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Decoherence is the main process behind the quantum to classical transition. It is a purely
quantum mechanical effect by which the system loses its ability to exhibit coherent
behavior. The recent experimental observation of diffraction and interference patterns
for large molecules raises some interesting questions. In this context, we identify possible
agents of decoherence to take into account when modeling these experiments, and study
their visible (or not) effects on the interference pattern. We thereby present an analysis
of matter wave interferometry in the presence of a dynamic quantum environment, and
study how much the visibility fringe is reduced and in which timescale the decoherence
effects destroy the interference of massive objects. Finally, we apply our results to the
experimental data reported on fullerenes and cold neutrons.
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1. Matter Wave Interferometry and Decoherence

Matter wave interferometers are based on quantum superpositions of spatially sep-

arated states of a single particle. However, as is well-known, the concept of wave-

particle duality is not applicable to a classical object because this kind of object

never occupies macroscopically distinct states simultaneously. Then, by performing

interference experiments with massive particles, in particular those of increasing

complexity, one can probe the borderline between these incompatible descriptions

and shed some light on one of the cornerstones of quantum physics.

Matter wave interferometry has largely been studied in the last few years. Many

theoretical studies have been done around the mesoscopic systems.1,2 Mesoscopic

objects are neither microscopic nor macroscopic. They are generally systems that

can be described by a wavefunction, yet they are made up of a significant number

of elementary constituents, such as atoms. Well-known examples these days are
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fullerene molecules C60 and C70, which are expected to behave like classical parti-

cles. Nonetheless, the quantum interference of these molecules has been observed.3

In these experiments, also done with cold neutrons, thermally produced beams are

collimated, diffracted by a grating, and then detected on a distant screen. The pat-

tern so produced shows a typical interference profile of wave phenomena slightly

attenuated.

Usually, the main problem in the analysis of interference experiments is to es-

tablish exactly which are the causes for the loss of spatial coherence observed in

the reduction of the visibility fringe of the interference pattern therein. Macro-

scopic quantum states are never isolated from their environments.4 They are not

closed quantum systems, and therefore, they cannot behave according to the unitary

quantum-mechanical rules. Consequently, these so often called “classical” systems

suffer a loss of quantum coherence, which is absorbed by the environment. This

decoherence destroys quantum interferences. For our everyday world, the timescale

at which the quantum interferences are destroyed is so small that, in the end, the

observer is able to perceive only one outcome, i.e., a classical world. As far as we

can see, decoherence is the main process behind the quantum to classical transi-

tion. Formally, it is the dynamic suppression of the interference terms induced on

subsystems due to the interaction with an environment.

In principle, some incoherence (lack of coherence) effects can be imputed to

the passing of the particle through the slits, such as vibrations or Van der Waals

interactions,5 or the difference in size of the slits.6 In the present work, we shall not

consider such effects as they are, in general, negligible under suitable experimental

conditions. We shall consider experiments where coherent states of massive particles

are well-prepared and the diameter of the particles are smaller than the width of

the slits in order to avoid the consideration of the above-mentioned effects.

In matter wave interferometry experiments, several losses of spatial coherence

affect the particle beam during its evolution, with a consequence of a fringe visibility

reduction of the detected intensity pattern. These dynamic decoherence effects can

be imputed to collisions with the air molecules or thermal photons, for example.

Formally, decoherence appears as soon as the partial waves (the wavefunction of

the subsystem, i.e., massive particle) shift the environment into states orthogonal

to each other. However, the loss of spatial quantum coherence can alternatively

be explained by the effect of the environment over the partial waves, rather than

how the waves affect the environment. It is a consequence of the entanglement

between the system and its environment. The loss of spatial coherence can also

be originated in the angular divergence, the non-monochromaticity of the beam

and the randomness in the emission or arrival of the particle (mainly related to

the experimental difficulty in the production of the same initial state for all the

particles). This randomness gives rise to a fluctuating phase φ and therefore, the

interference term appears multiplied by a factor eiφ. The effect can be directly

related to the statistical character of φ, in particular in situations where an external

potential exerted on the partial waves is not static. We associate these effects to
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the dephasing process. Yet more importantly, any source of stochastic noise would

create a decaying coefficient. In this way, the uncertainty in the phase produces

a decaying term that tends to eliminate the interference pattern. This quantum

suppression is due to the presence of a noisy environment coupled to the system,

and can be represented by the Feynman-Vernon influence functional formalism.7

Nonetheless, it is relevant to explain the quantum-to-classical transition in a

unified framework, since the understanding of the decoherence (or dephasing) phe-

nomena points out the crucial role played by the environmental interaction in de-

termining whether a quantum particle shows wave behavior. Thus, there is a need

to theoretically quantify the effect of decoherence (or dephasing) on the observed

interference pattern. It is quite intuitive that the resulting pattern will be an inter-

play between the strength of the coupling to the environment, the slit separation

and the distance the particle travels from the slit to the screen. The decoherence

effects on two-slit experiments have been theoretically analyzed by treating the ef-

fect of the environment using a phenomenological model in Refs. 1 and 8. In Ref. 9,

the authors described theoretically the effects on the interference pattern, assuming

that the test particle develops a quantum brownian motion and solving the corre-

sponding master equation, neglecting in the end the dissipation of the environment

on the system. Contrary to these studies, the authors10 stated that the dynamic

decoherence does not play any role in the visibility fringe reduction, and blamed

the latter on the incoherence of the source.

