The latter
are given by

HR = −
�2�2

2m�
− i��Ez���x

�

�y
− �y

�

�x
� . �2�

Here, m� is the conduction-band effective mass, ��Ez� is a
structural parameter that determines the strength of the
Rashba coupling, and �x and �y are Pauli matrices. The
Rashba Hamiltonian can be solved analytically, and the fol-
lowing wave functions and energies are obtained:3

�ks�r� =
1

	2A
eik·r�ise−i�

1
� , �3�

E�k,s� =
�2k2

2m�
+ s��Ez�k . �4�

In these expressions k is the two-dimensional wave vec-
tor, � is the angle of k in polar coordinates, and A is the
surface area of the sample. The spin quantum number s
= �1 denotes spin-up and spin-down eigenstates with re-
spect to the spin-quantization axis, which lies in the x-y
plane and is perpendicular to k with a polar angle 	R�k�
=�−
 /2. Notice that, however, the Rashba ground state is
paramagnetic.4 Also, the Rashba Hamiltonian HR is time-
reversal invariant. This invariance requires that �ks�r� and
�−ks�r� be Kramers-conjugate states with the same energy
eigenvalue E�k ,s� �Ref. 10�.

For a spatially uniform solution the HF spin orbitals can
be written as

�ks�r� =
1

	2A
eik·r��k,s� . �5�

The spinor ��k ,s� has components ���k ,s�, which are the
unknown spinor amplitudes to be determined through the HF
procedure. Notice that while the Rashba amplitudes of Eq.
�3� depend only on the polar angle � of k, we allow ���k ,s�
to depend also on the modulus of k. The spin quantum num-
ber s= �1 denotes, like in the noninteracting Rashba prob-
lem, the up- and down-spin eigenstates but in an unknown
spin-quantization axis û�k� with polar angles ��k� and 	�k�.
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The functional that one has to minimize is given by �di-
rect Coulomb terms drop out in the jellium model electron
gas�

F = �
s,i

Ns

�†�ki,s�
HR�ki� − E�ki,s����ki,s�

−
1

2A
�

ss�,ij

NsNs�

v�ki − k j�
�†�k j,s����ki,s��
�†�ki,s���k j,s��� ,

�6�

where Ns are the numbers of occupied orbitals with s= �1,
E�ki ,s� are the HF single-particle energies, v�ki−k j�
=2
e2 /��ki−k j� is the Fourier transform of the Coulomb in-
teraction, and

HR�k� = � �2k2/2m� i��Ez�ke−i�

− i��Ez�kei� �2k2/2m� � . �7�

We minimize this functional with respect to the amplitudes
�

��ki ,s� and obtain the single-particle energies,

E�k,s� =
�2k2

2m�
+ s��Ez�k sin ��k�

−
1

2A
�

s�,k��Ds�

v�k − k��
1 + ss�û�k� · û�k��� .

�8�

By demanding that the single-particle HF Hamiltonian be
diagonal on the basis of the spinor amplitudes ��ki ,��, we
obtain the following integral equations:

2��Ez�k sin
	�k� − ��cos ��k�

=
1

A
�

s�,k��Ds�

s�v�k − k���sin ��k�cos ��k��

− sin ��k��cos ��k�cos
	�k� − 	�k��� , �9�

2��Ez�k cos
	�k� − ��

=
1

A
�

s�,k��Ds�

s�v�k − k��sin ��k��sin
	�k� − 	�k��� .

�10�

In these equations, we have substituted the following
expressions for ��ki ,�� in order to display the dependence
on the polar angles ��k� and 	�k�: �+�k ,+�=cos�� /2�
�exp�−i	 /2�, �−�k ,+�=sin�� /2�exp�i	 /2�, �+�k ,−�
=−sin�� /2�exp�−i	 /2�, and �−�k ,−�=cos�� /2�exp�i	 /2�.
The summation domains D� are the regions of k space oc-
cupied by electrons and their areas are N�, respectively. No-
tice that Eq. �8� reduces to �i� Eq. �4� when the Coulomb
interaction is neglected because the third term of the right-
hand side �RHS� of Eq. �8� drops out and ��k�=
 /2 in the
single-particle Rashba problem; �ii� the HF one-particle en-
ergy if the Rashba coupling is omitted because �=0 and
û�k�� ẑ.

