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After the classification of the finite-dimensional Nichols algebras of diagonal type [17,

18], the determination of its defining relations [6, 7], and the verification of the generation

in degree-s1 conjecture [6], there is still one step missing in the classification of complex

finite-dimensionalHopf algebraswith abelian group,without restrictions on the order of

the latter: the computation of all deformations or liftings. A technique towards solving

this question was developed in [5], built on cocycle deformations. In this paper, we

elaborate further and present an explicit algorithm to compute liftings. In our main

result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A,

over a cosemisimple Hopf algebra H . This extends [2], where it was assumed that the

parameter is a root of unity of order >3 and that H is a commmutative group algebra.

When the parameter is a root of unity of order 2 or 3, new phenomena appear: the

quantum Serre relations can be deformed; this allows in turn the power root vectors to

be deformed to elements in lower terms of the coradical filtration, but not necessarily

in the group algebra. These phenomena are already present in the calculation of the

liftings in type A2 at a parameter of order 2 or 3 over an abelian group [11, 19], done by

a different method using a computer program. As a byproduct of our calculations, we

present new infinite families of finite-dimensional pointed Hopf algebras.
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2 N. Andruskiewitsch et al.

1 Introduction

1.1 The general context

This is the first article of a series intended to determine all liftings of finite-dimensional

Nichols algebras of diagonal type over an algebraically closed field of characteristic zero

k. The end of this series will also conclude the classification of the finite-dimensional

pointed Hopf algebras with abelian group of group-likes, without restrictions on the

order of the group. The setting, slightly different than in [5], is the following. We fix:

◦ A cosemisimple Hopf algebra H .

◦ A braided vector space of diagonal type (V , c), with a principal realization in
H
HYD, such that the Nichols algebra B(V) is finite-dimensional.

We place ourselves in this more general context in order to contribute to the classifi-

cation of Hopf algebras with finite Gelfand–Kirillov dimension, and more precisely to

those that are co-Frobenius.

A lifting of V ∈ H
HYD is a Hopf algebra L such that gr L = B(V)#H , where gr L is

the graded Hopf algebra associated with the coradical filtration. In other words [1, 2.4],

L is a lifting of V iff there is an epimorphism of Hopf algebras φ : T (V) := T(V)#H → L

such that φ|H = idH and

φ|H⊕V#H : H ⊕ V#H → L1 is an isomorphism of Hopf bimodules. (1.1)

Such φ is called a lifting map. If emphasis on H is needed, then we say that L is a lifting

of V over H ; if H = kG is the group algebra of the group G, then we also say that L is a

lifting of V over G.

The aim of the series is to compute all liftings of every V as Section 1.1. It seems

very hard, and probably not feasible, to give a uniform answer to this problem, that

is compact formulae valid for all V . We proceed then by a case-by-case analysis of the

list in the classification of [18]. Let r1, . . . , rM be the defining (homogeneous) relations of

B(V), computed in [6]; let nj = deg rj. If φ is a lifting map as Section 1.1, then there exists

pj ∈ ⊕
0≤i<nj

Ti(V)#H such that φ(rj) = φ(pj), for all j. Our approach is

♦ to establish the general form of the pj’s, in terms of the rj’s and some

parameters;

♦ to define a Hopf algebra L = T (V)/〈r1 −p1, . . . , rM −pM 〉 for each choice of the

parameters alluded Section 1.1 and to prove that gr L 
 B(V)#H ; and

♦ to show that every lifting can be obtained in this way.
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Pointed Hopf Algebras of Type A 3

In situations considered in previous work [2, 3] the φ(rj)’s belong to H and were

computed recursively, while the remaining points were dealt with by ad hoc manners.

In this series we proceed recursively again but following the strategy in [5], inspired

by [15, 20]; namely, we compute a sequence of quotients of T (V) as cocycle defor-

mations of a parallel sequence of quotients of the form B#H , describing eventually

L = T (V)/〈r1 − p1, . . . , rM − pM 〉 as a cocycle deformation of B(V)#H = T (V)/〈r1, . . . , rM 〉
(see Section 3).

In this paper we compute all liftings for V of Cartan type A, over a root of unit

ξ of order 2 or 3. The case when ξ has order >3 is known for group algebras of finite

abelian groups [2, Section 6]; we extend this to a general cosemisimple Hopf algebra

(see Theorems 1.6, 1.8, and 1.10). There are three reasons to start with Cartan type A.

First, it is the Dynkin diagram of Her all-embracing Majesty [24]. Second, formulae for

the Nichols algebras of this type are much more explicit than for other types. Third,

the experience and results for this type would help to understand and solve the other

types.

1.2 The main result

Let θ ∈ N and I = {1, . . . , θ}. Let V be a braided vector space of diagonal type with basis

(xi)i∈I and braidingmatrix q = (qij)i,j∈I. Let (αi)i∈I be the canonical basis of Z
θ . The braided

Hopf algebra T(V) is Z
θ-graded by |xi| = αi, i ∈ I. Let χ : Z

θ ×Z
θ → k be the bilinear form

defined by χ(αi,αj) = qij, i, j ∈ I; set qαβ = χ(α,β), α,β ∈ Z
θ . The braided commutator is

defined on Z
θ-homogeneous elements u,v ∈ T(V) by

[u,v]c = uv − q|u||v|vu.

Then adc xi(v) := [xi,v]c. Let ξ be a primitive Nth root of unity, N ≥ 2. We fix a braiding

matrix (qij)i,j∈I such that

qii = ξ , qijqji =
⎧⎨⎩ξ−1, |i− j| = 1,

1, |i− j| > 1,
i, j ∈ I. (1.2)

This is a braided vector space of Cartan type Aθ and the corresponding generalized

Dynkin diagram, cf. [18], is ξ◦
ξ−1

ξ◦
ξ−1

ξ◦ ξ◦
ξ−1

ξ◦ . The corresponding

Nichols algebra is indeed the multiparametric version of the positive part of the small

quantum group, or Frobenius–Lusztig kernel, of type Aθ . For i ≤ j ∈ I, we denote
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4 N. Andruskiewitsch et al.

(i j) = ∑
i≤k≤j αk ∈ Z

θ ; clearly {(i j) : i ≤ j ∈ I} is the set of positive roots of the root

system Aθ . The associated Lyndon words are defined recursively by

x(i j) =
⎧⎨⎩xj, i = j,

[xi,x(i+1 j)]c i+ 1 ≤ j,

in T(V) or any quotient thereof. We also need the notation xij = [xi,xj]c, i < j ∈ I. We

now state the presentation of B(V) by generators and relations. Part 1.1 was proved in

[2], inspired by [23]; is from [4].

Proposition 1.1.

(1) Assume that N > 2. Then B(V) is generated by (xi)i∈I with relations

xij = 0, i < j − 1; (1.3)

(adc xi)
2(xj) = 0, |j − i| = 1; (1.4)

xN(i j) = 0, i ≤ j. (1.5)

The distinguished pre-Nichols algebra B̃(V) [8, Definition 1] is generated by

(xi)i∈I with relations (1.3) and (1.4); this is denoted B̂(V) in [2, Section 6.3].

(2) Assume that N = 2. Then B(V) is generated by (xi)i∈I with relations (1.3),

(1.5), and

[x(i−1 i+1),xi]c = 0, 1 < i < θ . (1.6)

The distinguished pre-Nichols algebra B̃(V) [8, Definition 1] is generated by

(xi)i∈I with relations (1.3), (1.4), and (1.6). �

Remark 1.2. Relations (1.6) hold for N > 2, by (1.3) and (1.4).

When N = 2, (1.4) becomes

x2
i xj + q2

ijxjx
2
i = 0, |j − i| = 1.

Since x2
i = 0 by (1.5), (1.4) holds in B(V); thus B(V) is a quotient of B̃(V). �

Remark 1.3. The distinguished pre-Nichols algebra B̃(V) is meant to have the same

set of Poincaré Birkhoff Witt (PBW) generators, hence the same root system, as B(V).
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Pointed Hopf Algebras of Type A 5

By this reason, the choice of the defining relations is performed so as to guarantee this

property. In particular, one needs relations to reorder any pair of PBW generators.

Assume V is of Cartan type A. If N > 3, then this is automatically attained

provided that the quantum Serre relations (1.3) and (1.4) hold (see [2, Lemmas 6.4 and

6.7]). When N = 2, then quantum Serre relations (1.3) and (1.4) are not enough, as we

cannot reorder the PBW generators x(i−1 i+1) and xi, 1 < i < θ ; hence the need of (1.6).

Now, this enlarged set of relations suffices, as it is shown in Lemma 4.1. �

Assume that N > 3. Then, all liftings of V (over a finite abelian group) are classi-

fied in [2, Theorem 6.25]. In this paper, we classify all liftings of V when N = 2 or 3. To

present our main results, we need more notation. Let (gi,χi)i∈I
be a principal realization

of V over H (see Section 2.2); let

� = 〈g1, . . . ,gθ 〉.

For i1, . . . , ik ∈ I distinct, k ∈ N, set

gi1,...,ik := gi1 . . .gik , χi1,...,ik := χi1 . . . χik , xi1,...,ik := [xi1 , [xi2...,ik ]c]c.;
g(i j) := gi,i+1,...,j, χ(i j) := χi,i+1,...,j, i ≤ j ∈ I.

Also, if i < j ∈ I, then let us fix g(j i) := 1, χ(j i) := ε.

1.2.1 Component in �

Here N ≥ 2 is arbitrary. For i ≤ j ∈ I, we set

Cp = Cj
ip = (1 − q−1)Nχ(i p)(g(p+1 j))

N(N−1)/2. (1.7)

If the quantum Serre relations (1.3) and (1.4) are not deformed, then the lifting problem

is equivalent to the following question, which amounts to solving an equation in k� (see

[2, (6-36)], [4, Section 3]):

◦ Find all families (u(i j))i≤j∈I of elements in k�, such that


(u(i j)) = u(i j) ⊗ 1 + gN(i j) ⊗ u(i j) +
∑
i≤p<j

Cj
ipu(i p)g

N
(p+1 j) ⊗ u(p+1 j). (1.8)

The solutions to 1.8 are given in [2, Theorem 6.18]. These are defined recursively on

j − i ≥ 0 [2, 6-40] as elements u(i j)(γ ), for each family (The parameters γij are called μij
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6 N. Andruskiewitsch et al.

(more precisely μα, α a root) in [3]. This is the notation we shall adopt in this article.) of

scalars γ = (γij)i≤j∈I, by

u(i j)(γ ) = γij(1 − gN(i j))+
∑
i≤p<j

Cj
ipγip u(p+1 j)(γ ). (1.9)

If (u(i j)(γ ))i≤j∈I is a solution, then the quotient of T(V)#H by the ideal generated by

r = 0, r (generalized) quantum Serre relation;

aN(i j) = u(i j)(γ ), i ≤ j ∈ I,
(1.10)

is a lifting of V , by Theorems 1.6, 1.8, and 1.10. It was shown in [2, 6.25] that all liftings

arise like this if H is a commutative group algebra and N > 3. In Theorem 1.10, we

extend this to any cosemisimple H . We also compute all liftings when N ≥ 3.

A key difference in the case N ≤ 3 is that solutions to 1.8 are a part of the general

solution, see 1.13 below. In particular, we show that the deformations do not necessarily

restrict to the coradical (see, e.g., the concrete Examples 4.21 and 5.25).

Remark 1.4. In the present article, we use an equivalent version of 1.9. Namely, we

consider families of scalars μ = (μ(k l))k≤l∈I subject to

μ(k l) = 0, if χN
(kl) = ε, or gN(kl) = 1. (1.11)

We define recursively u(j k) = u(j k)(μ) ∈ k�, j ≤ k ∈ I, by u(jj) = 0, and

u(j k) = −
∑
j≤p<k

Cpμ(p+1k)

(
u(j p) + μ(j p)

(
1 − gN(j p)

))
gN(p+1k). (1.12)

The comparison with the previous solution is as follows: define γ = γ (μ), γ = (γij)i≤j∈I ,

by γij = μ(i j) −∑
i≤p<j Cpγipμ(p+1 j), i ≤ j. Then,

u(jk)(γ ) = u(j k)(μ)+ μ(j k)(1 − gN(j,k)). �

1.2.2 The shape of the liftings

In the general case N ≥ 2, we show that the lifting problem is equivalent to

solving an algorithm, described synthetically in Section 3.3. An equation similar to 1.9

must be solved recursively, this timewith solutions in the previous term of the coradical
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Pointed Hopf Algebras of Type A 7

filtration.We show for typeAθ in Theorems 1.6, 1.8, and 1.10 that any lifting of V is given

by

(i) a solution (u(i j)(μ))i≤j∈I;

(ii) elements vr(λ) ∈ k�, one for each (generalized) quantum Serre relation and

associated with scalars λ = (λr)r (see (1.18), (1.19), (1.26)); and

(iii) elements σ(i j)(λ,μ) ∈ T(V)#H , computed algorithmically.

The corresponding lifting is the quotient of T(V)#H by

r = vr(λ), r (generalized) quantum Serre relation;

aN(i j) = u(i j)(μ)+ σ(i j)(λ,μ), i ≤ j ∈ I.
(1.13)

Compare with 1.10. When N > 3, λr = 0 for all r and thus vr(λ) = 0, also σ(i j)(λ,μ) = 0.

When N = 3, λr = 0 only for r of type (1.4) as relations (1.3) remain unchanged.

The case N = 2 is actually a bit more involved, as the deformation of the gen-

eralized quantum Serre relations (1.6) depends on the deformation of the powers of the

simple root vector relations (see (1.19)). Also, in Theorem 1.6, the last line of 1.13 is

expressed as ζ 2(i j) = u(i j), i ≤ j ∈ I, as ζ 2(i j) = a2
(i j)+ terms σ(λ,μ) (see Remark 4.16). The

family ν = (νi)i∈I controls the deformations of the generalized quantum Serre relations.

1.2.3 The main result, N = 2

Here ξ = −1. We fix a family of scalars μ = (μ(k l))k≤l∈I subject to the constraints

and normalizations 1.11. We consider two more families of scalars

λ = (λij)i<j−1∈I, ν = (νi)1<i<θ

subject to the constraints and normalizations

λij = 0, if χij = ε, or gij = 1;

νi = 0, if χi−1,i,i,i+1 = ε or gi−1,i,i,i+1 = 1.
(1.14)

We define families of elements in T (V) attached to these parameters in the following

way. To distinguish from the sequence of pre-Nichols algebras, we denote now by (ai)i∈I

the generators of T(V); correspondingly, we denote aij, a(ij), ai1,...,ik , instead of xij, x(ij),

xi1,...,ik .
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8 N. Andruskiewitsch et al.

Let i, j ∈ I, |i−j| ≥ 2.We define recursively scalars di j(s), bi j(s), s ∈ N0, as follows:

di j(0) = 2λi j, bi j(0) = −2χj(g(i j))λi j, and for s > 0,

di j(s) = qij
∑
0≤t<s

di j+1(t)dj j+2t+2(s− t − 1), (1.15)

bi j(s) =
∑
0≤t<s

bi+1 j(t)di i+2t+2(s− t − 1). (1.16)

We define recursively ζ(j k) ∈ T (V) as follows: ζ(j j) = aj and for j < k

ζ(j k) = [aj, ζ(j+1k)]c + djk(0)χ(j k)(gj) ζ(j+1k−1)gjk

+ 2
∑

1≤t≤(k−j−1)/2

djk−2t(t)χ(j+1k−2t−1)(gj)ζ(j+1k−2t−1)gjg(k−2t k). (1.17)

Let u(λ,μ, ν) be the quotient of T (V) by the relations

aij = λij(1 − gigj); (1.18)

[a(i−1 i+1),ai]c = νi(1 − g2
i gi−1gi+1) (1.19)

− 4χi(gi−1)μ(i)λi−1 i+1gi−1gi+1(1 − g2
i );

ζ 2(j k) = μ(j k)(1 − g2
(j k))+ u(j k), (1.20)

for u(j k) = u(j k)(μ) as in 1.12.

The relations (1.18) are deformations of (1.3), while (1.20) are deformations of

(1.5), and (1.19) are deformations of (1.6).

Remark 1.5. The quotient ũ(λ,μ, ν) of T (V) by the relations (1.18)–(1.20) for j = k is a

cocycle deformation of B̃(V)#H . �

Recall that that V is of type Aθ at ξ = −1.