In the present paper, we study the visibility fringe reduction in the interference

pattern of experiments with particles, such as fullerenes and cold neutrons. The

questions to be addressed are: how long can we observe before decoherence or de-

phasing effects destroy the interference pattern of massive particles? How much is

the visibility fringe reduced in these experiments, and which are the possible agents

of decoherence to take into account when modeling these experiments? Therefore,

in this paper, we shall study both the dephasing effects due to a random variable

(in our case the particle’s emission time) and the dynamic decoherence process

obtained from a first principles model. Even though phenomenological models of

environmental decoherence successfully fit experimental data, we stress that a com-

plete description of the interaction between system and environment is needed in

order to obtain a well-defined quantum to classical transition.

The paper is organized as follows. In Sec. 2, we present the different decoherent

agents that can be used to model this type of experiments and develop the theoret-

ical frames to study how these agents affect the interference pattern. In Sec. 3, we

introduce the numerical tools used in order to quantify the visibility fringe reduc-

tion in the pattern of an interference experiment. This is done using both analytical

and numerical results. Section 4 contains an application of the models described

in the previous sections to real matter wave interferometry experiments performed

with cold neutrons. Finally, in Sec. 5, we include our final remarks.
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2. Theoretical Analysis

2.1. Two Gaussian localized wave packets

We shall study a typical interference experiment with particles of mass M diffracted

by a grating and then detected on a distant screen. The particle leaves the grating

and travels a distance L in the y-direction until it reaches the screen in a time

tL = ML/p0, where p0 is the moment’s component in that direction. It is important

to note that, in order to observe an interference pattern on the screen, particles

should be coherent in the x-direction, whereas, the dynamics in the y-direction

can be that of a free non-interacting particle. Hence, the experiment starts by

the preparation of the initial state that emerges from the slits. Initially, we may

reasonably assume that we have a coherent superposition of the two wave packets,

centered at each location of the respective slits and factorized as9,11

Ψ(x, 0) = (φ1(x, 0) + φ2(x, 0)) ⊗ χ(y, 0) ,

where |φ1|2 and |φ2|2 correspond to the probability amplitudes for the particle to

pass through slit 1 and slit 2 (in the x-axis), respectively, while χ(y, t) represents

the Gaussian wave function in the y-direction (where no superposition is needed).

Note that we are assuming translational invariance in the z-axis.11

The interference pattern, in any case, corresponds to the probability distribution

of the time evolved wave function

P (x, t) =
(

φ1(x, t)∗φ1(x, t) + φ2(x, t)∗φ2(x, t) + φ2(x, t)∗φ1(x, t)

+ φ1(x, t)∗φ2(x, t)
)

|χ(y, t)|2 , (1)

which is the diagonal part of the density matrix defined as ρ(x,x′, t) =

|Ψ(x, t)〉〈Ψ(x′, t)|.
When the system is closed, the qua ntum states of the system evolve according

to the Schrödinger equation. In such a case, it is easy to show that the position

probability distribution on the screen at a given time t is:

P (x, t) =
(

|φ1(x, t)|2 + |φ2(x, t)|2 + 2Re(φ∗

1(x, t)φ2(x, t))
)

|χ(y, t)|2 . (2)

However, when the system is open, it interacts with an environment and its evo-

lution is plagued by nonunitary features such as fluctuations and dissipation, no

matter how weak the coupling that prevents the system from being isolated is. Par-

ticularly, decoherence, as we mentioned in the preceding section, is the dynamic sup-

pression of the interference terms induced on subsystems due to the interaction with

an environment. For a superposition of localized wavepackets (which best describes

massive particles), the initial (t = 0) four terms of the density matrix ρ(x, x′, 0) =

φ1(x, 0)∗φ1(x
′, 0) + φ2(x, 0)∗φ2(x

′, 0) + φ2(x, 0)∗φ1(x
′, 0) + φ1(x, 0)∗φ2(x

′, 0) corre-

spond to four peaks. Decoherence arguments show that the off-diagonal terms die

out due to the interaction with the environment. As the interference pattern de-

pends on the diagonal components of the density matrix, it is not obvious if the
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suppression of the coherences of the density matrix due to the decoherence pro-

cess also corresponds to a disappearance of the interference pattern. In the case of

open systems, the object of study is the reduced density matrix ρr(x, x′, t) of the

subsystem (massive particle) which satisfies a master equation (see below).

Initially, we can assume that the environment and the total wave function of

the system factorizes as Ψ(x, 0) = [φ1(x, 0)+φ2(x, 0)]χ(y, 0)ζ(X, 0), where we have

introduced a new wave function ζ(X, t) to describe the state of the environment.

The interference pattern at a given time t on the screen is now given by:

P (x, t) = ρr(x, x, t)|χ(y, t)|2

=
(

|φ1(x, t)|2 + |φ2(x, t)|2 + 2Γ(t)Re(φ∗

1(x, t)φ2(x, t))
)

|χ(y, t)|2 (3)

where Γ(t) encodes the information about the statistical nature of noise, since

it is obtained after tracing out the degrees of freedom of the environment. It is,

in general, an exponential decaying coefficient which suppresses the interference

terms in a decoherence time scale tD. It is important to stress that in this overlap

factor Γ(t), we can include not only the dynamical decoherence effects, but also

the dephasing ones induced on the subsystem due to a coupling to an external

reservoir.7

2.2. Different decoherent agents

In order to complete the analysis, we need to identify the possible “decoherent”

agents so as to estimate the overlap factor Γ(t) for the different types of environment

considered when modeling a two slit experiment. There are many studies in the

literature that blamed the reduction of the visibility fringe on different causes:

from the irregularities of the grating (these are named incoherence effects, and they

are not really dynamical decoherence since they are related with the source or the

preparation of the initial state) to the scattering of the massive particles by air

molecules, to the dephasing generated by the collimation of the beams.

