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This article states the concept of covalent bond order for open-shell systems from the invariance

properties of the first- and second-order reduced density matrices for all the components of a

multiplet state. A general bond order definition is formulated in the framework of the electronic

population analyses in the Hilbert space of atomic orbitals.

1. Introduction

The concept of covalent bond order (or bond index) has had

paramount importance in the understanding of chemical

bonding. The description of chemical bonding as an electron

pairing phenomenon entails the formulation of the bond

order, which shows a determined electron population in some

molecular regions. As most of the physical and chemical

quantities describing molecular electronic distributions, the

bond order is not an expectation value of a quantum mechan-

ical operator and, consequently, it cannot be uniquely defined.

However, any definition of bond order, to be acceptable,

should fulfil the physical features of the molecular systems

and the chemical intuition. Such a concept has been widely

developed for closed-shell systems and much less for open-

shell cases.1–9 Perhaps the most popular definition of bond

order between two nuclei A and B, BOAB (the two-center

electronic population shared out among these nuclei) for an

open-shell system has been reported by Mayer4–6 and exten-

sively applied by other authors.10 Nevertheless, such open-

shell bond order definition has not been derived for correlated

state functions, nor does it fit the physical requirements of

uniqueness for the spin multiplet components in absence of a

magnetic field, as may be expected for any physical quantity.

In this work we attempt to derive a general expression for the

bond order in the Hilbert space partitioning scheme avoiding

this shortcoming, i.e. following the above mentioned physical

requirement to be an acceptable definition, also beyond the

independent particle models. To perform this task we will

follow the method used in ref. 11 employing the second-order

reduced density12–16 and their relationships with the spin

density.17

The organization of this article is as follows. The second

section is devoted to the theoretical derivation of the covalent

bond order from the reduced density matrix structure and its

invariance properties for the spin components of a given

multiplet. The third section reports the computational details

and the numerical results found for some selected molecular

systems in ground and excited states. A discussion of our

results and their comparison with those arising from Mayer’s

definition is also reported in that section showing that our

proposal removes the ambiguity of the different bond orders

for different spin components of a multiplet. Finally, the last

section points out the remarks and conclusions of this work.

2. Theoretical

The matrix elements of the second-order reduced density

matrix, 2D (2-RDM), corresponding to an N-electron system

in an i,j,k,l,. . . orthogonal spin orbital basis set is

2Dij
kl =

1
2
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l
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Dij
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where 1Di
k and Dij

kl are the matrix elements of the first-order

reduced density matrix (1-RDM) and the cumulant of the

2-RDM, respectively.11–15 The terms in the r.h.s. of eqn (1)

stand for the Coulomb, exchange and cumulant terms, respec-

tively. Spin variable integration of eqn (1) leads to the spin-

free 2-RDM which reads
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where 2Dij
kl,

1 Di
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k and Gij
kl

stand for the matrix elements of the spin-free 2-RDM,

1-RDM, spin density matrix and those of the 2-RDM cumu-

lant matrix, respectively, in the i,j,k,l,. . . orthogonal orbital

basis set. 1Da and 1Db are the spin up and spin down density

matrices, respectively. The exchange term (second term in the

r.h.s. of eqn (1)) becomes split into a particle–particle ex-

change term and an explicit spin density exchange contribu-

tion (third term in the r.h.s. of eqn (2)), thus segregating the

many-body effects and the irreducible spin contributions of the

cumulant in the last term of eqn (2). The invariance properties

of the density matrices play a key role in establishing and

interpreting the bond order definitions rigorously. These

properties are expressed by the relations17,18

2Dik
jl (S,Sz) =

2Dik
jl (S,S);

1Di
j(S,Sz) =

1Di
j(S,S) (3)

for all Sz, i.e.,
1D and 2D are independent of the spin projec-

tion and are only a function of the total spin S (Sz = S,

maximum projection), while it is not true neither for 1D(s) nor

for G, i.e., the terms 2Dij
kl,

1
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are, individually, Sz-dependent. It may be noted that all the

results in this article are symmetric under the inversion of Sz
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projections, i.e., the results are symmetric for the same module

of Sz despite the sign of the projection, hence we will only

make use of the positive projections.

After transforming the spin-free 2D matrix into an atomic

orbital (AO) basis set defined by the atomic functions {m,n,. . .}

centered in each atom it reads,19
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where the terms in eqn (4) and their invariance properties

correspond to those of eqn (3) expressed as 2Pmn
sl(S,Sz) =

2Pmn
sl

(S,S) and 1Pm
s(S,Sz) = 1Pm

s(S,S). Within this scenario, the

partitioning of the normalized difference, i.e., the number of

particles conservation11,20 may be expressed by
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where N is the number of electrons in the system and S stands

for the overlap matrix in the AO basis set. The bond order

BOAB is defined as a two-center term in the one- and two-

center terms partitioning of eqn (5).

Eqn (5) and the above discussed invariance relations permit

to equate
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where the subscript Sz = S indicates that the r.h.s. of eqn (6)

must be evaluated at the maximum projection while the l.h.s.

at any arbitrary Sz a S. It has been shown that the many-body

cumulant term G is strictly of non-pairing nature in the case of

closed-shell systems11,21,22 and no spin terms are present in

such a case. Hence, considering that the irreducible spin effects

only appear in open-shell cases for Sz a S, as well as the

invariance expressed by eqn (6), it may be concluded that it is

convenient to use the r.h.s. of this equation to define the bond

orders, because the pairing and non-pairing character of terms

is well defined at this side of the invariant quantity (6).