Theorem 1.6. The algebra u(λ,μ, ν) is a Hopf algebra quotient of T (V) and is a lifting

of V . Reciprocally every lifting of V over H is isomorphic to u(λ,μ, ν) for some family

of scalars λ, μ, ν as in (1.14). In particular, every lifting is a cocycle deformation of

B(V)#H . �

Proof. We follow the strategy in Section 3: If H = B(V)#H , then u = u(λ,μ, ν) arises

as L(A,H) for a given A = A(λ,μ, ν) ∈ CleftH such that gr u 
 H. The corresponding
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Pointed Hopf Algebras of Type A 9

stratification, cf. Section 3.1 of the set of generators of the ideal defining B(V) is given

by G0 = {(1.3), (1.6),x2
i , i ∈ I}, G1 = {(1.5)}. The converse follows by Theorem 3.5.

The cleft objects A are obtained in Theorem 4.7, while the algebras u are

described in Theorem 4.17. �

1.2.4 The main result, N = 3

Here ξ 3 = 1, ξ = 1. We fix a family of scalars μ = (μ(k l))k≤l∈I subject to the

constraints and normalizations 1.11. Pick an extra family of scalars λ = (λiij)i,j∈I,|i−j|=1

subject to the constraints and normalizations

λiij = 0 if χiij = ε, or giij = 1. (1.21)

We define families of elements in T (V) attached to these parameters. As in

Section 1.2.3, we denote now by (ai)i∈I the generators of T(V); and correspondingly aij,

a(ij), ai1,...,ik . Let us fix i ≤ p < l ∈ I and set q := p+ 1, r := p+ 2.

First, we define hil(λ) ∈ � via

hil(λ) = −9μ(i+2 l)λii+1i+1λiii+1(1 − giii+1)gii+1i+1g
3
(i+2 l). (1.22)

Next, we consider the following elements in T(V)#H :

ςp(λ,μ) = λqrr

(
ξ 2a(i p)a(i q)a(i r) + χp+2(g(1p))a(i p)a(i r)a(i q) + a(i r)a(i p)a(i q)

)
.

Now, we fix sp = −3(1 − ξ 2), p < l − 2, sl−2 = 1, and set

di l(p) = χ(i q)(g(q l)g(r+1 l))χ(i p)(g(r+1 l)).

We set

ςil(λ,μ) = −3ξ 2
∑
i≤p<l

μ(p+3 l)χr(g(p+3 l))dil(p)ς
p(λ,μ)gqrrg

3
(p+3 l), (1.23)

cf. Remark 1.9 below for a more complete description. Finally, we set

σ(i l)(λ,μ) = hil(λ)+ ςil(λ,μ). (1.24)

Let u(λ,μ) be the quotient of T (V) by the relations

aij = 0, i < j − 1; (1.25)
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10 N. Andruskiewitsch et al.

aiij = λiij(1 − giij), |j − i| = 1; (1.26)

a3
(i l) = μ(i l)(1 − g3

(i l))+ u(i l) + σ(i l), i ≤ l ∈ I. (1.27)

for u(i l) = u(i l)(μ) as in 1.12 and σ(i l) = σ(i l)(λ,μ) as in 1.24.

The relations (1.25) are deformations of (1.3), while (1.26) are deformations of

(1.4) and (1.27) are deformations of (1.5).

Remark 1.7. The quotient ũ(λ) of T (V) by the relations (1.25) and (1.26) is a cocycle

deformation of B̃(V)#H . �

Theorem 1.8. The algebra u(λ,μ) is a Hopf algebra quotient of T (V) and is a lifting of

V . Reciprocally, every lifting of V is isomorphic to u(λ,μ) for some families λ and μ as

in (1.21). In particular, every lifting is a cocycle deformation of B(V)#H . �

Proof. Similar to the proof of Theorem 1.6, following the strategy in Section 3. The

corresponding stratification of the set of defining relations for B(V) is given by G0 =
{(1.3), (1.4)}, G1 = {(1.5)}. The converse follows by Theorem 3.5. In this case, cleft objects

A = A(λ,μ) are obtained in Theorem 5.15, while the algebras u(λ,μ) = L(A,B(V)#H) are
described in Theorem 5.23. �

Remark 1.9. We give an explicit description of ς(i l) in terms of the PBW basis (see

Corollary 5.27). To ease up the notation, we fix

j := i+ 1, k := i+ 2, q := p+ 1, r := p+ 2.

Let the symmetric group S3 act on {r,q,p} via (12)(r) = q, (23)(q) = p. If p = i, j, then

ς
p
i (λ,μ) = 0. When p > i+ 2,

ς
p
i (λ,μ) = −3λqrrλqqrχ(i p)(gq)a

3
(i p)gqqr

− 3λqrrλiij
∑
σ∈S3

(−1)|σ |hσ ,ia(k σ(p))a(j σ(q))a(i σ(r)),
(1.28)

for hσ ,i ∈ k, σ ∈ S3, given by

hid,i = ξχqqr(g(i p))χ(i r)(g(j q)), h(12),i = (ξ 2 − 1)χqqr(g(i p))χi(g(k q)),

h(23),i = ξχr(gi)χi(g(j p)), h(13),i = ξ(ξ − 2)χ(k p)(gij),

h(123),i = 2χr(g(i p))χi(g(k p)), h(132),i = ξ 2χ(k q)(g(i r))χ(j p)(gr). �
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Pointed Hopf Algebras of Type A 11

1.2.5 The main result, N > 3

Here, ξ is a root of unity of order N > 3. We fix a family of scalars μ = (μ(k l))k≤l∈I

subject to the constraints and normalizations 1.11.

Let u(μ) be the quotient of T (V) by the relations

aij = 0, i < j − 1;

aiij = 0, |j − i| = 1;

aN(i l) = μ(i l)(1 − gN(i l))+ u(i l)(μ), i ≤ l ∈ I,

for u(i l) = u(i l)(μ) as in 1.12.

Theorem 1.10. The algebra u(μ) is a Hopf algebra quotient of T (V) and is a lifting of

V . Reciprocally, every lifting of V is isomorphic to u(μ) for some μ as in 1.11. Hence,

every lifting is a cocycle deformation of B(V)#H . �

Proof. As in the case N = 3, the stratification of the set of defining relations for B(V)
is given by G0 = {(1.3), (1.4)}, G1 = {(1.5)}. We set H = B(V)#H , H̃ = T (V)/〈G0〉.

In this case, the relations in G0 cannot be deformed (cf. [2, Theorem 5.6]). As a

result, Cleft′ H̃ = {H̃} and thus the corresponding deformation L1 = L(·, H̃) 
 H̃. This

shows 3.12 for j = 0 trivially. Let us denote by Ã = H̃ as (L1, H̃)-bicleft object.
Pick μ as in 1.11; set A(μ) the quotient of H̃ by the ideal generated by

yN(i l) = μ(i l), i ≤ l.

It follows from [8] that coHH̃ ≤ H̃ is a normal coideal subalgebra and thus [16, Theorem

4], see also [5, Theorem 3.1], yields:

Cleft′
(H) = {A(μ)|μ as in (1.11)}.

In particular, 3.12 holds for j = 1. Now, we use 3.7 recursively, as in p. 37 and 62. More

precisely, let δ : Ã → L1 ⊗ Ã denote the left coaction. Assume i = 1 to simplify the

notation and set

A = a(1 l) ⊗ 1, B = g(1 l) ⊗ y(1 l), Xp = a(1p)g(p+1 l) ⊗ y(p+1 l), 1 ≤ p < l,

 by guest on June 20, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


12 N. Andruskiewitsch et al.

so δ(y(1 l)) = A + B + (1 − ξ−1)
∑

1≤p<l Xp. Set also Cp as in 1.7 and r = yN(1 l). By [2, Remark

6.10] we have

δ(r) = aN(1 l) ⊗ 1 + gN(1 l) ⊗ yN(1 l) +
∑
1≤p<l

Cpa
N
(1p)g

N
(p+1 l) ⊗ yN(p+1 l).

We apply the deformation procedure following [5, Corollary 5.12], that is we assume

recursively yN(p+1 l) = μ(p+1 l), and thus we get cf. 3.7:

r̃ = −
∑
1≤p<l

Cpμ(p+1 l)

(
up + μ(1p)

(
1 − gN(1p)

))
gN(p+1 l). (1.29)

Hence, L(μ) = L(A(μ),H) 
 u(μ), by Proposition 3.3 (c).

The converse follows from Theorem 3.5. �

1.2.6 Applications

The classification of all finite-dimensional pointed Hopf algebras over a group

algebra H = kG whose infinitesimal braiding V is a principal realization of a braided

vector space with braidingmatrix (1.2) follows from ourmain results because such Hopf

algebras are generated in degree 1 [9]. When ord ξ > 3, the classification was obtained

in [2, Theorem 6.25] assuming that G is abelian; the methods in Section 3 show that this

hypothesis is not necessary. We extend this classification to the case in which H is any

cosemisimple Hopf algebra.

As a byproduct, new examples of Hopf algebras are defined, as deformations of

intermediate pre-Nichols algebras (see Propositions 4.8 and 5.17). Also, new examples

of co-Frobenius Hopf algebras arise (see Section 1.2.7).

1.2.7 New examples of co-Frobenius Hopf algebras

Let G be an algebraic group and let H = O(G) be its function algebra; thus

Alg(O(G),k) 
 G. An YD-pair for H , cf. Section 2.2, is (g,x), where g ∈ Homalg gp(G,k×),

x ∈ Z(G).

Let G = GLn(k). As Z(G) = k
× Id and Homalg gp(G,k×) = 〈det〉, an YD-pair (g,x) as

above identifies with (h, t) ∈ Z × k
× via g = deth, x = t Id.

Let V be a braided vector space of type A2, with parameter ξ . Then there is a

principal YD-realization V ∈ H
HYD if and only if there are (h1,h2) ∈ Z

2 and (t1, t2) ∈ C
2

such that if ui := tni , then

ξ = uh1
1 = uh2

2 ; ξ−1 = uh2
1 uh1

2 .
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Pointed Hopf Algebras of Type A 13

Each solution yields a realization V ∈ H
HYD and as a consequence of our main results

(Theorems 1.6, 1.8 or 1.10), we obtain new families of co-Frobenius Hopf algebras over

O(G). Examples of solutions are given by:

• N = 3, (u1,u2) = (ξ , ξ) and (h1,h2) = (1, 1).

• N = 7, (u1,u2) = (ξ , ξ 4) and (h1,h2) = (1, 2).

More examples arise considering G = GLn1(k)× GLn2(k)× · · · × GLns(k).

2 Preliminaries

2.1 Conventions

If n ∈ N, we set In = {1, . . . ,n}; we omit the subscript when it is clear from the context.

We denote by Sn the symmetric group in n letters. Also, Gn denotes the group of nth

roots of 1, and G
′
n is the subset of primitive nth roots.

Let H be a Hopf algebra; we always assume that its antipode is bijective. We use

the Heynemann–Sweedler notation for the comultiplication and coaction. We denote by

G(H) the group of group-like elements of H and by H
HYD, respectively YDH

H the category

of left, respectively right, Yetter–Drinfeld modules over H . If A is an algebra and S ⊂ A,

then 〈S〉 denotes the two-sided ideal generated by S.

If H ′ is a Hopf algebra, we denote by Isom(H ,H ′) the set of Hopf algebra iso-

morphisms ϕ : H → H ′. If A,A′ are right H-comodule algebras, then AlgH (A,A′) is the

set of comodule algebra morphisms between them. We shall denote by AlgHH (A,B) the

set of algebra morphisms between two algebras A,B ∈ YDH
H . When H = k, we omit any

reference as Alg(A,B) = AlgHH (A,B) becomes the set of k-algebra maps A → B.

2.2 Principal realizations

Let H be a Hopf algebra. Let (g,χ) be an YD-pair [5], that is g ∈ G(H) and χ ∈ Alg(H ,k)

satisfy

χ(h)g = χ(h(2))h(1) gS(h(3))

for all h ∈ H ; this implies that g ∈ Z(G(H)). Then, k
χ
g := k with coaction given by g and

action given by χ is an object in H
HYD.

Let V be a braided vector space of diagonal type, that is, there are a basis (xi)i∈I

of V and a matrix q = (
qij
)
i,j∈I

such that c(xi ⊗ xj) = qijxj ⊗ xi. A principal realization of
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14 N. Andruskiewitsch et al.

V over H is a family ((gi,χi))i∈I
of YD-pairs such that χj(gi) = qij, i, j ∈ I; so that V ∈ H

HYD
up to identifying kxi 
 k

χi
gi , and the braiding c is the categorical one from H

HYD. Clearly

� = 〈g1, . . . ,gθ 〉 ≤ Z(G(H)) (2.1)

and we can realize V as an object in �
�YD := k�

k�YD.

Example 2.1. There are V ∈ H
HYD with diagonal braiding but not from a principal

realization. Let H = kH(p) where H(p) is the finite Heisenberg group of upper triangular

matrices

⎛⎜⎜⎝
1 a c

1 b

1

⎞⎟⎟⎠ with coefficients in the finite field Fp, p a prime. The conjugacy

classes in H(p) are

Oc =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1 0 c

1 0

1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , O(a,b) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1 a c

1 b

1

⎞⎟⎟⎠ : c ∈ Fp

⎫⎪⎪⎬⎪⎪⎭ ,

for all c ∈ Fp, (a,b) ∈ F
2
p − 0. Then we have the following:

� If ρ ∈ Irr H(p), then theM(Oc, ρ) ∈ H
HYD is of diagonal type, but does not arise

from a principal realization unless dim ρ = 1.

� If (a,b) ∈ F
2
p − 0 and x ∈ O(a,b), then the isotropy group H(p)x 
 Zp × Zp and

O(a,b) is an abelian rack. HenceM(O(a,b), ρ) ∈ H
HYD is of diagonal type, but does

not arise from a principal realization, for all ρ ∈ Irr H(p)x . �

2.3 Nichols and pre-Nichols algebras

Let H and V be as in Section 1.1. As usual, we denote by B(V) the Nichols algebra of V

and by J (V) ⊂ T(V) its defining ideal: B(V) = T(V)/J (V) (see [2]). A pre-Nichols algebra

is a Hopf algebra R = T(V)/J ∈ H
HYD with J ⊂ J (V) a graded Hopf ideal. Every pre-

Nichols algebra R is a Z
θ-graded semisimple object in H

HYD. The following identities are

well-known. If x,y, z ∈ R are Z
θ-homogeneous, then

[[x,y]c, z]c = [x, [y, z]c]c + q|y||z|[x, z]cy − q|x||y|y[x, z]c (q-Jacobi), (2.2)

[xy, z]c = x[y, z]c + q|y||z|[x, z]cy,
[x,yz]c = [x,y]cz + q|x||y|y[x, z]c.

(2.3)

 by guest on June 20, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Pointed Hopf Algebras of Type A 15

Assume that the generalized Dynkin diagram of V is connected. The generators

of the ideal J (V) were computed theoretically in [7] and concretely, case-by-case in the

list of [18], in [6]. These relations can be informally organized into two types:

♦ Quantum Serre relations and generalizations—that sometimes involve more

than two simple roots (see e.g., (1.6)).

♦ Powers of root vectors.

Now there are some special roots called Cartan roots [8, (20)]. There is a dis-

tinguished pre-Nichols algebra of V with favourable properties, denoted by B̃(V) (cf.
[8]). The defining ideal I(V) of B̃(V) is generated by the same relations as for B(V), but
excluding the powers of Cartan root vectors, and possibly adding some quantum Serre

relations redundant for J (V). We set

T (V) = T(V)#H , H = B(V)#H , H̃ = B̃(V)#H ,

and π : T (V) → H, π̃ : T (V) → H̃ the natural projections.

2.4 Cleft objects and two-cocycles

A (normalized) Hopf two-cocycle is a convolution invertible linear map σ : H ⊗ H → k

such that, for x,y, z ∈ H :

σ(x, 1) = σ(1,x) = ε(x),

σ(x(1),y(1))σ (x(2)y(2), z) = σ(y(1), z(1))σ (x,y(2)z(2)).

If σ is a Hopf two-cocycle, then it is possible to perturb the multiplicationm(x⊗y) = xy

on H on several ways, obtaining new associative products on the vector space H . First,

we may consider m(σ ),m(σ−1) : H ⊗ H → H as

m(σ )(x ⊗ y) = σ(x(1),y(1))x(2)y(2), respectively ,

m(σ−1)(x ⊗ y) = σ−1(x(2),y(2))x(1)y(1).