A valid assumption, although a rather simplified version of the real problem, is

the implementation of the model of Joos and Zeh, hereafter called the scattering

model,12 in order to study the dynamics of the test particles moving in a quantum

medium. This model, which is basically a phenomenological description of processes

inducing loss of coherence in a quantum system, considers that the reduced density

matrix of the system evolves autonomously according to a Markovian-type master

equation (see also Refs. 13 and 14)

i
∂ρr

∂t
= [H, ρr] − iΛ[x, [x, ρr]] . (4)

The effect of the environment is summarized by a collision term, added to the free

dynamics of the system, which takes into account the decoherence in the coefficient

Λ but neglects dissipation (see discussion in Refs. 15 and 16). As an example, in

Ref. 11, the authors consider Λ = Λair + Λphotons, and state that the cause of de-

coherence in this type of experiments might be the scattering of the particles by
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air molecules and thermal photons during their flight from the slits to the screen.17

Equation (4) corresponds to the many-scatterer or high temperature limit of a more

general equation.18 Consequently, for this model, the effect of the environment is

encoded in Γ(t) = exp(−Λt) (Λ is phenomenologically estimated through the wave-

length and scattering cross section of the particles) and only considers the dynamic

monitoring of the environment over the subsystem (i.e., dynamic decoherence based

on a phenomenological model).18 As the contrast of the interference pattern is pro-

portional to the coherence between the two paths, reduction in the contrast will be a

direct indicator of decoherence. Therefore, spatial coherence loss of a superposition

state is due to scattering events. In the many-scatterer limit, Eq. (4) agrees with

the data. Thus, decoherence is exponential with time and with the path separation

squared, as decoherence theory usually predicts. In this context, other decoherence

models can be applied, as the one by Hornberger, Sipe and Arndt,19 which uses the

phase space description provided by the Wigner function to explain decoherence

effects in a matter wave Talbot–Lau interferometer; or the more recent works by

Hornberger on the formulation of the master equation for a quantum particle in

a gas.3 Even though we shall not consider the Fraunhoufer limit, it is important

to note that in Ref. 21, the thermal limitation of far-field interference has been

reported.

Another approach, which is a dephasing model, might be to consider the influ-

ence of the external classical time-dependent electromagnetic field on the exper-

iment, as we have previously done in Refs. 22 and 23. The interaction between

the particles (electrons or neutral particles with permanent dipole moments) and

classical time-dependent fields induces a time-varying Aharonov phase. Therein,

we included a random variable t0, which is defined as the particle’s emission time.

This variable produces a fluctuating phase φ which, averaged in time, produces a

decaying term that reduces the fringe visibility of the interference pattern. In this

way, the uncertainty in the phase originates from decoherence effects caused by the

experimental difficulty of producing the same emission time for all particles, and is

estimated as

F = 〈eiφ〉 = lim
T→∞

1

2T

∫ T

−T

dt0 exp{i[A cos(ωt0) + B sin(ωt0)]} = J0(|C|) , (5)

where J0 is the Bessel function. The modulus of complex number C = A + iB

measures the degree of dephasing. The overlap factor F encodes the information

about the statistical nature of noise. Therefore, classical or quantum noise makes

F less than 1, and the idea is to quantify how slightly it destroys the particle

interference pattern. Hence, in this case, Γ ≡ F . Notably, in this approach, the

effect of the environment is constant throughout the experiment, since Γ is obtained

after averaging in time and therefore, does not depend upon time.

Finally, as we have previously mentioned, generally, the passage of the parti-

cles through the grating can produce vibrations, or other kinds of interactions with

the walls of the grating, which are able to corrupt the visibility of the interference
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pattern due to alterations in the initial coherence of the superposition. Moreover,

the finite size of the grating and the differences in the slit aperture can attenu-

ate the visibility of the interference fringes, especially in the case of complex (very

large) molecules.19 In the present article, we shall only concentrate on modeling the

interaction of the interfering particles and their environment, from a microscopic

quantum level. In this case, the dynamics of the test particles can be modeled by

the quantum Brownian motion (QBM),24 and the reduced density matrix of the

system satisfies a master equation (see Eq. (7) below) with the diffusion coefficient

D(t) = 2Mγ0kBT for an ohmic environment in the high temperature limit (when

experiments at room temperature are made with large molecules, i.e., fullerenes

and cold neutrons, this last approximation is valid). Not only is the diffusion con-

sidered in this model environment, but also the dissipation (through the coefficient

γ(t)). Then, in this case, Γ(t) = exp(−Dt) represents the noise induced environ-

mental effect on the system due to the interaction with the environment. Scattering

models or no-damped motion are just approximations obtained from our general

framework.25 More especulative types of environments can be considered, such as

space-time foams, quantum gravity effects, etc; but they are out of the scope of our

work, since there is no experimental evidence of such decoherence agents on matter

waves (see for example Refs. 26 and 27)

