
Metastable off-axis vortices in nonrotating

Bose-Einstein condensates

D M Jezek, P Capuzzi and H M Cataldo

Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de

Buenos Aires, RA-1428 Buenos Aires, Argentina

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, Argentina

E-mail: djezek@df.uba.ar, capuzzi@df.uba.ar, cataldo@df.uba.ar

Abstract. We propose a scenario for studying vortices confined by nonrotating traps.

For this purpose we model a polynomial trapping potential that can sustain locally

stable off-axis vortices. We also describe a simple numerical method for generating

vortices without relying on rotating frames or centrifugal potential techniques. This

method offers other advantages related to the control in the number of vortices to be

generated and in their location. Finally, we compute the vortex energy as a function

of its position using three approaches and discuss their validity. We show that a well

defined energy barrier between the vortex and the ground state is obtained.
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1. Introduction

Quantized vortices arise as striking topological defects yielding one of the most

important signatures of superfluidity [1]. In the last decade, in trapped Bose-Einstein

condensates (BECs), an enormous amount of work, both theoretical and experimental,

has been devoted to studying the structure, stability and dynamics of vortices (For a

review of these issues, see, for example [2–4] ).

Since vortices in BECs were first experimentally produced by Matthews et al. [5],

many techniques were developed for their generation. Among the most ingenious

ones, we can quote that vortex rings have been obtained as a result of the decay of

solitons [6]. Vortex lines have been generated from the application of topological phase

imprinting methods [7]. And finally, a large variety of configurations, from single vortex

to vortex lattices, are being generated using rotating traps [8–10]. In connection to

vortex instabilities, the decay of a doubly quantized vortex into two singly quantized

vortices has been observed [11]. In recent experiments, alternative trapping potentials,

quadratic plus quartic polynomial, have been constructed in order to obtain vortex

lattices in fast rotating condensates [9, 10]. The quartic term in the potential has been

introduced to stabilize the system when the angular velocity exceeds the radial angular

frequency of the quadratic term [12,13].

From a theoretical point of view the numerical generation of stationary vortices

has not been an easy task. In rotating condensates, energetically stable vortices have

been obtained by minimizing their energy as described in the rotating frame (see [2–4]

and references therein). This method usually requires a large number of iterations

because the vortices are dragged from the border of the condensate making difficult to

control the number and location of the vortices to be generated. On the other hand, in

nonrotating condensates, structural and dynamically stable, yet energetically unstable

vortices, have been created by several techniques [14–16]. These vortices cannot be

found with the usual methods based on energy minimization and thus, for example

in Ref. [16] the solutions were obtained by minimizing a specially constructed error

functional. The standard nonrotating Bose-Einstein condensate has a parabolic profile,

which is obtained with an harmonic oscillator confinement. A characteristic of the

parabolic profile is that in the presence of dissipation an off-axis vortex spirals away

from the condensate. As far as we know, the problem of finding a family of nonrotating

lowest-order polynomial trapping potential that can sustain metastable off-axis vortices

within a BEC has not been addressed. Note that only local stability may be achieved

because the ground state has a lower energy. Depending on the form of the energy

barrier between the vortex and the ground state a persistent current may survive even

in presence of a thermal cloud and therefore we believe this problem may be interesting

from a fundamental perspective. Hereafter when we refer to stable vortices we will be

meaning locally stable ones.

Finally, we want to mention that exploratory and stimulating analytical work has

been devoted to the study of the dynamics of vortices in spatially inhomogeneous two-
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dimensional superfluids [17–22]. We believe it would be interesting to extend these

studies and perform numerical calculations with more general types of density profiles

than the parabolic one.

Therefore, in this work we present a fourth-order polynomial trapping potential that

can sustain off-axis vortices, and describe a simple numerical phase imprinting (NPI)

method for obtaining such states. With this trap the system exhibits a vortex energy

barrier near the border of the condensate. As the stability of the vortex in presence of

dissipative processes is related to the shape of this energy barrier, we find convenient to

compute it using different approaches. Also it is important for describing, for example,

quantum tunneling processes.

The work is organized as follows. In section 2 we describe the system and the

proposed trapping potential. In section 3 we explain the NPI method for numerically

producing vortices in absence of rotating frames. In section 4 we introduce an

approximate expression with a single fitting parameter for the vortex energy, and in

section 5 we present numerical calculations of the vortex energy employing different

approaches. Finally, the summary and concluding remarks are offered in section 6.