The corresponding algebras will be denoted by H(σ ), respectively, H(σ−1). The comulti-

plications 
 : H(σ ) → H(σ ) ⊗ H , 
 : H(σ−1) → H ⊗ H(σ−1), remain algebra maps and hence

H(σ ), respectively H(σ−1), is a right, respectively left, H-comodule algebra. Yet another

associative multiplication mσ is defined:

mσ (x ⊗ y) = σ(x(1),y(1))x(2)y(2)σ
−1(x(3),y(3)), x,y ∈ H .
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16 N. Andruskiewitsch et al.

The corresponding algebra, denoted by Hσ is actually a Hopf algebra with comultiplica-

tion
—see [14] for the explicit form of the antipode Sσ . This Hopf algebra Hσ is referred

to as a cocycle deformation of H .

2.4.1 Cleft objects

A (right) H-comodule algebra A with trivial coinvariants, that is AcoH = k, is a

cleft object of H when there exists an H-colinear convolution-invertible map γ : H → A.

This map can be assumed to satisfy γ (1) = 1, in which case it is called a section. Left,

respectively bi-, cleft objects are defined accordingly.

We shall denote by CleftH the set of (isomorphism classes of) right cleft objects

of H . If A ∈ CleftH , then A is an algebra in YDH
H via the Miyashita–Ulbrich action [13].

For every cleft object A, there is a Hopf two-cocycle σ : H ⊗ H → k such that

A 
 H(σ ). Indeed, a section γ : H → A determines σ by

σ(x,y) = γ (x(1))γ (y(1))γ
−1(x(2)y(2)), x,y ∈ H .

If A ∈ CleftH , then there is an associated Hopf algebra L = L(A,H) [22] in such

a way that A becomes (H ,L)-bicleft. Moreover, if A = H(σ ), then L 
 Hσ . Hence, L is a

cocycle deformation of H and every cocycle deformation can be obtained in this way

(see loc.cit.)

3 The Strategy

Let H be a cosemisimple Hopf algebra and V as in Section 1.1. We recall and expand

here the strategy developed in [5] to compute the cocycle deformations of B(V)#H .

Accordingly, let � be the abelian group as in 2.1.

Remark 3.1. In [5, Section 1.1]H is assumed to be finite-dimensional. This assumption,

however, can be omitted. Indeed, it is only used in [5, Lemma 5.7] and in [5, Section 5.9,

Question]. These two instances are independent of the strategy and both of them deal

with the evidence of an “intermediate Gunther’s Theorem” to simplify the recursive step.

On the other hand, a dimension argument is used to prove exhaustion in the

examples (see [5, Theorem 5.20]). We provide an alternative argument in Theorem 3.5,

valid in general. �
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Pointed Hopf Algebras of Type A 17

3.1 The main idea

We explain how to compute all Hopf algebras L which are cocycle deformations of H :=
B(V)#H and satisfy gr L 
 H. These Hopf algebras arise as L(A,H) for suitable A ∈
CleftH (cf. Section 2.4); in turn, we compute the cleft extensions A recursively by a

method from [16].

Let G be the set of generators of the idealJ (V) described in [6] for each connected

component, union the q-commutators of vertices in different components. Notice that

every r ∈ G belongs to T(V)χrgr for some gr ∈ �, χr ∈ Alg(H ,k). We decompose G as a

disjoint union G = G0 � · · · � G�. Let

Bi :=
⎧⎨⎩T(V), i = 0;

T(V)/〈G0 ∪ · · · ∪ Gi−1〉, i > 0;
Hi = Bi#H . (3.1)

In particular, H�+1 = H. We choose this decomposition in such a way that

the elements in (the image of) Gi, i < �, are primitive in Bi; (3.2)

G� consists of powers of Cartan root vectors. (3.3)

In plain words, the strategy is to deform the relations in G step by step, that is first those

in G0, then those in G1, and so on. By (3.2), the form of the deformed relations is particu-

larly simple in the steps 0 to � and depends on a suitable parameter. To check that the

proposed deformation has the right properties, we proceed indirectly by defining first a

cleft extension for each possible parameter; then the proposed deformation appears as

the corresponding cocycle deformation (cf. Section 2.4.1). In the last step, the deforma-

tions of the powers of Cartan root vectors require a delicate combinatorial analysis; but

the definition of the cleft extensions is facilitated because the algebra of coinvariants
H�+1H� is a q-polynomial algebra [8, Theorem 4.10]. To organize the information we pack

all the cleft extensions arising in the ith step in a subset Cleft′ Hi of CleftHi.

Concretely, the inductive procedure starts with

◦ the Hopf algebra H0;

◦ the trivial A0 = H0 ∈ Cleft(H0), where the section γ : H0 → A0 is the identity

map; and

◦ and the corresponding Hopf algebra L0 = L(A0,H0) 
 H0.
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18 N. Andruskiewitsch et al.

We now define recursively a subset Cleft′ Hi of CleftHi, 0 ≤ i ≤ �+ 1, see [5, Section 5.2]

for more details. First, we clearly have

Cleft′ H0 := {A0}.

Given i ≥ 0, Cleft′ Hi+1 consists of quotients of each A ∈ Cleft′ Hi. To explain this, we fix

A ∈ Cleft′ Hi; it comes equipped with

� a section γ : Hi → A such that the restriction γ|H : H → A is an algebra

map—see [5, Proposition 6.2 (b)]; and

� an algebra E ∈ H
HYD such that A = E#H [5, Proposition 5.8 (d)]; actually E is

the image of T(V) under the projection A0 = T(V)#H � A.

Then, we collect in Cleft′ Hi+1 all A′ given either as

A′ = A/Aψ(X+
i ), where Xi := coHi+1Hi, ψ ∈ Alg

Hi
Hi
(Xi,A); (3.4)

or else as

A′ = A/〈ϕ(Y+
i )〉, where Yi := k〈S(Gi)〉, ϕ ∈ Ãlg

Hi
(Yi,A); (3.5)

here, Ãlg
Hi
(Yi,A) := {ϕ ∈ AlgHi(Yi,A)|〈ϕ(Y+

i )〉 = A}.

Remark 3.2. The subalgebra Xi is the normalizer of Yi [5, Remark 5.4]. If ψ ∈
Alg

Hi
Hi
(Xi,A), then ψ|Yi =: ϕ ∈ Ãlg

Hi
(Yi,A) and 〈ϕ(Y+

i )〉 = Aψ(X+
i ). �

Proof. On one hand, 〈ϕ(Y+
i )〉 ⊆ 〈ψ(X+

i )〉 = Aψ(X+
i ), the last equality by [16, Theorem 4].

Hence 〈ϕ(Y+
i )〉 = A, cf. loc.cit. The other inclusion follows because Xi = N(Yi). �

More explicitly, given a family of scalars �i := (λr)r∈Gi we define

E(�i) = E/〈γ (r)− λr : r ∈ Gi〉, A′ = A(�i) = E(�i)#H . (3.6)

Set L = L(A,Hi). Recall that for r ∈ Gi, there are gr ∈ �, χr ∈ Alg(H ,k) such that

r ∈ T(V)χrgr . By [5, Corollary 5.12],

∇(r) := γ (r)(−1) ⊗ γ (r)(0) − gr ⊗ γ (r) ∈ L ⊗ 1, for all r ∈ Gi. (3.7)

Thus, ∇(r) = r̃ ⊗ 1 and by loc.cit. r̃ is (gr , 1)-primitive in L. Set

L′ = L(�i) := L/〈r̃ − λr(1 − gr) : r ∈ Gi〉. (3.8)
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Pointed Hopf Algebras of Type A 19

The following proposition is a summary of [5, Section 5.6]; we add a short proof

since in loc.cit. this is stated for a single element in Gi.

Proposition 3.3. Let A′ = A(�i), �i ∈ k
Gi .

(a) If A′ = 0, then A′ ∈ Cleft′ Hi+1.

(b) If χr = ε and λr = 0 for some r ∈ Gi, then A′ = 0.

(c) L(A′,Hi+1) 
 L(�i).

(d) If i = �, then grL(��) 
 B(V)#H , that is L(��) is a lifting of V . �

Proof. (a) Assume that i < �. Let us fix a numeration r1, . . . , rs of Gi. Let B(0)
i := Bi,

B(t)
i := Bi/〈r1, . . . , rt〉, t ∈ Is, so B(s)

i = Bi+1. By abuse of notation, the image of rj is denoted

by rj throughout. Set, as well,

E (t) := E/〈γ (rj)− λrj : j ∈ It〉, A(t) := E (t)#H , π(t) : A → A(t)

the natural projection. Notice that A(1) = 0 since it projects on to A′ and thus A(1) ∈
Cleft′ B(1)

i #H by [5, Remark 5.11]. Let γ (1) : B(1)
i #H → A(1) be the section. Observe that

γ (1)(r2) = π(1) (γ (r2)). Indeed, the coaction ρ : A(1) → A(1) ⊗ B(1)
i #H satisfies

π(1)
(
γ (1)(r2)

) ρ�−→ π(1)(γ (1)(r2))⊗ 1 + gr2 ⊗ r2

as π(1) is a comodule algebra projection that preserves H cf. the snapshot in [5, p. 696].

Hence we may iterate the argument and conclude that A(t) ∈ Cleft′ B(t)
i #H , t ∈ Is, and

A′ = A(s) ∈ Cleft′ Hi+1.

Next, we consider the case i = �. In this step, we allow the subset G� to contain

non-primitive elements. However, the previous analysis extends to this case. To see this,

we decompose, in turn,

G� = G(0)� � · · · � G(r)�

as a disjoint union of sets satisfying that G(0)� contains primitive elements in B� and that

(the image of) G(i)� , i > 1 is composed of primitive elements in

B(i)
� = B�/〈G(0)� ∪ · · · ∪ G(i−1)

� 〉.

We decompose, accordingly, �� = �
(0)
� × · · · ×�

(r)
� and proceed as before.

(b) Follows by conjugating γ (r) = λr by g ∈ G(H) with χr(g) = 1.
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20 N. Andruskiewitsch et al.

(c) Follows by a iterative application of [5, Corollary 5.12], aswe proceed element-

by-element as in (a).

(d) For each A′ ∈ Cleft′ Hi+1, the section γ ′ : Hi+1 → A′ is such that the restriction

γ ′
|H : H → A′ is an algebra map [5, Proposition 6.2 (b)]. Hence, gr L(A′,Hi+1) 
 Hi+1 by [5,

Proposition 4.14 (c)]. �

If � = (λr)r∈G ∈ k
G and 0 ≤ i ≤ �, then we set �i = (λr)r∈Gi ∈ k

Gi . Set A0 = T(V)#H

and define—using the assignment Ai � Ai+1 := Ai(�i) cf. 3.6—the set of deformation

parameters

R = {� = (λr)r∈G ∈ k
G | Ai(�i) = 0, ∀i and λr = 0 if gr = 1}. (3.9)

By Proposition 3.3 we have

Corollary 3.4. For each � ∈ R, we obtain a chain of Hopf algebra quotients

L0 := T(V)#H � L1 := L0(�0)� · · ·� L�+1 := L�(��) (3.10)

such that Li is a cocycle deformation of Bi#H . �

For � ∈ R, we set L(�) := L�+1. In this way, we obtain a family L(�), � ∈ R, of

cocycle deformations of B(V)#H that are liftings of V . Next, we check when this family

is exhaustive. We consider the following condition on V ∈ H
HYD: for � = (λr)r∈G ∈ k

G,

� ∈ R if and only if λr = 0, when χr = ε. (3.11)

Observe that the “only if” implication always holds, by Proposition 3.3 (b). Actually, we

need a recursive version of 3.11:

Suppose we are given 0 ≤ j ≤ �, and families �i = (λr)r∈Gi ∈ k
Gi for i ≤ j such that λr = 0,

when χr = ε. Define recursively A0 = T (V), A1 = A0(�0), Ai = Ai−1(�i−1). The recursive

version of 3.11 is

Aj = 0. (3.12)

Theorem 3.5. Assume that 3.12 holds for all j ≥ 0. If L is a lifting of V , then there is

� ∈ R such that L 
 L(�). In particular, L is a cocycle deformation of B(V)#H . �
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Pointed Hopf Algebras of Type A 21

Proof. Let φ : L0 = T(V)#H → L be a lifting map. We shall attach to φ a family (λr)r∈G ∈
k

G such that λr = 0 if either gr = 1 or else χr = ε. LetS be the set of simple subcoalgebras

of H . A direct computation shows that V#H ⊂ ∑
i∈I,C∈S

giC ∧ C. Since φ is a lifting map,

L1
(1.1)= φ(H ⊕ V#H) =

∑
C∈S

C +
∑

i∈I,C∈S

giC ∧ C.

If r ∈ G0, then r is (gr , 1)-primitive in L0, hence so is φ(r) ∈ L. That is, φ(r) ∈ kgr ∧ k ⊂ L1.

Then either φ(r) ∈ H or φ(r) ∈ giC ∧ C for some i ∈ I, C ∈ S. In the former case,

φ(r) = λr(1 − gr) for some λr ∈ k. As gr ∈ � < Z(H) ∩ G(H), conjugation by h ∈ H

determines that λr = 0 whenever χr = ε. In the latter, giC = kgr and C = k, thus gr = gi

and

φ(r) = λr(1 − gr)+
∑

j∈I:gj=gr
μjxj,

for some λr ,μj ∈ k. Conjugation by h ∈ H shows that

λrχr = λrε, μjχr = μjχj, for gj = gr .

Now, by [10, Proposition 6.2] the pair (χr ,gr) is different from (χi,gi), i ∈ I. Thus μj = 0

for all such j, hence φ(r) = λr(1 − gr) and λr = 0 whenever χr = ε. In either case, we can

normalize λr = 0 when gr = 1. Set �0 = (λr)r∈G0 ∈ k
G0 ; by 3.12 for j = 0, L1 := L′

0(�0) is a

well-defined cocycle deformation of H1, and clearly φ factorizes through L1.

We proceed inductively: let i > 0 and assume that φ factorizes through Li :=
L′
i−1(�i−1), �i−1 ∈ k

Gi−1 . Observe that for each r ∈ Gi, the corresponding image r̃ ∈ Li is

(gr , 1)-primitive (cf. 3.7). Arguing as in the previous paragraph, we conclude that φ(r̃) =
λr(1 − gr) and λr = 0 whenever χr = ε or gr = 1. Hence there is �i such that φ factorizes

through Li+1 = L′
i(�i), which is a well-defined cocycle deformation of Hi+1 by 3.12 for

j = i. In the final step � we proceed in the same way, splitting G� as in the proof of

Proposition 3.3. We conclude that there exists � ∈ R such that φ factorizes through

L(�).
Now, the lifting map φ is injective when restricted to V#H by definition, and so

is the factorization φ : L(�) � L, that is φ is injective when restricted to L(�)1. Then φ
is injective [21, Theorem 5.3.1] and thus L 
 L(�). �
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3.2 Isomorphism classes

Let (H ,V) be as in Section 1.1, with braidingmatrix q = (qij)i,j∈I, and ((gi,χi))i∈I a principal

realization.We assume that the generalized Dynkin diagram ofV is connected. Let� ∈ R
and L(�) be as in Theorem 3.5.

3.2.1 The block group

Let

I(i) = {j ∈ I|gj = gi and χj = χi} ⊆ I, i ∈ I.

Remark 3.6. Either of the following holds:

(1) |I(i)| = 1 for all i ∈ I.

(2) There exists i = j such that j ∈ I(i) is not adjacent to i. Then the generalized Dynkin

diagram is one of the following:

(a) Type A3 with q = −1 [18, Table 2, Row 1] and matrix
( −1 x −1

−x−1 −1 −x−1

−1 x −1

)
, where

x ∈ k
×.

(b) [18, Table 2, Row 8, diagram 3 (&4)] with matrix
( −1 x −1
(qx)−1 q (qx)−1

−1 x −1

)
(one diagram

is obtained from the other by q �→ q−1), where x ∈ k
× and q ∈ Gn for some

n ∈ N.

(c) [18, Table, 2, Row 15, diagram 2, respectively 3] with matrix
( −1 x −1
ξx−1 −1 ξx−1

−1 x −1

)
respectively

( −1 x −1
ξx−1 −ξ2 ξx−1

−1 x −1

)
, where ξ ∈ G

′
3 and x ∈ k

×.

(d) Type Dθ , θ ≥ 4, with q = −1 [18, Table 3, Row 5 & Table 4, Row 8].

(e) [18, Table 3, Row 18, diagrams 5 & 6] (rank 4).

(3) There exists ξ ∈ G
′
3 such that the generalized Dynkin diagram is one of the

following:

(a) Type A2 with q = ξ , [18, Table 1, Row 1], and matrix
(
ξ ξ
ξ ξ

)
.