3. Numerical Analysis

3.1. Interference pattern

In this Section, we shall study the interference pattern produced by two well-

localized Gaussian wave packets, initially given by

Ψ(x, 0) = N

(

exp

(

(x − L0)
2

4σ2
x0

)

+ exp

(

(x + L0)
2

4σ2
x0

))

exp

(

− y2

4σ2
y0

− ikyy

)

(6)

where 2L0 is the initial separation of the center of the wave packets, σ2
x0 and σ2

y0

are the initial width of the packet in the x and y-axis, respectively, and ky is the

initial moment of the particle in the y-direction. It is important to note that L0,

σx0, σy0 and ky are all free parameters that have to be tuned with the experimental

data. In addition, we assume that ∆py � py, so that the moment component is

sharply defined and the wave packet has a characteristic wavelength λdB associated

λdB ∼ ~/py � ∆y.

We shall study the effect of decoherence on the interference pattern of an ex-

periment with massive particles, by coupling our subsystem (particles) to a model

environment. As we mentioned above, the experiment consists of massive particles

(represented by the superposition of two localized wave packets) that are diffracted

by a grating and registered later on a screen at a distance L. As we have already

stated, the dynamics in the y-direction simply serves to transport the particles

from the slit to the screen and can therefore be considered as a “free” evolution.

However, in the x-direction, we need to consider a decoherent agent in order to
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study the effect of decoherence on the interference pattern observed on the screen.

Thus, hereafter, we shall consider that the environment is a set of non-interacting

harmonic oscillators and the dynamics of the test particles is modeled by a QBM.

As noted in the preceding section, this behavior can be blamed on any interaction

by which the particles-system becomes entangled with a quantum environment. In

order to study the interference pattern registered on the screen at a later time tL,

we need to obtain the evolution in time of the reduced density matrix ρr(x, x′, t),

which is given by the following master equation

∂ρr

∂t
=

i~

2M

(

∂2ρr

∂x2
− ∂2ρr

∂x′2

)

− D(t)

4~2
(x − x′)2ρr − γ(t)(x − x′)

(

∂ρr

∂x
− ∂ρr

∂x′

)

+ 2f(t)(x − x′)

(

∂ρr

∂x
+

∂ρr

∂x′

)

, (7)

where γ(t) is the dissipative coefficient (proportional to the square of the coupling

constant to the environment), D(t) the diffusive coefficient and f(t) the coeffi-

cient responsible for the anomalous diffusion. Equation (7) has been obtained by

assuming the environment to be in equilibrium, at a temperature T. In the case

that the system is coupled to an ohmic environment in the high temperature limit

(kBT � ~ω), these coefficients are constant γ(t) = γ0, D(t) = 2Mγ0kBT and

f(t) ≈ 1/kBT .24 We restrict ourselves to the use of the ohmic bath, since it is the

type of environment which produces the correct limit for classical dissipation. It is

the most studied case in the literature and produces a dissipative force that, in the

limit of the frequency cutoff ωcutoff → 0, is proportional to the velocity. In order

to model more complex interactions (like charges with fields), it could be more ap-

propriate to use a supraohmic spectral density. Nevertheless, it is well-known that

dynamic decoherence in the high temperature limit occurs on a similar time-scale

both for ohmic and supraohmic environments.24,28 This is the reason why we shall

only concentrate on the simplest case. General types of environments can be easily

included in our approach, but it is not possible to obtain Eq. (4) as a limit from

Eq. (7) for general non-ohmic environments.

It is important to stress that Eq. (4) can be obtained from Eq. (7) in the high

temperature limit of an ohmic environment (neglecting dissipation) for the Marko-

vian case, if written in the Lindblad form. However, master equation Eq. (7) refers

to a more general movement that can be used for all temperatures and spectral

densities, even to study the dynamics of the test particle at the zero tempera-

ture (non-Markovian) limit.29,30 Yet more interestingly, this formulation verifies

the fluctuation-dissipation theorem for a general system in thermal equilibrium.25

It is also important to note that the high temperature limit approximation is well-

defined only after a time scale of the order of 1/(kBT ) ∼ γ0/D, “ensuring” the

positivity of the reduced density matrix ρr(x, x′, t).15

Thus, as we mentioned above, in order to study the dynamics of these two

packets that best describes the massive particle, we need to solve the master equa-

tion Eq. (7). The corresponding density matrix that arises from the initial state
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given by Eq. (6) is

ρr(x,x′, 0) = ρr(x, x′, 0) ⊗ ρr(y, y′, 0)

= 2N2
(

cosh(2L0(x + x′)) + cosh(2L0(x − x′))
)

χ(y, 0)∗χ(y′, 0) . (8)

The solution in the x-direction can be well-reproduced by employing a Gaussian

density matrix using the Born approximation.11,12 It is worth noting that this

solution does not imply far-field or Fraunhofer approximation.