III. ISOTROPIC SOLUTION

In the absence of Pomeranchuk instabilities11 �PI� �defor-
mations of the Fermi sphere in three-dimensions or circle in
two dimensions�, the domains D� should be taken as having
circular symmetry. The issue of the occurrence of PI in
Fermi liquids with isotropic central interactions is currently
being studied in two-dimensional �2D� and three-
dimensional �3D� systems.12,13 In the particular case of the
bare Coulomb interaction �which is our case�, the existing
theory is not able to categorically predict or rule out the PI.
However, a screened Coulomb interaction does not produce
PI �Ref. 13�, which can be taken as an indication that no PI
occurs either for the bare interaction. In general, it is safe to
assume that no PI will occur unless �i� there is a well-defined
length scale in the interaction, and �ii� that length scale is
larger than the mean interparticle distance.14 These condi-
tions are clearly not satisfied by the bare Coulomb interac-
tion, which does not possess a characteristic length scale.
Based on these results, it is safe to assume that our integra-
tion domains have circular symmetry.

The circular symmetry of the integration domains implies
that the dispersion relations E�k ,s� in Eq. �8� must be iso-
tropic. This in turn, requires that ��k� be independent of �
and that 	�k�=�−
 /2 as in the noninteracting Rashba
problem.15 Thus Eq. �10� is automatically satisfied and Eq.
�9� becomes

px cos ��x� = �
xc

1 �
0

2
 x�dx�d��
	x2 + x�2 − 2xx� cos�� − ���

�
sin ��x�cos ��x��

− cos ��x�sin ��x��cos �� − ���� . �11�

We have introduced the parameter p=2��Ez�� /e2, which in-
dicates the relative strength of the Rashba and Coulomb in-
teractions. The integration limit xc contains the information
of the integration domains D� introduced earlier. Having in
mind the dispersion relation of the noninteracting Rashba
problem described in Eq. �4�, the situation can be summa-
rized as follows: when both branches are occupied �high den-
sity�, the domains D� are filled Fermi circles of radii kF�

related by 4
ns=kF+
2 +kF−

2 , with ns= �N++N−� /A. In this case
xc=kF+ /kF− and, in principle, it is free to vary from zero to
one. If only the lower branch is occupied �low density�, there
are two possibilities. If the lower branch has a minimum at
k=0 �unlike the noninteracting Rashba problem�, then there
is a gap at k=0 between the two branches. In this case we
define xc as before, obtaining xc=0. The formation of a gap is
enabled by the lifting of Kramers degeneracy at the single-
particle level, due to the appearance of a spontaneous mag-
netization. Kramers’ theorem states that the degeneracy of
half-integer spins can only be removed by a magnetic field;
we return to this point in the discussion of Eq. �12�. If the
lower branch does have a minimum at k�0, we take xc
=kmin /kmax, where kmin �kmax� are the inner �outer� Fermi ra-
dii of the hollow circular domain, now being 4
ns=kmax

2

−kmin
2 . In this case, there is no gap at k=0, no �ground state�

magnetic moment appears, and the time-reversal symmetry
�Kramers degeneracy� is preserved. In Eq. �11�, x= �x�
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��k� /kF− or x= �k� /kmax, according to the context.
Clearly, the noninteracting Rashba states with �=
 /2 are

a solution of Eq. �11�. We call this the in-plane �IP� paramag-
netic phase, which is the one we mentioned as having the
lower dispersion-relation branch with a minimum at k�0.
The nontrivial solution with varying ��x� gives rise to an OP
ferromagnetic phase where, in turn, the lower branch has its
minimum at k=0. We solve Eq. �11� starting with the initial
guess of �0�x�=0, which gives �1�x� after integration. With
�1�x� as an input, we obtain �2�x� and so on. We consider
that convergence is achieved when �n�x� and �n−1�x� differ in
less than 0.1 percent. Let us enumerate our main findings on
��x�: �i� ��0�=0 for all values of p �the Rashba spin-orbit
interaction causes no effect when k=0 and, consequently, the
spin-quantization axis must lie in the z direction�, �ii� ��x� is
a monotonically increasing function for all values of p, �iii�
��x� increases with increasing p, and �iv� ��x� never crosses
the value 
 /2.

The gap at k=0 between the two branches may be ob-
tained from Eq. �8� by means of the above-mentioned prop-
erties, and it is given by

�E = E�0,+� − E�0,− � =
e2kF−

�
�

xc

1

cos ��x�dx . �12�

In the IP phase ��x�=
 /2 and then �E=0. In the OP phase,
in turn, we have �E�0. This gap, far from being a peculiar-
ity of the OP phase, appears also in the HF theory of the
2DEG without Rashba coupling. In fact, setting ��x�=0 we
get �E= �e2 /���kF−−kF+� and the gap is unfailingly related to
a polarized ground state, where kF+�kF− �i.e., N+�N−� �an
identical expression for �E multiplied by 2 /
 can be ob-
tained in a 3DEG: see the expression for k

� when k→0 on p.
82 of Ref. 8�.