(b) [18, Table 2, Row15, diagram4] andmatrix
(

ξ ξ x
ξ ξ x

ξ2x−1 ξ2x−1 −1

)
, where x ∈ k

×. �

Proof. First, observe that if j ∈ I(i), then every vertex not adjacent to i cannot be

adjacent to j as 1 = χk(gi)χi(gk) = χk(gj)χj(gk). Next, if j ∈ I(i), j = i, is not adjacent

to i, then χj(gj) = χi(gi) = −1 as 1 = χj(gi)χi(gj) = χj(gj)2. Then, (2) and (3) follow by

inspection in [18]. �
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Let us denote by

L := {s ∈ GLθ (k)|sij = 0 if j /∈ I(i)}.

Observe that L 
 {(si)i∈I ∈ k
×θ } if the generalized Dynkin diagram is as in Remark 3.6 (1).

If the diagram is as in (3)(a), then L = GL2(k).

3.2.2 Isomorphisms

We fix a new pair (H ′,V ′) as in Section 1.1. Set θ ′ = dimV ′, I
′ = Iθ ′ . Fix a principal

realization ((g′
i,χ

′
i))i∈I′ of V ′ in H ′

H ′YD and let �′ = 〈g′
i | i ∈ I

′〉 ≤ H ′ be as in 2.1.

Let G ′ be the set of generators of the ideal defining B(V ′) and R′ ⊆ k
G′

as in 3.9.

Pick �′ ∈ R′ and consider the Hopf algebra L(�′). Let

Sq = {σ ∈ Sθ |qij = qσ(i)σ (j) ∀i, j ∈ I}.

Lemma 3.7. Let ψ : L(�) → L(�′) be a Hopf algebra isomorphism. Then ϕ = ψ|H : H →
H ′ is a Hopf algebra isomorphism and T = ψ|V : V → V ′ is an isomorphism of braided

vector spaces. In particular θ = θ ′. Moreover,

(i) there is σ ∈ Sq such that ϕ(gj) = g′
σ(j) and χ

′
σ(j) ◦ ϕ = χj, j ∈ I;

(ii) there is s = (sij) ∈ L such that T(ai) = ∑
j∈I(σ (i)) sija

′
j, i ∈ I. �

Proof. Follows since the map ψ preserves both the comultiplication and the coradical

filtration, as well as the adjoint action. �

Remark 3.8. When |I(i)| = 1, i ∈ I, Lemma 3.7 (ii) reads

(ii′) there are scalars {si}i∈I such that T(ai) = sia′
σ(i). �

Assume that θ = θ ′, H ′ 
 H . We fix ϕ ∈ Isom(H ,H ′), σ ∈ Sθ , and s ∈ L. We say that

a triple (ϕ, σ , s) : (H ,V ,�) → (H ′,V ′,�′) is a lifting data isomorphism if

• σ ∈ Sq.

• g′
i = ϕ(gσ(i)) and χ ′

i = χσ(i) ◦ ϕ, i ∈ I; and

• �′ = s ·�σ (cf. Lemmas 3.10 and 3.11).

Set Isom(�,�′) = {lifting data isomorphisms : (H ,V ,�) → (H ′,V ′,�′)}.

Theorem 3.9. Isom(L(�),L(�′)) 
 Isom(�,�′). �
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Proof. By Lemma 3.7, any ψ ∈ Isom(L(�),L(�′)) univocally determines a triple

(ϕ, σ , s) ∈ Isom(�,�′).

Conversely, let (ϕ, σ , s) ∈ Isom(�,�′). In particular, L(�′) is an H-module via ϕ.

Consider the linear map T = Tσs : V → L(�′) given by Tσs (ai) = ∑
j∈I(σ (i)) sija

′
j, i ∈ I. By

assumption, T is H-linear and hence it defines an algebra epimorphism F : T(V)#H →
L(�′)with F|H = ϕ and F(ai) = T(ai), i ∈ I. By a combination of Lemmas 3.10 and 3.11, the

map F induces an isomorphism F̃ ∈ Isom(L(�),L(�′)). The assignment (ϕ, σ , s) �→ F̃ is

injective, as each triple determines a Hopf algebra map in the first term of the coradical

filtration, hence in the whole algebra.

These constructions are inverse to each other and define a bijective correspon-

dence Isom(L(�),L(�′)) 
 Isom(�,�′). �

We set Hi = Bi(V)#H , i ≥ 0, see 3.1. If� ∈ R, then we set, cf. 3.6: A0(�) := T (V) ∈
Cleft(H0), Ai+1(�) := Ai(�i) ∈ Cleft(Hi+1). Let

ρi : Ai → Ai ⊗ Hi, γi : Hi → Ai

denote the coaction and section. Also we set Li(�) := Li as in 3.10.

Lemma 3.10. There is a well-defined action L × R → R so that if s ∈ L, � ∈ R, then

Li(s ·�) 
 Li(�) as Hopf algebras. �

Proof. We fix � ∈ R, s ∈ L. We shall assume for simplicity that each stratum Gi of G
(cf. 3.1) contains all primitive elements of Bi(V). The general case follows analogously.

We define s ·� ∈ R. That is, we define for each i ≥ 0 a family of scalars s ·�i ∈ k
Gi

such that the algebras defined recursively as A(s)
0 = A0 and A(s)

i+1 = A(s)
i (s ·�i), cf. 3.6, are

non zero. Hence s · � := (s · �i)i≥0 ∈ R. Moreover, we show that A(s)
i (s · �i) 
 Ai(�i) as

cleft objects, all i. As a result, Li(s ·�) 
 Li(�) as Hopf algebras.

Let Vs be the vector space with basis {Fs(xk)}k∈I. Then Vs is braided, with the

braiding from V by assumption on s ∈ L. Set Hs·i = Bi(Vs)#H . Let F0 : H0 → Hs·0 be the

unique algebra automorphism with

F0|H = id and F0(xk) = Fs(xk), k ∈ I.

By assumption, F0(kG0) = kG0 ⊂ T(Vs) and thus it induces an algebra automorphism F1 :

H1 → Hs·1. Similarly, F1(kG1) = kG1 and, in general, there is an induced automorphism

Fi : Hi → Hs·i, i ≥ 0.
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Claim 3.1. There is As·i ∈ Cleft(Hs·i) together with an algebra automorphism fi : Ai →
As·i such that

ρs·i ◦ fi = (fi ⊗ Fi) ◦ ρi, fi ◦ γi(r) = γs·i(Fi(r)), r ∈ Gi. (3.13)

�

This is clear when i = 0, for f0 = F0, As·0 := Hs·0, ρs·0 = 
, γs·0 = id.

Assume that, for a given i ≥ 0, we have defined As·i so that 3.13 holds. If r ∈ Gi,

then x = γs·i(Fs(r)) ∈ As·i is unique such that

ρs·i(x) = x ⊗ 1 + gr ⊗ Fs(r) ∈ As·i ⊗ Hs·i.

This is satisfied by x = fi ◦ γi(r) and hence fi descends as to an isomorphism

fi+1 : Ai+1 → As·(i+1) := As·i/〈γs·i(Fi(r))− λr : r ∈ Gi〉,

and 3.13 defines a structure As·(i+1) ∈ Cleft(Hs·(i+1)).

Now, the composition A0 � Ai(�i)
fi→ As·i defines a family of scalars s ·�i ∈ k

Gi

with A(s)
i (s ·�i) 
 Ai(�i), i ≥ 0. Hence s ·� ∈ R. �

We consider the action of Sq on T(V) by permutations of the generators. If � =
(λr)r∈G ∈ R, then we set �σ := (λσ ·r)r∈G ∈ k

G, σ ∈ Sq.

Lemma 3.11. There is a well-defined action Sq × R → R so that if σ ∈ Sq, � ∈ R, then

Li(�
σ ) 
 Li(�) as Hopf algebras. �

Proof. Proceed as in Lemma 3.10, mutatis mutandis. �

We give examples of the action L × R → R from Lemma 3.10.

Example 3.12. (1) Assume |I(i)| = 1, i ∈ I; hence L 
 k
×θ . If s = (si)i∈I ∈ L and r ∈ T(V) is

a Z
θ-homogeneous element with deg r = (d1, . . . ,dθ ), then we set sr := sd11 · · · sdθθ ∈ k

×. If

� = (λr)r∈G ∈ R and s ∈ L, then s ·� := (srλr)r∈G.

(2) Assume V is as in Remark 3.6 (3)(a), so L = GL2(k). In this case, � =
(λ112, λ122,μ1,μ2,μ12) ∈ k

5 by Theorem 1.8. Let s = ( s11 s12
s21 s22

) ∈ L and denote s · � :=
(λs112, λ

s
122,μ

s
1,μ

s
2,μ

s
12). Then

μs
1 = s311μ1 + s312μ2 + s211s12λ112 + s11s

2
12λ122,
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26 N. Andruskiewitsch et al.

μs
2 = s321μ1 + s322μ2 + s221s22λ112 + s21s

2
22λ122,

λs112 = 3s211s21μ1 + 3s212s22μ2 + (s211s22 + 2s11s12s21)λ112

+ (2s11s12s22 + s212s21)λ122,

λs122 = 3s11s
2
21μ1 + 3s12s

2
22μ2 + (2s11s21s22 + s12s

2
21)λ112

+ (s11s
2
22 + 2s12s21s22)λ122,

μs
12 = (s11s22 − s12s21)

3μ12. �

3.3 The algorithm

Our strategy reduces the lifting problem to an algorithm, that we describe next.

Let H , V be as in Section 1.1, � as in 2.1. Let G be the set of generators of the

ideal J (V) defining B(V) as described in [6] for each connected component, union the

q-commutators of vertices in different components. Decompose it as G = G0 � · · · � G� so
that (3.2) and (3.3) hold.

The algorithm involves � + 1 recursive steps. At each Step i, the input are two

Hopf algebras Hi and Li, a (Li,Hi)-bicleft object Ai, with coactions ρi, δi and a choice of

scalars �i = (λr)r∈Gi ∈ k
Gi such that

λr = 0, if χr = ε, or gr = 1.

The output is a new triple (Hi+1,Ai+1,Li+1), as quotient of the input data. Step 0 starts

with H0 = L0 = T(V)#H and A0 = H0, with ρ0 = δ0 = 
.

The final outcome of the algorithm is a list of liftings of V in terms of families

� ∈ k
G. All of them are cocycle deformations of B(V)#H . If no step produces a zero

object, then this list is exhaustive.

The recursive step is the following:

Step i.

(1) Compute r ′ ∈ Ai, r ∈ Gi. These elements are defined by the equation:

ρi(r
′) = r ′ ⊗ 1 + gr ⊗ r, r ∈ Gi.

(2) Set Ai+1 := Ai(�i) = Ai/〈r ′ − λr : r ∈ Gi〉 and check Ai+1 = 0.
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(3) Compute r̃ ∈ Li, r ∈ Gi. These elements are defined by the equation:

δi(r
′) = r̃ ⊗ 1 + gr ⊗ r ′, r ∈ Gi.

(4) Set Hi+1 := Hi/〈Gi〉, Li+1 := Li/〈r̃ − λr(1 − gr) : r ∈ Gi〉. �

Remark 3.13. We make some comments regarding the recursive step.

(1) At Step 0, r ′ = r, for each r ∈ G0.

(2) At Step �, A�+1 = 0 automatically.

(3) At Step i, 1 ≤ i ≤ �, the verification of (2) is facilitated by the fact that Ai+1 =
Ei+1#H , for Ei+1 ∈ H

HYD, i ≥ 0, the algebra defined recursively by

E0 = T(V), Ei+1 = Ei/〈r ′ − λr : r ∈ Gi〉. �

4 The Case N = 2

Let H , V as in Section 1.1, � as in 2.1. Assume moreover that V is of type Aθ , θ ∈ N,

associated with ξ = −1. Let B(V) be the corresponding Nichols algebra. In this section,

we compute the liftings of V . We show that all of them arise as cocycle deformations of

B(V)#H .

Recall the definition of the distinguished pre-Nichols algebra B̃(V), see Proposi-
tion 1.1 (2). Set H̃ = B̃(V)#H .

Lemma 4.1. Let i ≤ j ≤ k ≤ l. The following relations hold in H̃:

[x(i j),x(i k)]c = 0, [x(i k),x(j k)]c = 0, (4.1)

[x(i l),x(j k)]c = 0, [x(i k),x(j l)]c = 2χ(j k)(g(i k))x(j k)x(i l). (4.2)

The coproduct of H̃ satisfies


(x(i j)) = x(i j) ⊗ 1 + g(i j) ⊗ x(i j) + 2
j−1∑
k=i

x(i k)g(k+1 j) ⊗ x(k+1 j),


(x2
(i j)) = x2

(i j) ⊗ 1 + g2
(i j) ⊗ x2

(i j)

+ 4
j−1∑
k=i

χ(i k)(g(k+1 j))x
2
(i k)g

2
(k+1 j) ⊗ x2

(k+1 j). �

Proof. It follows as in [2, Section 6], see also [4, Section 3], by induction. The key point

to show 4.2 is to use (1.6) as the initial step. On the other hand, relations 4.1 follow from

(1.3) and (1.4). The formula for the coproduct now follows. �

 by guest on June 20, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


28 N. Andruskiewitsch et al.

In the remaining part of this section, we deal with a quotient of B̃(V), namely

we fix the algebra B̂(V) generated by x1, . . . ,xθ with relations

xij = 0, i < j − 1; [x(i−1i+1),xi]c = 0, 2 ≤ i < θ ; x2
k = 0, k ∈ Iθ . (4.3)

This algebra is an intermediate quotient between B̃(V) and B(V), see Propo-

sition 1.1 and Remark 1.2. We prefer the quotient (4.3) as it is more suitable for our

computations. We set Ĥ = B̂(V)#H . Observe that Lemma 4.1 holds for Ĥ.

Recall also that the Nichols algebra B(V) is generated by x1, . . . ,xθ with the pre-

vious defining relations and also x2
(i j) = 0 for i < j. We set H = B(V)#H . Let π : Ĥ � H

be the canonical Hopf algebra map. Recall that Ĥcoπ is the subalgebra generated by x2
(i j),

i < j, which is a polynomial algebra with these elements as generators.

4.1 Cleft objects

Let λ = (λij)1≤i<j−1<θ , μ = (μ(k l))1≤k≤l≤θ , ν = (νi)1<i<θ be families of scalars such that

λij = 0 if χiχj = ε, μ(k l) = 0 if χ2
(kl) = ε,

νi = 0 if χ2
i χi−1χi+1 = ε.

(4.4)

Let us set, following Proposition 3.3, Â = Â(λ) the quotient of T(V)#H by the relations

yij = λij, i < j − 1; [y(i−1i+1),yi]c = νi, 2 ≤ i < θ ;

y2
k = μ(k), 1 ≤ k ≤ θ .

(4.5)

Here, we have renamed the basis {x1, . . . ,xθ } of V by {y1, . . . ,yθ }.

Proposition 4.2. The algebras Â(λ,μ, ν) are cleft objects for Ĥ. Hence

Cleft′ Ĥ = {Â(λ,μ, ν)|λ,μ, ν as in (4.5)}. �

In particular, this shows that 3.12 holds for j = 0.

Proof. Set Â = Â(λ) and Ê the quotient of T(V) by the ideal I generated by (4.5). Observe

that Â 
 Ê#H , as I is an object in H
HYD. Hence we need to show that Ê = 0.

For this we use Diamond Lemma [12, Theorem 1.2]. We introduce a notation close

to the one in loc. cit. Let �ij = (wij, fij) be the pair associated to the relation yij − λij; we
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choose wij = yiyj, so fij = qijyjyi + λij. Similarly we set �i = (y2
i ,μ(i)) for 1 ≤ i ≤ θ , and

�′
i = (yi−1yiyi+1yi, f ′

i ), 2 ≤ i ≤ θ − 1, for the relation [y(i−1i+1),yi]c − νi, where for i = 2,

f ′
2 = q2

12q13y2y3y2y1 − q12q13q23y3y2y1y2 − q12q32y2y1y2y3 + 2q23λ13μ(2) + ν2.

There are no inclusion ambiguities. There are eight overlap ambiguities:

(1) (�ij,�jk,yi,yj,yk). Both yifjk and fijyk reduce to

qijqikqjkykyjyi + λijyk + qjkλikyj + λjkyi,

since χk(gigj)λij = χ−1
ij (gk)λij = λij.

(2) (�ij,�j,yi,yj,yj). As q2
ijμj = μj and λij(1+qij) = 0, both yifj and fijyj reduce to

μjyi.