ρr(x, x′, t) = e−N(t) exp{−A(t)(x − x′)2 − iB(t)(x2 − x′2) − C(t)(x + x′)2} (9)

where e−N(t) ensures the conservation of trace, A(t) describes the range of co-

herence, while C(t) specifies the extension of the ensemble in space. All functions

A(t), B(t), . . . are real for the sake of Hermicity. In our case, we shall study the

dynamical evolution of two Gaussian wave packets located at x = ±L0. Therefore,

we have to replace x → x + L0 and x → x − L0 in Eq. (9) and superimpose both

ansatzs in order to represent the dynamics of the two packets. In that case, the

solution we shall use is

ρr(x, x′, t)=2e−N(t)e−4L2

0
C(t) exp{−A(t)(x − x′)2− iB(t)(x2− x′2) − C(t)(x + x′)2}

× (cosh[4L0C(t)(x + x′) − i2L0B(t)(x − x′)]

+ e−4L2

0
(A(t)−C(t)) cosh[4L0A(t)(x − x′) + i2L0B(t)(x + x′)]) . (10)

We have numerically solved Eq. (7) for a free particle, assuming that its dynam-

ics is modeled by QBM (in the x-axis) using a standard adaptative-step-size fifth-

order Runge–Kutta method with initial condition A(0) = 1, B(0) = 0, C(0) = 1

in units of ~ = 1 = M . By doing this, we obtained the dynamic evolution of the

coefficients A(t), B(t), C(t) and N(t). All results were found to be robust under

changes in the parameters of the integration method.

The intensity registered on the screen at a given time t is proportional to the po-

sition probability (diagonal term of the reduced density matrix) P (x, t) ≈ ρr(x, x, t).

In the case of the initial state mentioned above, the intensity can be numerically

obtained

P (x, t) = e−Ñ(t)e−4C(t)(x2
−L2

0
)
(

cosh(8C(t)L0x) + Γ(t) cos(4B(t)L0x)
)

, (11)

where we have absorbed the decaying term coming from the Gaussian wave in the y-

direction |χ(y, t)|2 in the normalization e−Ñ(t), and Γ(t) is a decaying exponential

Γ(t) = e−4L2

0
(A(t)−C(t)) (provided A(t) − C(t) > 0). We know that the dynamic

evolution of the interference pattern at a distance L in the case of the system is

isolated. The two initial wave packets start to evolve in time and spread in the x-

direction. Immediately, they start to develop an interference pattern. In the case of

the system interacting with a very strong environment, it is clear that for the same

times (or even shorter ones), the interferences cannot be observed, because they

are almost immediately destroyed. As the evolution continues (for a fixed length of

the screen), the two packets continue spreading. After some time, we can no longer



November 14, 2007 12:25 WSPC/140-IJMPB 03806

4668 P. I. Villar & F. C. Lombardo

observe two packets on the screen because both waves turned into one (because of

the spread of each packet). For this type of environment, no interference fringes

will be observed for these thought experimental times.

3.2. Estimation of the decoherence time and fringe visibility

reduction

We shall estimate the decoherence time tD, i.e., the timescale for which the in-

terferences are mostly destroyed, as ΓD(tD) = exp(−D∆x2tD) ∼ 1/e. It is easily

deduced that tD ≈ 1/(D∆x2), with ∆x2 = (x − x′)2 and D = 2Mγ0kBT for the

ohmic environment in the high temperature limit in units of ~ = 1, as shown on

the left side of Fig. 1.

Clearly, since the decoherence timescale depends inversely on the value of

Mγ0kBT , the stronger the coupling to the environment and the hotter the en-

vironment, the shorter this timescale.

On the right side of Fig. 1, we can see the effects of decoherence on the in-

terference pattern of a thought two-slit interference experiment with particles. In

plot (a), we show the interference pattern registered on a screen at a distance L in

a time tL = 0.2 s when the system is closed, i.e., there is no interaction with an

environment, when the system is open. In this latter case, the coupling constant

is γ0 = 0.01, which represents a strong environment because all interferences have

already been destroyed (whereas they are present in the isolated case. In (b), we

present a latter time (tL = 0.35 s) for different coupling constants to the environ-

ment. We can see that for γ0 = 0.01 s−1, the two wave packets are spreading and

will end up superposing in only one final wave packet, since the environment has

destroyed the interference in a short timescale. However, for the other two envi-

ronments, with smaller coupling constants, we can see that the interferences are
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Fig. 1. On the left: Evolution in time for the decaying exponential Γ(t) that destroys the inter-
ferences of the system for different couplings to an environment in the high temperature limit.
We use units: ~ = c = M = 1. Parameters are: L0 = 2 s−1, σx0 = 0.5 s−1, kBT = 300 s−1. The
stronger the coupling to the environment γ0 is, the sooner decoherence effects take place (for a
fixed value of kBT and L0). On the right: Interference pattern registered on the screen at a time
tL for the closed and open system. In (a), we have considered the case of the isolated subsys-
tem (solid red line) and the case of coupling to a strong environment with γ0 = 0.01 s−1 (blue
dot line). In (b), we have considered three different environments: γ0 = 0.01 s−1 (blue dot line),
γ0 = 0.001 s−1 (red solid line) and γ0 = 0.0001 s−1 (black triangle line). Distance is measured in
units of frequency.
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still there. Notably, the pattern remains unchanged but the visibility is consider-

ably reduced as Mγ0kBT increases. It is important to note that the visibility is

considered attenuated when there is a loss of contrast between a maximum and

a minimum with respect to the interference pattern when the system is isolated,

i.e., the visibility is reduced when the “minima” are not exactly zero as seen in

Fig. 1.