2. The trapping potential

We consider a Bose-Einstein condensate of atoms confined by an external trap Vtrap. The

Gross-Pitaevskii (GP) energy density functional for the system at zero temperature has

the standard form

E[ψ] =
∫

(

h̄2

2m
|∇ψ|2 + Vtrap |ψ|

2 +
1

2
g |ψ|4

)

d3r, (1)

where ψ is the condensate wave function and m is the atom mass. The coupling constant

g is written in terms of the s-wave scattering length a as g = 4π ah̄2/m.

Variation of E with respect to ψ keeping the number of particles, N , fixed yields

the GP equation
(

−
h̄2∇2

2m
+ Vtrap + g |ψ|2

)

ψ = µψ , (2)

where µ is the chemical potential.

We mathematically model a polynomial trapping potential, which written in

cylindrical coordinates reads

Vtrap(r, z) =
1

2
m

[

ω2
r

r2 (r − r1) (r − r2)

r1r2
+ ω2

z z
2

]

, (3)

where ωr and ωz are radial and axial angular frequencies, respectively. As a function of

r this trapping potential has two zeroes at r1 and r2, a local maximum at R− < r1, and

two local minima at r = 0 and R+ with r1 < R+ < r2. The local extrema at R∓ are

given by

R∓ =
3 (r1 + r2) ∓

√

9 (r1 − r2)2 + 4 r1r2

8
. (4)
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Figure 1. Trapping potential Vtrap (in units of h̄ωr) as a function of r at z = 0 (in

units of aho =
√

h̄/(mωr)).

The minimum of the potential at R+ gives rise to a maximum in the ground state density

that, as we shall see, generates a vortex-energy barrier, which prevents the vortex to

spiral away from the condensate. On the other hand, the local potential maximum

generates a local minimum in the density of particles, which in turn should yield a local

minimum of the vortex energy.

In figure 1 we show the trapping potential for (r1, r2) = (10, 18), in units of

aho =
√

h̄/(mωr). Hereafter we shall always use aho as the unit of length. For this

set of parameters the extrema are located at R− = 6 and R+ = 15.

We consider a system formed by N = 106 atoms of 87Rb whose scattering length

is a = 98.98a0, where a0 is the Bohr radius. We have chosen ωr/(2π) = 100 Hz and

ωz/(2π) = 520 Hz, in order to obtain a pancake-shaped condensate. In figure 2 we show

the ground-state density ρ = |ψ0|
2 as a function of x at y = 0 and z = 0, which was

obtained by solving the GP equation.

The number of particles is large enough to assume that the condensate in the (x, y)

plane is in the Thomas-Fermi (TF) regime. In this situation one can obtain the density

of the ground state using (2) neglecting the kinetic term as

|ψ0(r, 0)|2 =
1

g
[µ− Vtrap(r, 0) ] Θ [µ− Vtrap] , (5)

where Θ is the Heaviside function. It may be observed that the shape of the density

profile depicted in figure 2 corresponds to the inverted potential as predicted by the TF

approximation.

Depending on the values of r1 and r2, one can model different shapes of densities,

and thereby change the position of the critical points, R− and R+, and the height of the

vortex energy barrier. We want to mention that, in a recent work, Cozzini et al. [23]
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Figure 2. Ground-state density profile ρ for y = 0 and z = 0 as a function of x for

(r1, r2) = (10, 18).

have considered an harmonic-plus-quartic trapping potential that also exhibits local

extremes with the relative maximum located at R− = 0.

3. The numerical phase imprinting method

In this section we describe a numerical method to generate a stationary vortex state

that is a local minimum of the energy functional. The method consists in the choice of

an initial guess for the wavefunction and the subsequent minimization of the energy (1).

Due to their simplicity we have adopted two standard methods that directly minimize

the energy, namely, an evolution of the wavefunction in imaginary time [24] and a

conjugate gradients technique [25]. For the singly quantized vortex we have found

that both methods work satisfactorily and produce the same results; however, as the

conjugate gradient method usually requires less time to converge to a desired accuracy

we present the results obtained with that method only.