(3) (�i,�ij,yi,yi,yj). Analogous to the previous case.

(4) (�i,�′
i+1,yi,yi,yi+1yi+2yi+1). For simplicity set i = 1. To prove that y1f ′

2

reduces to μ(1)y2y3y2 we use the identities [y1,y123]c = 0 obtained from �1,

and [y12,y123]c = 0, which is obtained from �′
2 and the previous relation.

(5) (�′
i+1,�i+1,yiyi+1yi+2,yi+1,yi+1). Again set i = 1. Then, f ′

2y2 reduces to

μ(2)y1y2y3 up to reduce by �′
2.

(6) (�′
i+1,�i+1 j,yiyi+1yi+2,yi+1,yj). Again set i = 1. If j > 4, then both f ′

2yj and

y1y2y3f2j reduce to

q1jq
2
2jq3j

(
q2
12q13yjy2y3y2y1 − q12q13q23yjy3y2y1y2 − q12q32yjy2y1y2y3

+ 2q23λ13μ(2)yj + ν2yj
)

+ λ1jq
2
2jq3jy2y3y2 + λ2jλ13q2jq3jy2

+ λ2jq13q3jy3y1y2 + λ3jμ(2)q2jy1 + λ2jy1y2y3

by direct computation. If j = 4, then use the relation [y(14),y2]c = 0 obtained

from f ′
2 and f2 to reduce the word y1y2y3y4y2 and obtain the same reduction

for both f ′
2y4 and y1y2y3f24.

(7) (�ij,�′
j+1,yi,yj,yj+1yj+2yj+1). Fix j = 1, j = 3 to simplify the notation. By direct

computation we reduce both expressions to

λ13y4y5y4 + λ14q13q35y5y3y4 + λ14q13q14q15y3y4y5 + λ15μ(4)q13q14y3

+ q13q
2
14q15

(
q4
34q35y4y5y4y3 − q34q35q45y5y4y3y4 − q34q54y4y3y4y5

)
y1

+ λ14λ35q13y4 + 4q45λ35μ(4)y1 + ν4y1.
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(8) (�′
i+1,�

′
i+2,yiyi+1yi+2,yi+1,yi+2yi+3yi+2). Again assume that i = 1. Both y1y2y3f ′

3

and f ′
2y3y4y3 reduce to

q12q43λ13μ(2)μ(3)y4 − 2q12q23q24λ14μ(2)μ(3)y3 + q23λ13μ(2)y3y4y3

+ ν3y1y2y3 + ν2y3y4y3 − q12q32q13μ(3)λ24y2y3y1 + q2
12q

2
13λ14μ(3)y2y3y2

+ q12q13q
3
23q

2
24λ13y3y4y2y3y2 − q12q32q14q

2
24μ(3)y4y2y1y2y3

+ q12q
2
13q14q

3
23q24λ13y3y2y3y4y2 − q12q13q

2
23q24q34λ14y3y2y3y2y3

+ q2
12q13q24λ13y2y3y4y2y1 + q2

12q
2
13q14λ13y2y3y2y3y4

+ q12q
3
13q14q

3
23q24y3y2y3y4y3y1y2 − q12q

2
13q14q

2
23q

2
24q34y3y4y2y3y1y2y3

+ q34λ24μ(3)y1y2y3 − q12q
2
13q

2
23q43y3y2y3y1y2y3y4.

Note that λ13λ24 = 0 since χ13χ24(g(14)) = −1, so either χ13 = ε or else χ24 = ε.

The proposition now follows from Proposition 3.3. �

Lemma 4.3. For all j < k,

ρ(y(j k)) = y(j k) ⊗ 1 + g(j k) ⊗ x(j k) + 2
k−1∑
l=j+1

y(j l)g(l+1k) ⊗ x(l+1k). �

Proof. By induction on k − j. If k = j + 1, then

ρ(y(j j+1)) = y(j j+1) ⊗ 1 + g(j j+1) ⊗ x(j j+1) + 2yjgj+1 ⊗ xj+1

by direct computation. If it holds for k − j, then

ρ(y(j−1k)) = ρ(yj−1)ρ(y(j k))− χ(j k)(gj−1)ρ(y(j k))ρ(yj−1)

= y(j−1k) ⊗ 1 + (
1 − χ(j k)(gj−1)χj−1(g(j k))

)
yj−1g(j k) ⊗ x(j k)

+ 2
k−1∑
l=j+1

(
yj−1y(j l) − χ(j k)(gj−1)χj−1(g(l+1k))y(j l)yj−1

)
g(l+1k) ⊗ x(l+1k)

+ g(j k) ⊗ x(j k) + 2
k−1∑
l=j+1

χ(j l)(gj−1)y(j l)gj−1g(l+1k) ⊗ [xj−1,x(l+1k)]c.
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Pointed Hopf Algebras of Type A 31

Notice that 1 − χ(j k)(gj−1)χj−1(g(j k)) = 2. For each j + 1 ≤ l ≤ k − 1,

yj−1y(j l) − χ(j k)(gj−1)χj−1(g(l+1k))y(j l)yj−1 = y(j−1 l),

[xj−1,x(l+1k)]c = 0 by Lemma 4.1, and the inductive step follows. �

Lemma 4.4. For all j ≤ k < l, y(j k)y(j l) = χ(j l)(g(j k))y(j l)y(j k). �

Proof. Set yj,k,l = y(j k)y(j l) − χ(j l)(g(j k))y(j l)y(j k). If k = j, l = j + 1, then

yj,j,j+1 = yjy(j j+1) − qjjq(j j+1)y(j j+1)yj

= (μjyj+1 − q(j j+1)yjyj+1yj)+ q(j j+1)(−q(j j+1)μjyj+1 + yjyj+1yj)

= (1 − μjq
2
(j j+1))yj+1 = (1 − μjq

2
(j j+1)χ

2
j (gj+1))yj+1 = 0.

Assume it holds for all k′, l′ such that k′ + l′ < k + l. Then

ρ(yj,k,l) = yj,k,l ⊗ 1 + (i)+ (ii)+ (iii)+ (iv)+ (v)+ (vi)+ (vii).

We compute now the other seven summands.Weuse repeatedly Lemma4.1 and inductive

hypothesis.

(i) = (1 − χ(j k)(g(j l))χ(j l)(g(j k)))y(j k)g(j l) ⊗ x(j l) = 2y(j k)g(j l) ⊗ x(j l).

(ii) = 2
l−1∑
t=1

(
y(j k)y(j t) − χ(j l)(g(j k))χ(j k)(g(t+1 l))y(j t)y(j k)

)
g(t+1 l) ⊗ x(t+1 l). If t > k, then

χ(j l)(g(j k))χ(j k)(g(t+1 l)) = χ(j t)(g(j k)) so the summand is zero by Lemma 4.1. For

t = k, χ(j l)(g(j k))χ(j k)(g(k+1 l)) = 1, so the summand is also zero. If t < k, then

y(j t)y(j k) = χ(j k)(g(j t))y(j k)y(j t), so we have that

(ii) = 4
k−1∑
t=1

y(j k)y(j t)g(t+1 l) ⊗ x(t+1 l).

(iii) = g(j k)g(j l) ⊗ [x(j k),x(j l)]c = 0.

(iv) = 2
l−1∑
t=1

χ(j t)(g(j k))y(j t)g(j k)g(t+1 l) ⊗ [x(j k),x(t+1 l)]c

= −4
k−1∑
t=1

χ(s+1 t)(g(k+1 s))y(j t)g(j k)g(t+1 l) ⊗ x(j l)x(t+1k)

− 2y(j k)g(j l) ⊗ x(j l).

(v) = 2
k−1∑
s=1

χ(j l)(g(s+1k))[y(j s),y(j l)]cg(s+1k) ⊗ x(s+1k) = 0.
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(vi) = 2
k−1∑
s=1

y(j s)g(s+1k)g(j l)

⊗ (
x(j+1 s)x(j l) − χ(j l)(g(j k))χ(j s)(g(j l))x(j l)x(s+1k)

)
= 4

k−1∑
t=1

χ(k+1 l)(g(t+1k))y(j t)g(j k)g(t+1 l) ⊗ x(j l)x(t+1k) = −(iv)− (i).

(vii) = 4
l−1∑
t=1

k−1∑
s=1

χ(j t)(g(s+1k))y(j s)y(j t)g(s+1k)g(t+1 l) ⊗ x(s+1k)x(t+1 l)

− χ(j l)(g(j k))χ(j s)(g(t+1 l))y(j t)y(j s)g(t+1 l)g(s+1k) ⊗ x(t+1 l)x(s+1k).

For (vii) there are three subcases:

• If t > k, then y(j s)y(j t) = χ(j t)(g(j s))y(j t)y(j s) and x(s+1k)x(t+1 l) =
χ(t+1 l)(g(s+1k))x(t+1 l)x(s+1k). Hence, these summands are 0.

• If t = k, x(s+1k)x(k+1 l) = x(s+1 l) + χ(k+1 l)(g(s+1k))x(k+1 l)x(s+1k), and y(j s)y(j k) =
χ(j k)(g(j s))y(j k)y(j s), so the summand is −(ii).

• For t < k, the summands cancel between themselves.

Thus ρ(yj,k,l) = yj,k,l ⊗ 1, so yj,k,l ∈ k. Also, yj,k,l ∈ Âχ(j k)χ(j l)
. As χ(j k)χ(j l)(g(j k)g(j l)) = −1, we

have that Âχ(j k)χ(j l)
∩ k = 0 so yj,k,l = 0. �

Lemma 4.5. For all j < k,

ρ(y2
(j k)) = y2

(j k) ⊗ 1 + g2
(j k) ⊗ x2

(j k) + 4
k−1∑
s=j+1

χ(j s)(g(s+1k))y
2
(j s)g

2
(s+1k) ⊗ x2

(s+1k). �

Proof. As ρ is an algebra map,

ρ(y2
(j k)) =

⎛⎝y(j k) ⊗ 1 + g(j k) ⊗ x(j k) + 2
k−1∑
s=j+1

y(j s)g(s+1k) ⊗ x(s+1k)

⎞⎠2

.

By Lemmas 4.1 and 4.4 all the summands q-commute. �

Lemma 4.6. For all j < k and all i, y2
(j k)yi = χi(g2

(j k))yiy
2
(j k). �

Proof. By induction on k − j. If k = j + 1, then

ρ(y2
(j j+1)yi − χi(g

2
(j j+1))yiy

2
(j j+1)) = (y2

(j j+1)yi − χi(g
2
(j j+1))yiy

2
(j j+1))⊗ 1
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since x2
(j j+1)xi = χi(g2

(j j+1))xix
2
(j j+1). But y2

(j j+1)yi − χi(g2
(j j+1))yiy

2
(j j+1) ∈ Âχiχ

2
(j j+1)

and

χiχ
2
(j j+1)(gig

2
(j j+1)) = −1, so y2

(j j+1)yi = χi(g2
(j j+1))yiy

2
(j j+1).

A similar proof follows for the inductive step since for all j < k and all i, x2
(j k)xi =

χi(g2
(j k))xix

2
(j k) (see [8, Proposition 4.1]). �

The following theorem shows that 3.12 holds for j = 1, hence 3.11 holds in

general.

Theorem 4.7. Let A = A(λ,μ, ν) be the quotient of Â by the relations

y2
(i j) = μ(i j), 1 ≤ i < j ≤ θ . (4.6)

Then A ∈ CleftH. As a result,

Cleft′ H = {A(λ,μ, ν)|λ,μ, ν as in (4.5)}. �

Proof. Indeed these algebras are obtained following [16, Theorem 4]. As in loc. cit.

we need to describe the Ĥ-linear and colinear algebra maps coπĤ → Â. As coπĤ is a

polynomial ring in the variables x2
(i j)g

−2
(j k), it is enough to determine the value on x2

(i j)g
−2
(j k).

Set f (x2
(i j)g

−2
(j k)) = y2

(i j)g
−2
(j k) − μ(i j)g

−2
(j k). Then f is Ĥ-colinear by Lemmas 4.1 and 4.5. We

claim that f is also Ĥ-linear. Indeed, for all g ∈ H and all 1 ≤ k ≤ θ ,

f (g · x2
(i j)g

−2
(j k)) = χ2

i j(g)f (x
2
(i j)g

−2
(j k)) = g · f (x2

(i j)g
−2
(j k)),

f (xk · x2
(i j)g

−2
(j k)) = 0 = xk · f (x2

(i j)g
−2
(j k)),

where the first equality holds by (4.4) and the second by Lemma 4.6 and [8, Propo-

sition 4.1]. The claim follows since Ĥ is generated by H and the xk’s as an alge-

bra. Then Â/Âf ((coπĤ)+) = Â/Âf ((coπĤ)+)Â = A(λ,μ, ν) is a cleft object of H by

Proposition 3.3. �

4.2 Liftings

In this subsection, we give a presentation for the Hopf algebras L(Â(λ,μ, ν), Ĥ) and

L(A(λ,μ, ν),H). We apply Proposition 3.3 together with formula 3.7.

Proposition 4.8. The Hopf algebra L̂(λ,μ, ν) = L(Â(λ,μ, ν), Ĥ) is the quotient of T (V)
by relations

aij = λij(1 − gigj); (4.7)
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a2
k = μ(k)(1 − g2

k); (4.8)

[a(i−1 i+1),ai]c = νi(1 − g2
i gi−1gi+1) (4.9)

− 4χi(gi−1)μ(i)λi−1 i+1gi−1gi+1(1 − g2
i ).

In particular, it is a cocycle deformation of Ĥ with gr L̂(λ,μ, ν) 
 Ĥ. �

Proof. We followProposition 3.3 (c): the xij’s and the x2
k ’s are skew-primitive elements in

T(V)#H , so we quotient T(V)#H by relations (4.7) and (4.8) to obtain the corresponding

lifting. Again, Proposition 3.3 (c), see also [5, Corollary 5.12], applies for the relation

[x(i−1i+1),xi]c since it is primitive, and ũ = [a(i−1 i+1),ai]c +4χi(gi−1)μ(i)λi−1 i+1gi−1gi+1(1−g2
i )

is the corresponding skew-primitive element (see 3.7). �

Let i = j ∈ I. If |i − j| ≥ 2, then we define recursively scalars di j(s), bi j(s), s ≥ 0,

as: di j(0) = 2λi j, bi j(0) = −2χj(g(i j))λi j, and for s > 0,

di j(s) = qij

s−1∑
l=0

di j+1(l)dj j+2l+2(s− l − 1), (4.10)

bi j(s) =
s−1∑
l=0

bi+1 j(l)di i+2l+2(s− l − 1). (4.11)

If |i − j| = 1, then we set di j(s) = bi j(s) = 0, for s ≥ 0. In what follows y(k+1k) := 1, to

simplify the summation formulas.

Remark 4.9. Notice that di j(s) = 0 if χiχ(j j+2s) = ε. �

Lemma 4.10. Let j < k, i /∈ {j − 1, j, . . . ,k + 1}. Then

[yi,y(j k)]c =
k−j
2∑

s=0

di j(s)y(j+2s+1k). (4.12)

�

Proof. By induction on j − k. If k = j + 1, then

[yi,y(j j+1)]c = λi j(1 − χj+1(gigj))yj+1 + λi j+1(χj(gi)− χj+1(gj))yj

= λi j(1 − χj+1(gigj)χiχj(gj+1))yj+1 + λi j+1(χj(gi)− χ−1
i (gj))yj

= 2λi jyj+1.
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The inductive step follows from the following formula:

[yi,y(j−1k)]c = 2λi j−1y(j k) + qi j−1

[
yj−1, [yi,y(j k)]c

]
c

= di j−1(0)y(j k) + qi j−1

k−j
2∑

s=0

di j(s)
[
yj−1,y(j+2s+1k)

]
c

= di j−1(0)y(j k) + qi j−1

k−j
2∑

s=0

di j(s)

k−j−1−2s
2∑

t=0

dj−1 j+2s+1(t)y(j+2(s+t+1)k).

Here, we have applied the inductive hypothesis twice. �

Lemma 4.11. Let j < k. Then

[y(j k),yk+1]c = y(j k+1) −
k−j
2∑

s=1

bj k+1(s)y(j+2s+1k), (4.13)

[y(j k),yk]c =
k−j−1

2∑
s=0

bj k(s)y(j+2s+1k). (4.14)

�

Proof. First, we prove (4.13) by induction on k − j. For k = j + 1, we have

[y(j j+1),yj+2]c = [[yj,yj+1]c,yj+2]c
= y(j j+2) − χj+1(gj)yj+1[yj,yj+2]c + χj+2(gj+1)[yj,yj+2]cyj+1

= y(j j+2) + χj+2(gj+1)(1 + χj+1(gj j+2))λjj+2yj+1

= y(j j+2) − bjj+2(0)yj+1.