IV. HARTREE-FOCK GROUND STATE

The remaining task is, for given p and rs �rs=1 /aB
�	
ns,

where aB
� =�2� /m�e2 is the effective Bohr radius�, to deter-

mine which of these two phases has lower energy. For each
phase and given rs, the value of xc that minimizes the energy
is found numerically. In Fig. 1 we show a phase diagram in
terms of the parameters rs and p. The striking feature of this

diagram is that for given 0� p�1.3, the OP phase appears
within a window of densities. As expected, for p=0 we re-
cover the paramagnetic-ferromagnetic transition of the
2DEG HF approximation at rs=2.01 �Refs. 16 and 17�. As p
increases, the left transition moves slightly toward smaller rs;
in other words, the presence of the Rashba coupling favors a
spin-polarized phase, albeit this polarization is partial for
nonzero p �the original HF ferromagnetic phase has full po-
larization�. Also the window of densities in the OP phase
shrinks as p increases. The right transition originates in the
fact that the system diminishes the ground-state energy by
filling the lower branch that has minimum at k�0 �IP
phase�, when rs increases at fixed p.

The partial spin polarization of the �ferromagnetic� OP
phase can be seen in Fig. 2, where we plot the mean value of
Sz per particle ��Sx�= �Sy�=0 for both IP and OP phases�
given by ��=1�,

�Sz� = − �
xc=0

1

x cos ��x�dx . �13�

Notice that �Sz� does not depend on rs since xc=0 for the OP
phase.18

V. COMPARISON WITH EXPERIMENT
AND CONCLUSION

In a recent experimental work, Ghosh et al.19 report a
possible spontaneous spin polarization in mesoscopic two-
dimensional systems. They studied 2DEGs in asymmetric Si
�-doped GaAs/AlGaAs heterostructures with densities as
low as ns=5�109 cm−2 �rs=7.6�. The temperature was set
at T�40 mK or equivalently T /TF�0.02 since TF=2.3 K
at rs=7.6. According to their interpretation of the data, these
authors found partial spin polarization estimated as ���N+
−N−� /N�0.2 appearing in a window of densities of width
�rs�1.8, centered around rs�6.5. After a detailed analysis
of their data, the authors rule out the Rashba coupling and
invoke an exchange-driven spontaneous spin polarization in
order to explain their observed split zero-bias peak �ZBP� in
the differential conductance. On the other hand, they explain
the fact that the spin polarization is partial as a finite-
temperature effect. Recall that at zero temperature, this tran-
sition is of first order and is predicted to occur between rs

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

IP

p

r
S

O P (out-of-plane phase )

IP (in-plane phase )

FIG. 1. Ground-state phase diagram in the Hartree-Fock ap-
proximation in terms of the density parameter rs and the Rashba to
Coulomb energy ratio p.
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>
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FIG. 2. Mean value of the perpendicular spin projection per
particle ��=1� as a function of the Rashba to Coulomb energy ratio
in the OP phase.
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�13 �Ref. 5� and rs�25 �Ref. 7�. However, this contradicts
the theoretical finding of Dharma-wardana and Perrot,20 in
the sense that partial spin polarization, due to the exchange,
happens for T /TF between 0.3 and 1.6, i.e., well above
T /TF�0.02 as reported by Ghosh et al.

Our theory supports the interpretation of the experiment
of Ghosh et al. based on an exchange-driven spin-polarized
ground state. On the other hand, we explain the partial spin
polarization in terms of the Rashba interaction rather than in
terms of finite temperature. This hypothesis could be tested
by additional experiments with a tunable Rashba coupling,
which would allow varying our parameter p. In such experi-
ments the degree of spin polarization could be modified and
measured.

Ghosh et al. observe a split ZBP within a window of
electron densities. At the lower end of this window, disorder-
induced localization destroys the electron-gas scenario. In a
defect-free sample, we also predict a disappearance of the
split ZBP but due entirely to the competition between Rashba
and exchange interactions.21 At the higher end of the density
window, the reason for the disappearance of the split ZBP is
not as clear, and it is not specified by the authors. According
to our theory, this feature could be interpreted as the

ferromagnetic-paramagnetic transition of the electron gas at
high density, seen in Fig. 1 for low rs. �Of course, the critical
value of rs is overestimated by the Hartree-Fock approxima-
tion because it leaves out many-body correlations.22�

In summary, we have found the uniform Hartree-Fock
ground state of a 2DEG in the presence of spin-orbit Rashba
coupling, characteristic of asymmetric semiconductor quan-
tum wells. We present a phase diagram where two competing
quantum phases are identified, one of which shares the
Rashba single-particle orbitals, with their IP spin-
quantization axis, and another one, which has a finite com-
ponent of the spin in the perpendicular direction. This phase
possesses a partial spin polarization and exists within a win-
dow of densities, suggesting that a combination of exchange
and Rashba spin-orbit interaction may qualitatively explain
experimental results obtained in GaAs-AlGaAs heterostruc-
tures at low electron density.
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