Consequently, from these physical considerations the bond

order BOAB is defined from eqn (5) by the exchange terms (the

terms with pairing character) in this equation evaluated in the

highest spin projection state Sz = S. Therefore, the bond order

becomes expressed by

BOAB ¼
X
neA

X
meB

ð1PSÞnmð1PSÞmn

þ
X
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X
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where the spin density matrix has been explicitly written as

evaluated in the maximum projection of the spin number of

the system. Eqn (7) coincides with the form of Mayer’s bond

order definition5

BOM
AB ¼

X
neA

X
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½ð1PSÞnmð1PSÞmn
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but differs in two fundamental concepts: on the one hand

eqn (7) definition is supported by rigorous arguments and has

not ambiguity when applied to open-shell systems, contrarily

to Mayer’s definition, hence, the unique bond order as physi-

cally expected is that evaluated at the spin density 1P(s) corre-

sponding to the maximum projection Sz = S, while Mayer’s

formula (cf. ref. 6 in which it has been established that it may

be applied ‘‘to the wavefunction in question’’) yields different

bond orders for different spin projections because, as it is a

function of the spin density, it is obvious that this quantity

depends on each one of the 2S + 1 projections Sz of the total

spin S of the N-electron system. On the other hand, eqn (7) is

valid for both independent and correlated particle models of the

state functions because it has been derived from a general

2-RDM, while Mayer’s formula has been calculated for one

determinant state function and then postulated to be valid

beyond the Hartree–Fock level.5

3. Results and discussion

Table 1 shows the results of covalent bond orders for the

systems O2, CH2 and linear HBBH in their triplet ground state

and for the C2 molecule in a triplet excited state. The aim is to

describe the bond orders calculated in these systems according

to our bond order definition presenting, for the sake of

comparison, the different Mayer’s bond orders arising from

each one of the 2S+ 1 projections of the total spin S of the N-

electron system. The numerical calculations were performed at

the equilibrium geometries23–25 at the restricted open-shell

Hartree–Fock (ROHF) reference state in the single and double

excitation configuration interaction approximation (CISD),

with the 6-31G basis sets. The spin-free first- and second-order

reduced density matrices were obtained with the PSI326

package. The spin density matrices were calculated, in

the molecular basis set, by the modified formula reported

in ref. 27 and 28

1DðsÞ
i

j ¼
Sz

SðS þ 1Þ
ðN þ 2Þ

2
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j � 2
X
k

ð2Dik
jk þ 2Dik

kjÞ
( )
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and then transformed into the AO basis set. The table reports

Mayer’s total bond orders BOM
AB and their corresponding spin

contributions BOM(s)
AB (the second term in the r.h.s. of eqn (8)).

The results show that these spin contributions are very differ-

ent for each one of the spin projections in the systems O2, C2

and linear HBBH, while they remain almost identical for all

spin projections in the CH2 one. It can be observed that the

greater differences appear for pure covalent bonds X–X (X =

O, C, B), while the bonds X– H (X = C, B) only exhibit slight

changes for the different multiplet states. The BOAB values

from eqn (7) coincide with the counterpart BOM
AB ones for Sz

= S, as has been commented above. These values provide the
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best agreement with the bond multiplicities expected for these

systems,24,25 thus confirming our theoretical proposal.

4. Concluding remarks

In the present work we have dealt with the covalent bond

order concept as an indicator of the covalent contribution of

the electron cloud to the bonds in a molecular system.8

According to theoretical arguments, we have proposed a bond

order definition in the framework of the population analysis in

the Hilbert space, which is physically acceptable for open-shell

systems because it is identical for all degenerate multiplet

components in absence of magnetic fields. This definition is

valid for both independent particle and correlated state func-

tions. Moreover, we have performed numerical calculations

providing chemically meaningful results, which confirm our

theoretical predictions. It is worthy to remark that this defini-

tion of bond order for the open-shell case may also be

performed within partitioning models of the physical space

(3D), such as Atoms in Molecules (AIM)29 or ‘‘fuzzy’’

atoms,30 among others. Works in this line are being carried

out in our laboratories and will be published elsewhere.
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Table 1 Mayer’s bond orders (BOM
AB) calculated for multiplet states of open-shell systems using the 6-31G basis sets at ROHF-CISD

approximation

System State S Sz Bond BOM
AB

a BOM(s)
AB

b

O2
3S�g 1 0 OO 1.069 0.000

�1 1.474 0.405
CH2

3B1 1 0 CH 0.893 0.000
�1 0.897 0.004

C2
3S+

g 1 0 CC 1.104 0.000
�1 1.553 0.449

HBBH (linear) 3S�g 1 0 BB 1.620 0.000
�1 2.087 0.467
0 BH 0.884 0.000
�1 0.881 �0.002
0 B� � �H 0.042 0.000
�1 0.043 0.001

a Total bond order (eqn (8)). b Spin contribution to the total bond order (second term in the r.h.s. of eqn (8)).
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