Now assume it holds for j′,k′ such that k′ − j′ < k − j. Then by inductive hypothesis,

Lemma 4.10 and using χ−1
k+1 = χj if λjk+1 = 0 we obtain

[y(j k),yk+1]c = [[yj,y(j+1k)]c,yk+1]c
= [yj, [y(j+1k),yk+1]c]c + (

χk+1(g(j+1k))− χ(j+1k)(gj)
)
λjk+1y(j+1k)

=
⎡⎢⎣yj,y(j+1k+1) −

k−j
2∑

s=1

bj+1k+1(s)y(j+2s+1k+1)

⎤⎥⎦
c

+ χk+1(g(j+1k))
(
1 − χj(g(j+1k))χ(j+1k)(gj)

)
λjk+1y(j+1k)
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= y(j k+1) −
k−j
2∑

s=1

bj+1k+1(s)

k−2s−j
2∑

t=0

djj+2s+2t+2 y(j+2s+2t+2k+1)

− bjk+1(0)y(j+1k).

Now we prove (4.14). For k = j + 1, j + 2 we have

[y(j j+1),yj+1]c = μ(j+1)(1 − q2
(j j+1))yj = 0,

[yjj+2,yj+2]c = [[yj,yj+1j+2]c,yk+2]c
= λjj+2(χj+2(gj+1j+2)− χj+1j+2(gj))yj+1j+2

= −2χj+2(gj+1)λjj+2yj+1j+2 = bjj+2(0)yj+1j+2.

Then we argue by induction in k − j as for (4.13). �

We define recursively ζ(j k) ∈ L̂ as follows: ζ(j j) = aj and for j < k

ζ(j k) = [aj, ζ(j+1k)]c + djk(0)χ(j k)(gj)ζ(j+1k−1)gjk

+ 2

k−j−1
2∑

t=1

djk−2t(t)χ(j+1k−2t−1)(gj)ζ(j+1k−2t−1)gjg(k−2t k). (4.15)

Remark 4.12. If s = t, then djk−2t(t)djk−2s(s) = 0 by Remark 4.9. Thus, there is at most

one non-trivial summand besides [aj, ζ(j+1k)]c in (4.15). �

Lemma 4.13. The L̂-coaction δ of Â satisfies:

δ(y(j k)) = ζ(j k) ⊗ 1 + g(j k) ⊗ y(j k) + 2
k−1∑
s=j
ζ(j s)g(s+1k) ⊗ y(s+1k). �

Proof. Again by induction: the case k = j + 1 is direct. Now assume that it holds for

k − j. Then, we compute

δ(y(j−1k)) = δ(yj−1)δ(y(j k))− χ(j k)(gj−1)δ(y(j k))δ(yj−1)

= [aj−1, ζ(j k)]c ⊗ 1 + 2aj−1g(j k) ⊗ y(j k)

+ 2
k−1∑
s=j

[aj−1, ζ(j s)]cg(s+1k) ⊗ y(s+1k) + g(j−1k) ⊗ y(j−1k)

 by guest on June 20, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Pointed Hopf Algebras of Type A 37

+ 2
k−1∑
s=j
χ(j s)(gj−1)ζ(j s)gj−1g(s+1k) ⊗ [yj−1,y(s+1k)]c

= [aj−1, ζ(j k)]c ⊗ 1 + 2aj−1g(j k) ⊗ y(j k)

+ 2
k−1∑
s=j

[aj−1, ζ(j s)]cg(s+1k) ⊗ y(s+1k) + g(j−1k) ⊗ y(j−1k)

+ 2
k−2∑
s=j
χ(j s)(gj−1)ζ(j s)gj−1g(s+1k) ⊗

k−s−1
2∑

t=0

dj−1s+1(t)y(s+2t+2k)

+ 2χ(j k−1)(gj−1)ζ(j k−1)gj−1k ⊗ λj−1k,

by Lemma 4.10. The proof follows by reordering the summands. �

Now, for each m ≥ 1, consider the m-adic approximation B̂m(V). This is the

quotient of T(V) by relations (4.3) and

x2
(k l), 1 ≤ l − k <m.

Thus, we obtain a family of cleft objects Am(λ,μ, ν) for Hm = B̂m(V)#H given by the

quotient of T (V) by relations (4.5) together with

y2
(k l) − μ(k l), 1 ≤ l − k <m. (4.16)

Let Lm(λ,μ, ν) := L(Am,Hm). Notice that L0 = L̂. We keep the name δ : Am → Lm ⊗ Am

for the coaction at each level.

For the next two lemmas we consider a fixed m.

Lemma 4.14. Let i < j < k be such that k−j <m. Then, there exist cijk(s, t) ∈ k such that

[y(i k),y(j k)]c =
∑

i<s<t≤k+1

cijk(s, t)y(t k)y(s k). (4.17)

�

Proof. By induction on j − i. If j = i+ 1, then

[y(j−1k),y(j k)]c = (
yj−1y(j k) − χ(j k)(gj−1)y(j k)yj−1

)
y(j k)

− χ(j k)(g(j−1k))y(j k)
(
yj−1y(j k) − χ(j k)(gj−1)y(j k)yj−1

)
= μ(j k)(1 − χ2

(j k)(gj−1))yj−1 = 0,
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since χ(j k)(g(j−1k)) = χ(j k)(gj−1)χ(j k)(g(j k)) = −χ(j k)(gj−1).

Now assume that it holds for all i′ < j′ such that j − i > j′ − i′. Then,

[y(i−1k),y(j k)]c = [yi−1, [y(i k),y(j k)]c]c − χ(i k)(gi−1)y(i k)[yi−1,y(j k)]c
+ χ(j k)(g(i k))[yi−1,y(j k)]cy(i k) =

∑
i<s<t≤k+1

cijk(s, t)[yi−1,y(t k)y(s k)]c

+
k−j
2∑

r=0

di−1j(s)
(
2χ(j k)(g(i k))y(j+2s+1k)y(i k) − χ(j k)(gi−1)[y(i k),y(j+2s+1k)]c

)
.

We apply the inductive step to express [y(i k),y(j+2s+1k)]c as a linear combination of

products y(t k)y(s k). Also,

[yi−1,y(t k)y(s k)]c = [yi−1,y(t k)]cy(s k) + χ(t k)(gi−1)y(t k)[yi−1,y(s k)]c.

We apply Lemma 4.10 and the inductive step to obtain a linear combination of elements

y(t k)y(s k) for k + 1 ≥ t ≥ s > i. Assume that some y2
(t k) appears with non-zero coefficient.

Then χ(i k)χ(j k) = χ2
(t k), so χ(i t−1)χ(j t−1) = ε, which contradicts χ(i t+1)χ(j t+1)(g(i t+1)g(j t+1)) =

−1. �

Lemma 4.15. Let j ≤ k. There exist z(j k)(s, t) ∈ L̂ such that

δ(y2
(j k)) = ζ 2(j k) ⊗ 1 + 4

k−1∑
s=j
χ(j s)(g(s+1k))ζ

2
(j s)g

2
(s+1k) ⊗ y2

(s+1k)

+ g2
(j k) ⊗ y2

(j k) +
∑

i<s<t≤k+1

z(j k)(s, t)⊗ y(t k)y(s k). (4.18)

�

Proof. As δ is an algebra map,

δ(y2
(j k)) =

⎛⎝ζ(j k) ⊗ 1 + g(j k) ⊗ y(j k) + 2
k−1∑
s=j
ζ(j s)g(s+1k) ⊗ y(s+1k)

⎞⎠2

.

Then, we apply Lemma 4.14 to write the right-hand side as a linear combination of

elements y(t k)y(s k) (remember that y(k+1k) = 1). �

Notice that Hm+1 = Hm/Im+1 is such that Im+1 is generated by skew-primitive

elements [2, Remark 6.10]. According to Proposition 3.3 cf. 3.7, to describe Lm+1 as a
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quotient of Lm we need the deforming elements u(j k) defined by the equation:

ζ 2(j k) ⊗ 1 − δ(y(j k))
2 = u(j k) ⊗ 1. (4.19)

Recall the definition of ζ(j k) in (4.15).

Remark 4.16. As in the case of x(jk), y(jk), we define recursively a(jj) = aj, a(jk) =
[aj,a(j+1k)]c. By induction we see that

ζ(jk) = a(jk) + other terms with factors a(st), t − s < k − j.

For example,

ζ(12) = a(12), ζ(13) = a(13) + 2λ13q12a2g1g3. �

Theorem 4.17. The algebra L(λ,μ, ν) := L(A(λ,μ, ν),H) is the quotient of L̂(λ,μ, ν) by

ζ 2(j k) = μ(j k)(1 − g2
(j k))+ u(j k), (4.20)

where u(j k) is defined recursively as: u(kk) = 0, k ∈ I, and for k > j

u(j k) = −4
∑
j≤p<k

χp+1,k(gj,p)μ(p+1 l)

(
u(j p) + μ(j p)

(
1 − g2

(j p)

))
g2
(p+1k). �

Proof. We prove the statement by induction in m = k − j. We work over Hm, Am, Lm.

Then x2
(j k) is primitive and γ (x2

(j k)) = y2
(j k). Set πm : L̂ � Lm the canonical projection. By

(4.18),

δ(y2
(j k)) = (

ζ 2(j k) − u(j k)
)⊗ 1 + g2

(j k) ⊗ y2
(j k)

+
∑

i<s<t≤k+1

πm
(
z(j k)(s, t)

)⊗ y(t k)y(s k).

By Proposition 3.3, πm
(
z(j k)(s, t)

) = 0 and the theorem follows. �

Example 4.18. For θ = 2, 3 we have the following relations

ζ 2(12) − μ(12)(1 − g2
12)− u(12)

= a2
(12) − μ(12)(1 − g2

12)− 4q21μ(1)μ(2)(1 − g2
1)g

2
2,

ζ 2(13) − μ(13)(1 − g2
(13))− u(13)
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= (a(13) + 2λ13q12a2g13)
2 − μ(13)(1 − g2

(13))− u(13)

= a2
(13) + 2q12λ13ν2(1 − g(13)g2)g13 + 4q2

12λ
2
13μ(2)(1 − g2

2)g
2
13

− μ(13)(1 − g2
(13))− 4q31q21μ(23)μ(1)(1 − g2

1)g
2
23

− 4q31q32μ(3)

(
μ(12)(1 − g2

12)+ 4q21μ(1)μ(2)(1 − g2
1)g

2
2

)
g2
3. �

Remark 4.19. We set G = (Z/2nZ)3 for some n ≥ 2, gi, i = 1, 2, 3, the generators of each

cyclic factor. Set H = kG. Given the matrix q =
( −1 1 −1

−1 −1 −1
−1 1 −1

)
, there exist χi ∈ �̂, i = 1, 2, 3,

such that χj(gi) = qij, so V is realized in H
HYD. Notice that χ2

i = ε, i = 1, 2, 3, χ1χ3 = ε,

so the scalars μ(i), λ13 can be simultaneously non-zero by (4.4) for the Yetter–Drinfeld

module V with basis vi ∈ V
χi
gi .

But for θ ≥ 4 we have that λ13λ24 = 0. Indeed χ(14)(g(14)) = −1, so either χ1χ3 = ε

or else χ2χ4 = ε.

Also ν2ν3 = 0. Otherwise χ1χ
3
2χ3 = χ2χ

2
3χ4, which implies that χ12 = χ34, so

χ(14)(g(14)) = χ2
12(g12)χ

2
34(g34) = 1, a contradiction. �

Remark 4.20. The computation of ζ 2(jk), j < k, involves the computation of [a(rs),a(r′s′)]c
for r ≤ s, r ′ ≤ s′. A general abstract formula involves all the scalars μrs, νs, λst. However

not all of them can be non-zero simultaneously (see Remark 4.19). For example,

[a1,a(35)]c = 2λ13a45 − 2χ34(g1)λ15a34g15 + 4χ3(g1)λ14λ35(1 − g35)

[a(14),a3]c = 2λ13χ3(g(24))a(24) − 2ν3a1g2343 + 8λ24μ(3)χ3(g2)a1g24(g
2
3 − 1),

[a(14),a2]c = 2λ24a(13)g24 + 2χ2(g4)ν2a4 + 4λ24χ3(g12)a3a12g24

+ 4λ24χ23(g1)a23a1g24 − 8λ24χ23(g12)a3a2a1g24.

In the first identity, we necessarily have λ13λ14 = λ15λ14 = 0. Similar conditions follow

for the other two identities. �

Example 4.21. Set θ = 5 and consider the braiding matrix(
–1 –1 1 –1 1
1 –1 1 1 1
1 –1 –1 1 –1
–1 1 –1 –1 –1
1 1 –1 1 –1

)
.

Thus χ13, χ15, χ24, χ(13)χ2, χ(24)χ3 = ε. We may assume that there are gi, χj are such that

χ14 = χ35 = χ(35)χ4 = χ2
i = ε, 1 ≤ i ≤ 5.
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Notice that ζ(13) = a(13), ζ(24) = a(24), but

ζ(14) = a(14) − 4λ14a23g14, ζ(15) = a(15) + 4λ14λ35a2g35 + 4λ35a4a12g35,

ζ(25) = a(25) + 4λ35a4a2g35.

We compute the relations involving ζ 2(i,i+1), ζ
2
(i,i+2) as in Example 4.18. For the other

cases we need some auxiliary computations as

[a(14),a23]c = [a2,a(25)]c = [a(25),a4]c = 0,

[a(15),a2]c = 8λ14λ35μ(2)(1 − g2
2)(1 + g14)g35,

[a12,a(15)]c = [a1, [a2,a(15)]c]c = 0,

[a(15),a4]c = 8λ35μ(4)a12g35(g
2
4 − 1)− 2λ14a(25)g14 − 2ν4a12g(35)g4.

We have that

ζ 2(14) = a2
(14) + 16λ214

(
μ(23)(1 − g2

23)− 2μ(2)μ(3)(1 − g2
2)g

2
3

)
g2
14,

ζ 2(25) = a2
(25) + 16λ235μ(4)μ(2)(1 − g2

4)(1 − g2
2)g

2
35,

ζ 2(15) = a2
(15) − 16λ214λ

2
35μ(2)(1 − g2

2)g
2
35

− 16λ235μ(4)(1 − g2
4)
(
μ(12)(1 − g2

12)+ 2μ(1)μ(2)(1 − g2
1)g

2
2

)
g2
35

+ 8λ35a4a(15)a12g35 + 32λ214λ
2
35μ(2)(1 − g2

2)(1 + g14)g
2
35

− 8ν4λ35
(
μ(12)(1 − g2

12)+ 2μ(1)μ(2)(1 − g2
1)g

2
2

)
g2
(35)

− 8λ14λ35a(25)a12g14g35 − 32λ14λ
2
35a4a2a12g

2
35,

so last relation can be deformed in higher strata of the coradical filtration. �

5 The Case N = 3

Let H , V as in Section 1.1, � as in 2.1. Assume that V is of type Aθ , θ ∈ N, associated

with (primitive) cubic root of unity ξ . Let B(V) be the corresponding Nichols algebra.

In this section we compute the liftings of V . We show that all of them arise as cocycle

deformations of B(V)#H .
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5.1 Cleft objects

Let us set, following Proposition 3.3, Ã = Ã(λ) the quotient of T(V)#H by the relations

yij = 0, i < j − 1; yiij = λiij, |j − i| = 1 (5.1)

for some family of scalars λ = (λiij) satisfying

λiij = 0 if χiij = ε. (5.2)

Here, we have renamed the basis {x1, . . . ,xθ } of V by {y1, . . . ,yθ }.
If Ã = 0, then these algebras are cleft objects for H̃, by Proposition 3.3. The

coaction ρ : Ã → Ã ⊗ H̃ given by

ρ(yi) = yi ⊗ 1 + gi ⊗ yi, i ∈ I.

We will show that Ã(λ) = 0 for every λ satisfying 5.2. In particular, this will show that

3.12 holds for j = 0. First, we develop some technicalities about these scalars.

Lemma 5.1. (1) Let 1 ≤ i = j < θ , | i− j |= 1. If χiij = ε, then qij = qji = ξ .

(2) Let 1 ≤ i < θ − 2, j = i + 1, k = i + 2. If χiij = ε or χijj = ε, then χjjk = ε and

χjkk = ε.