As the starting point of the minimization, we choose a smooth real function ψ0(r),

preferably the ground-state wavefunction, and construct the initial state as

ψ′(r) =
(x− xk) + i(y − yk)

√

(x− xk)2 + (y − yk)2
ψ0(r), (6)

with
√

x2
k + y2

k < R+. Note that this state can be written as ψ′ = eiϕk ψ0, where ϕk

is the azimuthal angle around the axis (xk, yk, z), and hence, the operation we have

performed on ψ0(r) represents a phase imprint to the original state. Therefore, while

the density profiles of ψ0 and ψ′ are the same, the state ψ′ has an imprinted velocity

field v = (h̄/m)∇ϕk. This field is irrotational everywhere except at the vorticity line
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Figure 3. Three-dimensional views of the condensate containing different vortex

states. In the left and right panels we depict surfaces of constant density ρ a3
ho ≃ 150

and 3, respectively. Left panel: a vortex with a bent vorticity line that crosses the

z = 0 plane through the point (14, 0, 0). Right panel: the stable straight vorticity line

that crosses the z = 0 plane at the point (6, 0, 0).

(xk, yk, z). In general the vorticity line is defined as the set of points where

ω(r) = ∇× v(r) (7)

is nonzero. The important feature of this method is that the process of minimization

may bend and move this curve, but does not destroy it. More general distributions of

vorticity lines can be generated with an extended version of this method, but in this

paper we restrict ourselves to the generation of a singly quantized vortex.

Using ψ′ as the initial guess of the minimization, the program in a few iterations

generates a density hole around the vorticity line, maintaining the original circulation.

In figure 3 we show surfaces of constant density for two vortex states which were

obtained using this method. In the calculations of this particular figure we have changed

the ωz frequency to ωz = ωr, in order to better illustrate the shape of the vortices. In the

left panel we show a vortex which was obtained after a few iterations from a vorticity

line generated near (14, 0, z). It may be seen that the method allows the vortex to bend

in order to minimize the energy.

As the minimization proceeds the vortex moves towards an energy minimum and

the state finally converges to the stable vortex, whose vorticity line is at (6, 0, z). This

final configuration is displayed in the right panel of figure 3.

In figure 4 we show the density profile of the stable vortex compared to that of

the ground state. It may be seen that the vortex is located around the minimum of

the ground-state density. Note that this method provides a vortex density shaped as

if having used an effective centrifugal potential, that is, for instance, it vanishes at the

core and its size is of the order of the healing length.

Note that the method of minimization we have adopted is subject to the constraint

of wavefunction normalization only. In nonrotating condensates, a variety of numerical

techniques, specially in two dimensional systems, have been applied to find distinct types

of stationary vortices obtained from the GP functional with different constraints (see,
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Figure 4. Density profiles of the ground state (solid line) and the stable vortex

(dashed line) at y = 0 and z = 0.

e.g., [14–16,26]). A single vortex may be also obtained by using the standard centrifugal

potential (CP) term in the energy [24]. This method has a rapid convergence but the

position of the stable vortex has to be specified in advance. An additional drawback of

this method is that, in three dimensional systems the vortex line cannot bend.

4. Parametrization of the vortex kinetic energy

In this section we shall derive an approximate analytical expression for the kinetic energy

EK
v of a vortex shifted a distance r0 from the z-axis.

As we have restricted our analysis to nearly pancake-shaped condensates, we can

assume that the vortex is not bent. In other words we shall consider a straight vortex,

parallel to the z-axis, and thus its velocity field does not depend on the z-coordinate.

The kinetic energy due to the vortex velocity field is

EK
v =

1

2
m
∫ ∫ ∫

dx dy dz ρv(r) v2
r0

(x, y) , (8)

where ρv(r) is the density of the condensate with a vortex.

In the limit of large N we may assume that the shape of ρv is almost the same as

the ground-state, except for the presence of the core. In addition we consider that the

most important contribution to the integral in (8) should stem from a narrow region

around the core, still large compared to the healing length, and that the ground-state

density varies smoothly in this region. Defining r⊥ as the radial coordinate measured

from the vortex position r0, the energy may be written as

EK
v =

1

2
m
∫ ∫

dr2
⊥dz ρ0(r0, z) fr0

(r⊥, z) v
2(r⊥) . (9)
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Note that at r⊥ = 0 the velocity diverges as v(r⊥) = h̄/(mr⊥). In (9) we have introduced

the form factor fr0
(r⊥, z) = ρv(r⊥, z)/ρ0(r0, z) for describing the shape of the core. As

we are considering a pancake-shaped condensate, we can evaluate the integral at z = 0.