At this stage, it is appropriate to quantify the loss of contrast of the interference

pattern. This is done by defining a function called fringe visibility ν, a quantity of

particular importance in matter wave interferometry

ν =
Imax − Imin

Imax + Imin
,

where Imax and Imin represent the maximum and minimum in neighboring fringes,

respectively. It is easy to note that the fringe visibility can be well-approximated by

ν(t) ∼ |ρint(x, x, t)|
ρ11(x, x, t) + ρ22(x, x, t)

,

where ρii = |φi(x, t)|2, with i = 1, 2 and ρint the interference terms. The values of

this function range between 0 (no interference fringes) and 1 (total visibility of the

interference fringes). In our case, the visibility fringe can be numerically obtained as

ν(t) ≈ Γ(t)

cosh(8L0C(t)x)
.

Clearly, the visibility fringe goes down as tL, i.e., the observation time is larger

than the decoherence time tD. However, if we succeed in performing our two slit

experiment in a time tL < tD at a fixed room temperature kBT , we can see that

the visibility fringes depend on γ0 as shown on the left picture in Fig. 2. This is so,

because the decoherence time depends inversely on the coupling constant. Not only

can we check the dependence upon the coupling constant, but on the separation of

the slits as well.
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Fig. 2. Left: The visibility fringe ν(t) plotted against γ0 for a fixed tL < tD at room temperature
(γ0 is in units of frequency). Middle: The visibility fringe ν(t) as a function of the distance
between the slits L0 for a fixed time for kBT = 300 s−1, γ0 = 0.001 s−1, tL = 0.05 s and
σx0 = 0.5 s−1. All the decoherence timescales corresponding to the different values of L0 (in units
of s−1) are checked to be longer than tL. Right: Time evolution for the visibility fringe ν(t) for
kBT = 300 s−1, γ0 = 0.001 s−1, L0 = 2 s−1 and σx0 = 0.5 s−1. The estimation of the decoherence
time tD ∼ 1/(Mγ0kBTL2

0
) = 0.41 s coincides with the timescale at which the visibility starts to

decrease towards a null value.
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In the middle of Fig. 2, we show the visibility fringe as a function of L0. Therein,

it is clear that the visibility fringe goes down as the distance between the slits

increases. Note that as we are plotting ν(t) for a fixed value of tL and σx0, then

we cannot vary L0 much, since we are always assuming that σx0 ≤ L0. We can

also study the time evolution of the visibility ν(t), which is shown on the right

side of Fig. 2. Therein, we have plotted the evolution in time for the visibility of

the first and second minimum and the first maximum of the interference pattern.

The behavior exhibited is quite appealing. For short times, the visibility increases

from zero to a maximum value because the interferences start to develop at that

short timescale, but are not present at t = 0 (since the wave packets are initially

separated and have to spread so as to generate the interferences. This maximum

value coincides with the estimated decoherence time tD. Then, the visibility starts

to decrease, since the destruction of the interferences is taking place. Clearly, the

decoherence is a dynamic process (the continuous monitoring of the environment

over the test particles) and the estimated decoherence time is when the interferences

have been reduced by about 70%, i.e., Γ(tD) ∼ 1/e (see Fig. 1). However, that does

not mean that the Wigner function will be positive by that time. If one estimates

the decoherence time as the one in which the interferences disappear completely,

the estimated timescale will be longer, and one might naively impute the loss of

visibility on another cause but decoherence.10 Note that the visibility is a quantity

that measures the loss of contrast of the interference fringes. Then, it is expected

that those with the bigger contrast suffer from this attenuation more, as seen in

Fig. 2. Clearly, the observation time tL must be shorter than the decoherence time

in order to observe the interference pattern. The visibility function ν(t), in this

case, tends to zero for longer times.

It would be interesting to study the visibility function for the other environmen-

tal models. In the case of the scattering model, the behavior of ν(t) as a function

of the diffusion term Λ and the square of the width of the slit L2
0 is qualitatively

similar to that of the QBM because the expression of ΓΛ(t) = exp(−Λ∆x2t) is

formally the same. Then, we expect to find that the visibility decreases as Λ and

L2
0 increases, since the decoherence time shall be shorter.18

Nonetheless, the visibility function for the study of the dephasing effects,

i.e., when considering the interaction of the massive particle with the external

time dependent electromagnetic field, is not that similar to the other two men-

tioned throughout the paper. In particular, ΓC = J0(|C|) is constant in time, as

we estimated it in Refs. 22 and 23 for the experimental data of both neutrons

and fullerenes. Therein, we calculated the quantity C for these massive parti-

cles and observed that, contrary to what might be naively expected, in thought

and real experiments such as the one reported in Ref. 3, Cfullerenes ∼ O(1). How-

ever, for neutral particles with permanent dipole moment, this value is much lower

Cneutrons ∼ O(0.01) −O(0.1). Therefore, on the left side of Fig. 3, we present the
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Fig. 3. Left: Time evolution for the visibility function νC(t) for neutrons (Cneutrons = 0.1) and
fullerenes (Cfullerenes = 1 and Cfullerenes = 2) in the presence of an external time dependent
electromagnetic field. The curves are for the first minimum and maximum of the interference
pattern. We can see that all curves reach an asymptotic limit that is not zero contrary to the
other two environmental models (see Fig. 2). Right: The visibility fringe νC(t) as a function of the
separation of the slits L0 for a fixed time for time tL = 0.20 s, tL = 0.05 s and σx0 = 0.5 s−1.
The curves shown are for the first maximum of the interference pattern in the case of neutrons
and fullerenes. L0 is in units of s−1.

time evolution of the visibility function νC(t) defined as

νC(t) =
J0(|C|)

cosh(8L0C(t)x)
.