(3) Let 1 ≤ i < θ − 3, j = i + 1, k = i + 2, l = i + 3. If χiij = ε or χijj = ε, then

χkkl = ε and χkll = ε. �

Proof. We set i = 1 to simplify the notation. For (1), observe that χ112 = ε gives 1 =
χ112(g1) = ξ 2q12 and 1 = χ112(g2) = ξ 2q21. Hence q21 = q12 = ξ . Idem for χ122 = ε. For (2),

we have

χ112(g223)χ223(g112) = (q31q13)
2(q21q12)

4(q23q32)q
4
22 = ξ 2.

Hence, if χ112 = ε, then χ223 = ε. The other combinations follow analogously. For (3), it

follows that χ112(g334)χ334(g112) = ξ . Thus if χ112 = ε, then χ334 = ε. A similar computation

yields the other combinations. �

Proposition 5.2. Let λ = (λiij) satisfy 5.2. Then Ã(λ) = 0. Hence Ã(λ) ∈ Cleft H̃ and, in

particular,

Cleft′ H̃ = {Ã(λ)|λ as in (5.2)}. �
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Proof. Set Ã = Ã(λ). Observe that Ã 
 Ẽθ#H , for

Ẽθ = k〈y1, . . . ,yθ | yij, i < j − 1; yiij − λiij, |j − i| = 1〉

as the ideal of T(V) generated by (5.1) is an object in H
HYD.

Hence we need to show that Ẽθ = 0. We see this by induction on θ ≥ 2. For θ = 2,

we distinguish three cases, namely

(i) λ112 = λ122 = 0; (ii) λ112 = 0, λ122 = 0; (iii) λ112λ122 = 0.

Case (i) is clear, as Ẽ2 is the distinguished pre-Nichols algebra of type A2 (cf. p. 4). For

both cases (ii) and (iii) notice that, as q12 = q21 = ξ by Lemma 5.1, the defining relations

become:

λ112 = y2
1y2 + y1y2y1 + y2y

2
1 , λ122 = y2

2y1 + y2y1y2 + y1y
2
2 .

Now case (iii) follows by observing that α : Ẽ2 → k given by

α(y1) =
(
λ2112

3λ122

) 1
3

, α(y2) =
(
λ2122

3λ112

) 1
3

(5.3)

is a well-defined one-dimensional representation.

For case (ii), we have the representation α : Ẽ2 → k
3×3:

α(y1) =
(

0 1 0
0 0 1
0 0 0

)
, α(y2) =

( −λ112 0 −λ112
0 0 0

λ112 0 λ112

)
. (5.4)

We turn now to the general case θ ≥ 3. If λ112 = λ122 = 0, then we have an algebra

isomorphism

Ẽθ /〈y1〉 
 Ẽθ−1, ȳi �→ ai−1, 2 ≤ i ≤ θ ,

where ai, 1 ≤ i ≤ θ − 1 stand for the generators of Ẽθ−1. Hence we may assume λ112 = 0.

Thus it follows that λ223 = λ233 = 0 and (if θ ≥ 4) λ334 = λ344 = 0, by Lemma 5.1. In

particular, if θ = 3, there is an isomorphism

Ẽ3/〈y3〉 
 Ẽ2, yi �→ ai, 1 ≤ i ≤ 2

which shows that Ẽ3 = 0. Let then θ ≥ 4 and assume Ẽϑ = 0 for every ϑ < θ . For

i ∈ N, we set i∗ = i + 3. Let Q = (qij)1≤i,j≤θ be the braiding matrix and consider the
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submatrix Q′ = (q′
ij)1≤i,j≤θ−3, q′

ij = qi∗j∗ and the subfamily λ′ = (λ′
iij), λ

′
iij = λi∗i∗j∗ . Consider

the corresponding algebra Ẽθ−3(λ
′), with generators a1, . . . ,aθ−3. We denote this algebra

by B and rename the generators wi+3 := ai, 1 ≤ i ≤ θ − 3. That is, B is the algebra

generated by w4, . . . ,wθ with relations defined by a subset of the relations in (5.1). Let

A be the algebra Ẽ2(λ112, λ122), with generators s1, s2. Let us also set E = Ẽθ /〈y3〉. We will

show that E = 0, hence Ẽθ = 0. Let us denote by y1,y2,y4, . . . ,yθ ∈ E the images of the

corresponding generators of Ẽθ .
Let α : A → km×m be the representation defined in 5.3 if λ122 = 0 or the

representation in 5.4 if λ122 = 0, with m = 1 or m = 3, respectively. Set, accord-

ingly, M1 = α(s1),M2 = α(s2). Let us consider the vector space W = B ⊗ V . We define

� : E → End(W) given by

�(yj)(b⊗ v) =
⎧⎨⎩gj · b⊗Mj v, j < 3

wjb⊗ v, j > 3.

This is a well-defined representation. For instance:

�(y112 − λ112)(wk ⊗ v) = (χk(g112)λ112 − λ112)wk ⊗ v = 0,

�(y1yj − qjkyjy1)(wk ⊗ v) = (q1jqjk − qjkq1j)wjwk ⊗M1 v = 0, j > 3,

�(yjjl − λjjl)(wk ⊗ v) = wjjlwk ⊗ v − λjjlwk ⊗ v = 0, 3 < j = l − 1.

Hence the proposition follows. �

We need to compute ρ(y3
(kl)) = ρ(y(kl))3, 1 ≤ k < l ≤ θ . We have:

ρ(yi)
3 = y3

i ⊗ 1 + g3
i ⊗ x3

i , i ∈ I (5.5)

as these elements are skew-primitives for the coaction. Now, for every k, l,

ρ(y(kl)) = y(kl) ⊗ 1 + g(kl) ⊗ x(kl) + (1 − ξ 2)
∑
k≤p<l

y(kp)g(p+1l) ⊗ x(p+1l),

again as relation yij = 0, i < j − 1 holds in Ã.

Consider a family of indeterminate variables t = (tiij) and let R = k[t] be the

polynomial ring on those variables. Let us denote by H̃R and ÃR the R-algebras defined

by the same relations as H̃ and Ã. Given a family λ as above, we consider the evaluation
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tiij �→ λiij. Thus, we have ÃR ⊗R k = Ã, H̃R ⊗R k = H̃. Let R+ be the ideal generated by t.

By (5.1) we have:

y(kr)y(ks) = χ(ks)(g(kr))y(ks)y(kr) + R+ÃR.

If λiij = 0 for every 1 ≤ i, j ≤ θ , then Ã 
 H̃ and thus

ρ(y3
(k l)) = y3

(k l) ⊗ 1 + g3
(k l) ⊗ x3

(k l) +
∑
k≤p<l

Cpy3
(k p)g

3
(p+1 l) ⊗ x3

(p+1 l),

for Bp as in 1.7. Hence,

ρ(y3
(k l)) = y3

(k l) ⊗ 1 + g3
(k l) ⊗ x3

(k l)

+
∑
k≤p<l

Cpy
3
(k p)g

3
(p+1 l) ⊗ x3

(p+1 l) + R+ÃR ⊗ H̃R.

Hence, in the computation of ρ(y3
(k l)) in the general case, we need to focus on the terms

in which a scalar λ∗∗∗ may appear. See Example 5.3 for θ = 2. This example shows the

philosophy behind our calculations. Also, it introduces the notation � in 5.6 to keep

only the terms with a factor λ∗∗∗.

Example 5.3. We will show that

ρ(y3
12) = y3

12 ⊗ 1 + g3
12 ⊗ x3

12 + (1 − ξ 2)3χ1(g2)
3y3

1g
3
2 ⊗ x3

2 .

Hence, we can take a section γ : H̃ → Ã such that γ (x3
12) = y3

12.

Let us compute ρ(y12)
3. Set

A = y12 ⊗ 1, B = g12 ⊗ x12, C = y1g2 ⊗ x2.

Hence ρ(y12) = A+B+ (1− ξ 2)C. As said, we need to focus on the terms in which a factor

λ∗∗∗ may appear. These are related with the fact that y1 appears to the left of y12 and are

precisely:

CAB, CBA, BCA, CAA, ACA, CAC, CCA.

Now, for instance

CAB = y1g2y12g12 ⊗ x2x12 = χ12(g2)y1y12g122 ⊗ x2x12

= λ112χ12(g2)g122 ⊗ x2x12 + χ12(g2)χ12(g1)y12y1g122 ⊗ x2x12.
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We only need to keep the term involving λ112. Hence, we write

CAB� λ112χ12(g2)g122 ⊗ x2x12 = λ112ξ
2g122 ⊗ x2x12 (5.6)

as λ112χ12(g2) = λ112ξ
2. We will do this for every term. We need the following equalities:

y1y12 = λ112 + χ12(g1)y12y1 � λ112;

y1y
2
12 = λ112(1 + ξ 2)y12 + χ12(g1)

2y2
12y1 � λ112(1 + ξ 2)y12;

y12y1y12 = λ112y12 + χ12(g1)y
2
12y1 � λ112y12;

y1y12y1 = λ112y1 + χ12(g1)y12y
2
1 � λ112y1;

y2
1y12 = λ112(1 + ξ 2)y1 + χ12(g1)

2y12y
2
1 � λ112(1 + ξ 2)y1.

We have

CAB� λ112ξ
2g122 ⊗ x2x12; CBA� λ112g122 ⊗ x2x12;

BCA� λ112ξg122 ⊗ x2x12.

Thus CAB+ CBA+ BCA� 0.

CAA� λ112ξ(1 + ξ 2)y12g2 ⊗ x2; ACA� λ112ξ
2y12g2 ⊗ x2.

Thus CAA+ ACA� 0.

CAC � λ112y1g
2
2 ⊗ x2

2 ; CCA� λ112ξ
2(1 + ξ 2)y1g

2
2 ⊗ x2

2 .

Thus CAC + CCA� 0. Therefore,

ρ(y12)
3 = y3

12 ⊗ 1 + g3
12 ⊗ x3

12 + (1 − ξ 2)3χ1(g2)
3y3

1g
3
2 ⊗ x3

2 . �

Fromnowonwe consider the case θ ≥ 3.Wewill collect some technical identities

needed to compute ρ(y(kl))3 in a series of general lemmas.

Lemma 5.4. The following identities hold in Ã:

[y(1 l),y2]c = λ122(1 − ξ 2)χ2(g(3 l))y(3 l), l ≥ 3. �

Proof. Assume first l = 3. We have two cases, namely χ122 = ε or not, (in which case it

is possible to have χ223 = ε). We proceed as in [2, Lemma 1.11]. In the first case, we have
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the lemma. In the second, we get [y(13),y2]c = λ223(1 − χ223(g1))x1 = 0, hence the lemma

also holds (as λ122 = 0). For the general case, we get

[y(1 l),y2]c = [[y(13),y(4 l)]c,y2]c
= χ2(g(4 l))[y(13),y2]cy(4 l) − χ(4 l)(g(13))y(4 l)[y(13),y2]c
= λ122q32(1 − ξ 2)χ2(g(4 l))

(
y3y(4 l) − χ(4 l)(g3)χ(4 l)(g122)y(4 l)y3

)
= λ122(1 − ξ 2)χ2(g(3 l))y(3 l),

as λ122χ(5 l)(g122) = λ122, 1 = χ2(g(4 l))χ(4 l)(g2) plus q-Jacobi (2.2). �

Lemma 5.5. The following identities hold in Ã, for 1 ≤ p ≤ l:

[yp,y(1 l)]c =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ112(1 − ξ 2)y(3 l), p = 1;

λ122(1 − ξ)y(3 l), p = 2;

0, 2 < p < l;

(1 − ξ)yly(1 l), p = l.

, l ≥ 3. �

Proof. Using that λ112χ112 = λ112ε,

[y1,y(1 l)]c = λ112(1 − χ(3 l)(g112))y(3 l)

= λ112(1 − χ(3 l)(g112)χ112(g(3 l)))y(3 l) = λ112(1 − ξ 2)y(3 l).

If p = 2, it follows by Lemma 5.4 that [y2,y(1 l)]c = λ122(1 − ξ)y(3 l).

Assume 2 < p < l. Then

[yp,y(1 l)]c = [yp, [y(1p−2),y(p−1 l)]c]c = −χ(p−1 l)(g(1p−2))[yp,y(p−1 l)]cy(1p−2)

+ χ(1p−2)(gp)y(1p−2)[yp,y(p−1 l)]c
case p=2= −χ(p−1 l)(g(1p−2))λp−1pp(1 − ξ)y(p+1 l)y(1p−2)

+ χ(1p−2)(gp)λp−1pp(1 − ξ)y(1p−2)y(p+1 l)

= λp−1pp(1 − ξ)χ(1p−2)(gp)
(
y(1p−2)y(p+1 l)

− χ(p+1 l)(g(1p−2))χp−1pp(g(1p−2))y(p+1 l)y(1p−2)

)
= λp−1pp(1 − ξ)χ(1p−2)(gp)[y(1p−2),y(p+1 l)]c = 0.
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Finally, ifp = l, using that [yl,yl−1 l]c = (1−ξ)ylyl−1 l−λl−1llξ
2 andq-Jacobi (2.2)we arrive to

[yl,y(1 l)]c = −χl−1l(g(1 l−2))
(
(1 − ξ)ylyl−1 l − λl−1llξ

2
)
y(1 l−2)

+ χ(1 l−2)(gl)y(1 l−2)

(
(1 − ξ)ylyl−1 l − λl−1llξ

2
)

= (1 − ξ)yly(1 l)

+ λl−1llξ
2χl−1l(g(1 l−2))(1 − χ(1 l−2)(gl)χl(g(1 l−2)))y(1 l−2),

and the lemma follows using that λl−1llχl−1l(g(1 l−2))
−1 = λl−1llχl(g(1 l−2)) and

χl(g(1 l−2))χ(1 l−2)(gl) = 1. �

Remark 5.6. If l = 2, then [y1,y(1 l)]c = λ112. �

Remark 5.7. If 2 < p ≤ l, then

[y(1 l),yp]c = 0.

Indeed, if p = l,

[y(1 l),yl]c = (1 − χl(g(1 l))χ(1 l)(gl))y(1 l)yl − χl(g(1 l))[yl,y(1 l)]c
= (1 − ξ)y(1 l)yl − χl(g(1 l))(1 − ξ)yly(1 l)

= (1 − ξ)[y(1 l),yl]c.

If 1 < p < l this follows from

[y(1 l),yp]c = (1 − χp(g(1 l))χ(1 l)(gp))y(1 l)yp − χp(g(1 l))[yp,y(1 l)]c = 0. �

Remark 5.8. Let 1 ≤ p ≤ l − 2. Then,

[y(1p+1),y(1 l)]c = χ(1 l)(gp+1)[[y(1p),y(1 l)]c,yp+1]c. (5.7)

Hence,

[y(1p),y(1 l)]c = χ(1 l)(g(2p))[. . . [y1,y(1 l)]c,y2]c, . . . ,yp−1]c,yp]c.

Indeed, using q-Jacobi (2.2) we see that 5.7 holds:

[y(1p+1),y(1 l)]c = [y(1p), [yp+1,y(1 l)]c]c + χ(1 l)(gp+1)[y(1p),y(1 l)]cyp+1

 by guest on June 20, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Pointed Hopf Algebras of Type A 49

− χp+1(g(1p))yp+1[y(1p),y(1 l)]c = χ(1 l)(gp+1)[[y(1p),y(1 l)]c,yp+1]c,

as [y(1p), [yp+1,y(1 l)]c]c = 0. This last equality is clear if p ≥ 2 by Lemma 5.5 that also

yields [y1, [y2,y(1 l)]c]c = λ122(1−ξ)(y1y(3 l)−χ122(g1)χ(3 l)(g1)) = λ122(1−ξ)[y1,y(3 l)]c = 0. �

Lemma 5.9. The following identities hold in Ã.

(1) [y(1 l),y(k p)]c = 0, for 3 ≤ k ≤ p ≤ l.

(2) [y(1p),y(3 l)]c = χ(3p)(g(1p))(1 − ξ 2)y(3p)y(1 l), for 3 ≤ p < l. �

Proof. (1) Fix k. Recall that [y(1 l),yj]c = 0, for 3 ≤ j ≤ l, by Remark 5.7. In particular,

[y(1 l),yk]c = 0. Now, using induction on p and q-Jacobi (2.2),

[y(1 l),y(k p)]c = −χp(g(k p−1))[y(1 l),yp]cy(k p−1)

+ χ(k p−1)(g(1 l))y(k p−1)[y(1 l),yp]c = 0.