Then the energy reduces to

EK
v =

1

2
m ℓρ0(r0, 0)

∫

dr2
⊥ fr0

(r⊥, 0) v2(r⊥) , (10)

where ℓ is the width of the condensate in the z-direction. Finally we shall assume

that the structure of the vortex core does not change appreciably along the condensate

i.e., fr0
(r⊥, 0) = f(r⊥, 0). In conclusion, under all the above assumptions we may

approximate

EK
v ∼ ρ0(r0, 0)F . (11)

This formulae is similar to, e.g, equation (51) of [18] derived for a strictly 2D system,

with the difference that in that work the factor F takes an analytical form as a result

of additional assumptions made on the condensate profile. In this work we will use the

factor F as a single fitting parameter for reasons that will become clear in the following

section.

5. Vortex energy: numerical calculations

We have computed the energy of a state with a single off-axis vortex Es
v , using the

formulae (1) by means of both the CP and the NPI methods. In each case we have

employed the conjugate gradient technique with a spatial grid of 256× 256× 128 points

in the x, y, z directions, respectively. The minimizations were performed until a precision

of 10−8 in the chemical potentials was achieved. In figure 5 we show the vortex energy

defined as Ev = Es
v − E0, where E0 is the ground-state energy.

The points along the NPI curve were obtained from three different runs starting

from imprinted vorticities next to r = 0, and on the left and right of R+. Once the

vortex core was generated, we evaluated the energy as a function of its position in the

plane z = 0. Note that the run that starts on the right hand side of the top of the

energy barrier, i.e. on the right of R+, moves towards outside the condensate. When

the vortex is outside the condensate, its energy vanishes and the state coincides with

the ground state.

The CP curve has been obtained by specializing the GP energy functional with a

straight singly quantized vortex state fixed at (x0, y0, z), i.e., by setting the full complex

wavefunction to ψ = eiϕ0 f(r⊥) and minimizing the energy respect to the real function

f(r⊥), as described in Ref. [24]. The phase factor gives rise to the effective centrifugal

potential

VC(r) =
h̄2

2m
((x− x0)

2 + (y − y0)
2)−1 (12)

in the simplified GP equation for f(r⊥).

We have also plotted the curve obtained from the expression (11) with the factor

F = 30 fitted to the energy minimum at r0 = 6. Note that in the present numerical
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Figure 5. Vortex energy Ev as a function of the position of the core at the plane

z = 0. The squares (circles) indicate NPI (CP) calculations and the curve obtained

from the expression (11), with a factor F = 30, is depicted with a solid line.

calculation there exist another, not fully negligible, contributions to the energy Ev

besides EK
v . Nevertheless the curve is well reproduced by the estimate (11) using an

appropriate value of F .

Near the maximum R+ the NPI method provides a lower energy than the other

approaches due to the possibility this method offers in bending vortices.

6. Summary and concluding remarks

We have introduced a static fourth-order polynomial trapping potential that can sustain

locally stable off-axis vortices. We have also developed a numerical method for the

generation of vortices without resorting to the addition of a centrifugal potential or

the application of a rotating frame. On the other hand, we have computed the vortex

energy as a function of its position using both the CP and the NPI methods, and find

that a well defined energy barrier is obtained. We have also shown that this energy

Ev can be approximated by a single fitting parameter times the ground-state density.

This fitting parameter has been adjusted to the local energy minimum. Note that the

profile of the barrier constitutes an essential ingredient when studying mechanisms of

decay of metastable states. Therefore it is important to have efficient methods for its

computation.

The scenario we have introduced may be useful, e.g., for numerically studying the

dynamics of vortices in a spatially inhomogeneous superfluid [17–22]. In presence of

many vortices, the dynamics of a particular vortex is dominated by the velocity fields of



Metastable off-axis vortices in nonrotating Bose-Einstein condensates 10

the others, while in their absence its velocity is proportional to the gradient of the ground

state density. With this trapping potential, a single vortex may precesses in two different

directions depending at which side of the stationary positions it is located. Finally, this

trapping potential may be also suitable for sustaining arrays of stable vortices, as for

example, a ring of vortices with an arbitrary radius which can be modelled by changing

the parameters r1 and r2.
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