Therein, we show the time evolution of the first maximum and minimum of

the interference pattern for different values of the C factor. It is easy to note that

the development of the interferences happens in the same timescale of Fig. 2 (for

the same value of L0 and σx0) but in all cases, reach a different asymptotic value

compared to the ν(t) function. The fact that νC(t) has an asymptotic limit could

really be of much use in experiments where this effect is of importance, such as

fullerenes, since once this limit is reached, the observation time tL can be any

subsequent time, for the visibility function remains steady.

Another feature of this visibility function νC(t) worth studying is its dependence

upon the separation of the slits L0. On the right side of Fig. 3, we present this

behavior. Clearly, the behavior exhibited therein is qualitatively different from that

shown in Fig. 2 for the visibility function ν with ΓD(t).

Finally, in Fig. 4, the interference pattern for the experimental data reported

in Ref. 3 for two-slit experiments with massive particles C70 is shown. Therein, we

have considered the unitary and non-unitary evolution (for the three environmental

models ΓD(t), ΓΛ(t) and ΓC) of the particles. For these massive particles, we can see

that the interference pattern is always attenuated when the system is open. What is

more significant, is that the effect of ΓC can be as important as the other two most

widely known model environments (in agreement with Ref. 10 but using a different

model for dephasing) and enough to model the real experiment. For the values of

Fig. 4, and asking tD > tL (and correspondingly tΛ > tL), we obtain a constraint

for the free parameters of each model: γ0 < 7.14×10−8 [s−1] (as estimated in Ref. 9)
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Fig. 4. The interference pattern (ν ∼ 0.68) registered on the screen for the unitary evolution and
the nonunitary evolution considering the different model environments for a double slit diffraction
experiment with massive particles C70. The curves are done with the experimental data reported
in Ref. 3. The values used for the plot: γ0 = 2.6 × 10−8 s−1, Λ = 2.8 × 1015 s−1 and C = 1.

and Λ < 7.44 × 1015 [m−2s−1] (approximately the value used in Ref. 11) for the

experimental data at room temperature reported in Ref. 3.

We want to emphasize that Eq. (4) phenomenologically models the decoherence

effects, neglecting the dissipative process. The value we obtained for γ0 is extremely

small, so a valid question might be if it is necessary to include dissipation in the

model. We state that it is positively in order to have a complete and formally correct

description of the process. By including the term proportional to γ(t) in Eq. (7),

we are assuring the fulfilment of the fluctuation-dissipation theorem, also known

as Einstein formula in the high temperature limit. It is known that the diffusive

coefficient D = 2Mγ0kBT is proportional to γ0. In this way, if γ0 happens to be zero

(which means no dissipation), the diffusive term would also be zero. The correctness

of the formulation can also be checked in the fact that even though γ0 is extremely

small, Mγ0kbT can be very large. In such a case, the decoherence effects would

be very important whereas the dissipative interaction between the particles and

the environment can be ignored. In other words, small dissipation implies that the

particles could have a neglible damping term in the semiclassical Langevin equation

of motion along the x̂ direction, but the existance of noise ensures that decoherence

shall be effective.

It is important to stress that all these environmental models consider one and

only one “decoherent” agent influencing the interference experiment. However, all

these effects can be considered together to be present in a two-slit experiment. In

such a case, the attenuation factor Γ would be Γ ≈ ΓΛ + ΓD + ΓC . The effect

of the environment would be equal to the sum of the three factors (as seen in

Fig. 4). Therefore, it is enough to consider the biggest one (unless they are all the
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same order of magnitude). All in all, it is necessary to remark that decoherence

effects do play a crucial role in the fringe visibility reduction. On the one hand,

the authors in Ref. 10 said that the incoherence of the source was to blame for the

fringe visibility reduction. On the other hand, the authors in Ref. 8 developed a

phenomenological theoretical model where decoherence was a priori introduced by

assuming an exponential damping of the interferences. So far, we have shown that

the scattering of the massive particles with the air molecules and dephasing (for

example introduced by the random emission time) of the experimental setup are all

responsible for the fringe visibility reduction and approximately of the same order

of magnitude.

4. Application: Experimental Data for Neutrons

In this section, we shall use the existing experimental data31,32 to reproduce the

observed patterns for neutral cold atoms.

If we consider that tL = L/v = MλdBL/(2π~) and tL � Mσx0L0/~, then the

position distribution on the screen at this time tL can be well-approximated by

P (x, tL) =
8πσ2

x0N
2

λdBL
exp

{

−
(

2
√

2πσx0x

λdBL

)2}

×
[

1 + Γ(tL) cos

(

2πL0x

λdBL

)]

, (12)

where Γ(tL) depends on the model environment we want to use to describe the

conditions in which the two-slit experiment is being evaluated in the observation

time. In this way, Eq. (12) describes the intensity on the screen as a function of

the experimental parameters, i.e., the mass M of the cold neutrons, the associated

wavelength λdB, the distance to the screen L, the distance between the slits L0

(assuming the two slits are as similar as possible) and the initial width of the wave

packet σx0. All these values can be found, for example, in Ref. 8 for cold neu-

trons. Note that Eq. (12) is equivalent to Eq. (11), identifying our time dependent

theoretical parameters with the real experimental ones. Thus, we have for a fixed

observational time tL (making the same assumptions as in the above section)

B(tL) =
2π

λdBL
and C(tL) =

(

2
√

2πσx0

λdBL

)2

.

In the case we studied in the preceeding section, assuming that the dynamics

of the test particle can be modeled by a quantum Brownian motion, the expression

for Γ(tL) is ΓD(tL) = exp(−tL/tD) with tD = 12~
2/(Mγ0kBTL2

0) where we have

reincorporated ~. In the estimation of this time we have considered that ∆x2 ∼ L2
0,

which in fact is an underestimation of the decoherence time for lengths bigger than

L0. As the experiment is done at room temperature, the only free parameter is the

value of γ0. On the other hand, if the model environment were assumed to be the

one of the scattering with air molecules, where the effects of the environment are

included in the collision term Λ, then the expression for Γ(tL) would be ΓΛ(tL) =

exp(−tL/tΛ) with tΛ = 3/(ΛL2
0).

The other possible environmental model mentioned in Sec. 2.2 was to consider

the interaction with the charged or neutral (with permanent dipole moment) parti-
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Fig. 5. The interference pattern (ν ∼ 0.57) registered on the screen for the unitary evolution
and the nonunitary evolution considering the different model environments. Experimental results
obtained by Zeilinger et al.33 for the double slit diffraction of cold neutrons are plotted with blue
star dots. The values used for the plot: γ0 = 5.0 × 10−12 s−1, Λ = 5.5 × 1011 s−1.

cles with the electromagnetic field. This is an interaction that is always present, and

can never be turned off, although it is sometimes possible to neglect it. As we pre-

viously studied in Refs. 22 and 23, in the case of neutral particles with permanent

dipole moment, this effect is not so important.

In Fig. 5, we have plotted the interference pattern for the experimental data

reported for experiments with cold neutrons for the isolated and open system.

In this last case, the nonunitary evolution has been considered for the different

environment models mentioned above. We can clearly see that for this case, the

nonunitary evolution when considering the interaction of the cold neutrons with

a time-varying electromagnetic field (orange dots) is exactly superposed with the

unitary one (dotted line). That means that the incoherence effects can be completely

neglected. However, the other two model environments, whose effects are considered

in ΓΛ(t) (black triangle dotted line) and ΓD(t) (red solid line), correctly fit the

experimental data obtained by Zeilinger et al. (blue star dotted line) in Ref. 33.

The fact that the interference pattern is observed implies that the decoherence

time tD (and tΛ) is larger than the observation time tL. That sets us a constraint

to the expected values for γ0 (and Λ), the free parameter in each model. By asking

tD > tL, we have γ0 < 8 × 10−9 [s−1]. In the case of modeling the environment by

a collision term Λ, if tΛ < tL is asked, then Λ < 1.28× 1014 [m−2s−1].

5. Final Remarks

The effect of the environment on the interference pattern of a two-slit interfer-

ence experiment with massive particles has been studied phenomenologically in the

literature.
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However, here we have presented a fully quantum mechanical treatment using a

microscopic model of environment and also a concrete example to include dephas-

ing effects. Therefore, we have studied the effects of decoherence on the interference

pattern of thought experiments and presented an analysis of matter wave interfer-

ometry in the presence of a dynamic quantum environment such as the quantum

Brownian motion model. We have shown the interference patterns and visibility

function ν(t) for thought diffracted free particles and analyzed their dependence

upon different parameters of the model in the high temperature limit (assumption

valid for massive particles interfering at room temperature). As was expected, the

visibility decreases as the value of the diffusion coefficient increases and, in par-

ticular, we showed this effect for different values of the coupling constant γ0 to

the environment. What is more important, we have seen that the visibility fringe

is considerably reduced when considering an open quantum system, although the

structure of the interference pattern remains unchanged.

Yet more importantly, we defined the visibility function νC for a model envi-

ronment previously developed, which describes dephasing effects originated in the

experimental difficulty of producing the same initial/final state for all particles

(i.e., the existence of a random variable such as the particle’s emission time). We

showed that it is qualitatively different than the one commonly found in the litera-

ture and very important in the case of experiments with massive particles such as

fullerenes. In this case, dephasing effects are sufficient to model the attenuation of

the interference pattern observed in the real experiment, whereas in the case of cold

neutrons, these effects are not of such importance. Therefore, in the latter case, we

must consider the decoherence effects by using the corresponding formulation. This

result might have been expected since the interaction of more massive particles with

the external classical field is more important than for those with a smaller mass

where other kinds of interactions seem to prevail.

Finally, the effect of the environment on a two-slit experiment can be modeled

by considering different effects such as the scattering of the massive particles with

the air molecules, the randomness of the arrival or emission times and the presence

of a classical time dependent electromagnetic field. Even though there exist concep-

tual differences in all the cases mentioned throughout the paper, we showed that

all these effects reduce the visibility fringe and can be formally deduced from a mi-

croscopic model (whether the QBM for decoherence effects studied in this paper or

a fluctuating Aharonov–Casher phase studied in our previous contribution). They

are all included in the noise-induced effects introduced in the subsystem when the

latter is coupled to a quantum external environment.
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