(2) We have, using q-Jacobi (2.2) and Item (1) for k = 3:

[y(1p),y(3 l)]c = [y(1p), [y(3p),y(p+1 l)]c]c
= −χ(p+1 l)(g(3p))y(1 l)y(3p) + χ(3p)(g(1p))y(3p)y(1 l)

= χ(3p)(g(1p))(1 − χ(p+1 l)(g(3p))χ(3p)(g(p+1 l)))y(3p)y(1 l)

and (2) follows as χ(p+1 l)(g(3p))χ(3p)(g(p+1 l)) = ξ 2. �

Lemma 5.10. The following identities hold in Ã:

[y(1 l),y(2 l)]c = −3λ122χ2(g(1 l))y
2
(3 l), l ≥ 3. �

Proof. Follows using Lemma 5.4 combined with Lemma 5.9 (1):

[y(1 l),y(2 l)]c = [y(1 l), [y2,y(3 l)]c]c = [[y(1 l),y2]c,y(3 l)]c
= λ122(1 − ξ 2)χ2(g(3 l))(1 − χ(3 l)(g122g(3 l)))y

2
(3 l)

= λ122(1 − ξ 2)χ2(g(3 l))(1 − ξ 2)y2
(3 l) = −3λ122ξ

2χ2(g(3 l))y
2
(3 l),

and thus the lemma follows as λ122χ2(g(1 l)) = λ122ξ
2χ2(g(3 l)). �
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Lemma 5.11. The following identities hold in Ã:

(1) [y1,y(1 l)]c = λ112(1 − ξ 2)y(3 l), l ≥ 3.

(2) [y(12),y(1 l)]c = −3ξ 2λ112χ(1 l)(g2)y(3 l)y2 + λ112(1 − ξ)y(2 l), l ≥ 3.

(3) For 3 ≤ p < l:

[y(1p),y(1 l)]c = −3ξ 2λ112χ(1 l)(g(2p))y(3 l)y(2p) + 3λ112χ1(g(3p))y(3p)y(2 l). �

Proof. (1) is Lemma 5.5 for p = 1. For (2) we use 5.7 and (1) to get

[y12,y(1 l)]c = χ(1 l)(g2)[[y1,y(1 l)]c,y2]c = λ112(1 − ξ 2)χ(1 l)(g2)[y(3 l),y2]c.

Now [y(3 l),y2]c = (1 − ξ 2)y(3 l)y2 − χ2(g(3 l))y(2 l) and (2) follows using the equality

λ112χ2(g(3 l))χ(1 l)(g2) = λ112ξ .

For (3), we use q-Jacobi (2.2) and Lemma 5.9 to get

[y(1p),y(1 l)]c = χ(1 l)(g(3p))[y12,y(1 l)]cy(3p) − χ(3p)(g12)y(3p)[y12,y(1 l)]c
= −3ξ 2λ112χ(1 l)(g2)

(
χ(1 l)(g(3p))y(3 l)y2y(3p) − χ(3p)(g12)y(3p)y(3 l)y2

)
+ λ112(1 − ξ)

(
χ(1 l)(g(3p))y(2 l)y(3p) − χ(3p)(g12)y(3p)y(2 l)

)
= −3ξ 2λ112χ(1 l)(g2)χ(1 l)(g(3p))y(3 l)y(2p)

+ 3ξ 2λ112χ(1 l)(g2)χ(3p)(g12)[y(3p),y(3 l)]cy2

+ λ112(1 − ξ)χ(1 l)(g(3p))[y(2 l),y(3p)]c
+ λ112(1 − ξ)χ(1 l)(g(3p))χ(3p)(g(2 l))(1 − ξ 2)y(3p)y(2 l).

We use this equality and Lemma 5.1 to deduce λ112[y(3p),y(3 l)]c = 0. We use this fact

together with Lemma 5.9 (1) and Lemma 5.4 to get

[y(1 l),y(2p)]c = [[y(1 l),y2]c,y(3p)]c
= λ122(1 − ξ 2)χ2(g(3 l))(1 − χ(3p)(g122g(3 l))χ(3 l)(g(3p)))y(3 l)y(3p)

− λ122(1 − ξ 2)χ2(g(3 l))χ(3p)(g(3 l))ξ
2[y(3p),y(3 l)]c (5.8)

= −3ξ 2λ122χ2(g(3 l))y(3 l)y(3p).

In particular, λ112[y(2 l),y(3p)]c = 0 by Lemma 5.1. Hence (3) follows. �
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Remark 5.12. We have, for 2 ≤ p ≤ l:

[y(1 l),y(2p)]c =
⎧⎨⎩λ122(1 − ξ 2)χ2(g(3 l))y(3 l), p = 2

λ122(1 − ξ 2)2χ2(g(3 l))y(3 l)y(3p), p > 2.

For p = 2 this is Lemma 5.4. For p > 2 this is 5.8. �

Proposition 5.13. For Cp as in 1.7 we have

ρ(y(k l))
3 = y3

(k l) ⊗ 1 + g3
(k l) ⊗ x3

(k l) +
∑
k≤p<l

Cpy
3
(k p)g

3
(p+1 l) ⊗ x3

(p+1 l). �

Proof. Let us set k = 1 < l to simplify the notation. We may assume l ≥ 3 as case l = 1

is 5.5 and case l = 2 is Example 5.3. Set

A = y(1 l) ⊗ 1, B = g(1 l) ⊗ x(1 l), Xp = y(1p)g(p+1 l) ⊗ x(p+1 l), 1 ≤ p < l.

In what respects to commutation rules, we may set, without lack of rigour, Xl := A, as

with the convention g(l+1 l) = x(l+1 l) = 1 it becomes

Xl = y(1 l)g(l+1 l) ⊗ x(l+1 l) = y(1 l) ⊗ 1.

As in Example 5.3, we need to focus on the terms of (A+ B+ (1 − ξ 2)
∑

Xp)
3 involving a

factor λ∗∗∗. These are divided into three big groups, namely:

(G1) For every pair p < q, terms XYZ involving X ,Y ,Z ∈ {B,Xp,Xq}, all different,
Xp to the left of Xq.

(G2) For every pair p < q, terms XYZ involving X ,Y ,Z ∈ {Xp,Xq}, not all equal

and with a factor Xp to the left of Xq.

(G3) For every triple p < q < r, terms XYZ from distinct X ,Y ,Z ∈ {Xp,Xq,Xr} and
with Xp to the left of Xq or Xr or with Xq to the left of Xr .

Since our aim is to show that there is no term involving a factor λ∗∗∗, we may further

restrict these groups, as the other resulting combinations provide equivalent terms. For

instance, we have

XpXl = y(1p)g(p+1 l)y(1 l)g(l+1 l) ⊗ x(p+1 l)x(l+1 l)

= y(1p)g(p+1 l)y(1 l) ⊗ x(p+1 l)
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= χ(1 l)(g(p+1 l))y(1p)y(1 l)g(p+1 l) ⊗ x(p+1 l).

XpXq = y(1p)g(p+1 l)y(1q)g(q+1 l) ⊗ x(p+1 l)x(q+1 l)

= χ(1q)(g(p+1 l))χ(q+1 l)(g(p+1 l))y(1p)y(1 l)g(p+1 l)g(q+1 l) ⊗ x(q+1 l)x(p+1 l)

= χ(1 l)(g(p+1 l))y(1p)y(1 l)g(p+1 l)g(q+1 l) ⊗ x(q+1 l)x(p+1 l).

Hence, we restrict to the following subgroups:

(G1′) For every p < l, terms XYZ involving X ,Y ,Z ∈ {B,Xp,A}, all different, Xp to

the left of A.

(G2′) For every p < l, terms XYZ involving X ,Y ,Z ∈ {Xp,A}, not all equal and with

a factor Xp to the left of A.

(G3′) For every pair p < q < l, terms XYZ arising from distinct X ,Y ,Z ∈ {Xp,Xq,A}
and with Xp to the left of Xq or A or with Xq to the left of A.

We start with group (G1′): notice that, for any p:

XpAB+ XpBA+ BXpA

= (1 + ξ + ξ 2)χ(1 l)(gp+1 l)y(1p)y(1 l)g(1 l)g(p+1 l) ⊗ x(p+1 l)x(1 l) = 0.

We now proceed to group (G2′), that is . terms of the form XpAXp,XpXpA and XpAA,AXpA.

We further divide this group into

(G2′.1) factors arising from {A,X1},
(G2′.2) factors arising from {A,X2}, and
(G2′.3) factors arising from {A,Xp}, p ≥ 3.

The computations for item (G2′.1) are analogous to the ones in Example 5.3, and

we get that the factor involving λ∗∗∗ is zero. For (G2′.2), we need the following

computations:

y12y
2
(1 l) � −3λ112(1 + ξ)χ(3 l)(g2)y(3 l)y2y(1 l) + λ112(ξ

2 − ξ)y(2 l)y(1 l);

y(1 l)y12y(1 l) � −3λ112χ(3 l)(g12)y(3 l)y2y(1 l) + λ112(ξ − ξ 2)χ(2 l)(g1)y(2 l)y(1 l);

y12y(1 l)y12 � −3ξ 2λ112χ(1 l)(g2)y(3 l)y2y12 + λ112(1 − ξ)y(2 l)y12;

y2
12y(1 l) � 3λ112ξχ(2 l)(g122)y(3 l)y2y12 + λ112χ(2 l)(g12)(ξ

2 − ξ)y(2 l)y12.
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We have X2AA+ AX2A� 0:

X2AA = χ(1 l)(g(3 l))
2y12y

2
(1 l)g(3 l) ⊗ x(3 l)

� λ112

(
3y(3 l)y2y(1 l)g(3 l) − (1 − ξ)χ2(g(3 l))y(2 l)y(1 l)g(3 l)

)
⊗ x(3 l);

AX2A = χ(1 l)(g(3 l))y(1 l)y12y(1 l)g(3 l) ⊗ x(3 l)

� λ112

(
− 3y(3 l)y2y(1 l)g(3 l) + (1 − ξ)χ2(g(3 l))y(2 l)y(1 l)g(3 l)

)
⊗ x(3 l).

Also, X2AX2 + X2X2A� 0:

X2AX2 = χ12(g(3 l))χ(1 l)(g(3 l))y12y(1 l)y12g
2
(3 l) ⊗ x2

(3 l)

� λ112

(
− 3ξy(3 l)y2y12g

2
(3 l) + (ξ − ξ 2)χ2(g(3 l))y(2 l)y12g

2
(3 l)

)
⊗ x2

(3 l);

X2X2A = χ12(g(3 l))χ(1 l)(g(3 l))
2y2

12y(1 l)g
2
(3 l) ⊗ x2

(3 l)

� λ112

(
3ξy(3 l)y2y12g

2
(3 l) + χ2(g(3 l))(ξ

2 − ξ)y(2 l)y12g
2
(3 l)

)
⊗ x2

(3 l).

We move on to (G2′.3). We need

y(1p)y
2
(1 l) � χ(1 l)(g(1p))y(1 l)y(1p)y(1 l) − 3ξ 2λ112χ(1 l)(g(2p))y(3 l)y(2p)y(1 l)

+ 3λ112(1 − ξ 2)χ(1 l)(g(2p))χ(3p)(g2)y(3 l)y(3p)y2y(1 l).

y(1 l)y(1p)y(1 l) � −3ξ 2λ112χ(3 l)(g(1 l))y(3 l)y(2p)y(1 l)

+ 3λ112(1 − ξ 2)χ(3p)(g2)χ(3 l)(g(1 l))y(3 l)y(3p)y2y(1 l).

y(1p)y(1 l)y(1p) � −3ξ 2λ112χ(1 l)(g(2p))y(3 l)y(2p)y(1p)

+ 3λ112(1 − ξ 2)χ(1 l)(g(2p))χ(3p)(g2)y(3 l)y(3p)y2y(1p).

y2
(1p)y(1 l) � χ(1 l)(g(1p))y(1p)y(1 l)y(1p)

− 3ξ 2λ112χ(1 l)(g(2p))χ(3 l)(g(1p))χ(2p)(g(1p))y(3 l)y(2p)y(1p)

− 3λ112(1 − ξ)χ(1 l)(g(2p))χ(3 l)(g(1p))χ(3p)(g(1p))y(3 l)y(3p)y2y(1p).

Now, XpAA+ AXpA equals

χ(1 l)(g(p+1 l))
(
χ(1 l)(g(p+1 l))y(1p)y

2
(1 l) + y(1 l)y(1p)y(1 l)

)
g(p+1 l) ⊗ x(p+1 l)
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and the factor between brackets, according to the equalities above is

� (1 + ξ)y(1 l)y(1p)y(1 l) − 3ξ 2λ112χ(1 l)(g(2 l))y(3 l)y(2p)y(1 l)

+ 3λ112(1 − ξ 2)χ(1 l)(g(2 l))χ(3p)(g2)y(3 l)y(3p)y2y(1 l)

� −3(1 + ξ 2)λ112χ(3 l)(g(1 l))y(3 l)y(2p)y(1 l)

+ 3λ112(ξ − ξ 2)χ(3p)(g2)χ(3 l)(g(1 l))y(3 l)y(3p)y2y(1 l)

− 3ξ 2λ112χ(1 l)(g(2 l))y(3 l)y(2p)y(1 l)

+ 3λ112(1 − ξ 2)χ(1 l)(g(2 l))χ(3p)(g2)y(3 l)y(3p)y2y(1 l)

= −3λ112χ(1 l)(g(2 l))(ξ
2 + (1 + ξ 2)χ(3 l)(g1)χ1(g(2 l)))y(3 l)y(2p)y(1 l)

+ 3λ112χ(1 l)(g(2 l))χ(3p)(g2)(1 − ξ 2 + (ξ − ξ 2)χ(3 l)(g1)χ1(g(2 l)))

× y(3 l)y(3p)y2y(1 l)

= −3λ112χ(1 l)(g(2 l))(1 + ξ + ξ 2)y(3 l)y(2p)y(1 l)

+ 3λ112χ(1 l)(g(2 l))χ(3p)(g2)(1 − ξ 2 + (ξ − ξ 2)ξ)y(3 l)y(3p)y2y(1 l) = 0.

Here we use that λ112χ
−1
12 = λ112χ1 and λ112χ1(g2) = ξ . Analogously, if α =

χ(1p)(g(p+1 l))χ(1 l)(g(p+1 l)), then XpAXp + XpXpA is

α
(
χ(1 l)(g(p+1 l))y

2
(1p)y(1 l) + y(1p)y(1 l)y(1p)

)
g2
(p+1 l) ⊗ x2

(p+1 l)

and the factor between brackets is now

� −3(1 + ξ 2)λ112χ(1 l)(g(2p))y(3 l)y(2p)y(1p)

+ 3λ112(ξ − ξ 2)χ(1 l)(g(2p))χ(3p)(g2)y(3 l)y(3p)y2y(1p)

− 3ξ 2λ112χ(1 l)(g(2 l))χ(3 l)(g(1p))χ(2p)(g(1p))y(3 l)y(2p)y(1p)

− 3λ112(1 − ξ)χ(1 l)(g(2 l))χ(3 l)(g(1p))χ(3p)(g(1p))y(3 l)y(3p)y2y(1p)

= −3λ112χ(1 l)(g(2p))(1 + ξ + ξ 2)y(3 l)y(2p)y(1p)

+ 3λ112χ(1 l)(g(2p))χ(3p)(g2)(1 − ξ)(ξ − ξ 4)y(3 l)y(3p)y2y(1p) = 0.

We are left with group (G3′). Again, we subdivide it

(G3′.1) Case p = 1,q = 2;

(G3′.2) Case p = 1,q ≥ 3;
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(G3′.3) Case p = 2, q ≥ 3; and

(G3′.4) Case p ≥ 3.

For (G3′.1), we have

X1X2Xl + X1XlX2 + XlX1X2 + X2XlX1 + X2X1Xl = Y1g(2 l)g(3 l) ⊗ x(3 l)x(2 l),

Y1 = χ(1 l)(g(2 l)g(3 l))χ12(g(2 l))χ(3 l)(g(2 l))y1y12y(1 l)

+ χ(1 l)(g(2 l))χ12(g(2 l))χ(3 l)(g(2 l))y1y(1 l)y12

+ χ12(g(2 l))χ(3 l)(g(2 l))y(1 l)y1y12 + χ(1 l)(g(3 l))χ1(g(3 l))y12y(1 l)y1

+ χ(1 l)(g(2 l)g(3 l))χ1(g(3 l))y12y1y(1 l)

= ξ 2χ1(g(3 l))χ112(g(2 l))y1y12y(1 l) + ξ 2χ112(g(2 l))χ(3 l)(g2)y1y(1 l)y12

+ ξχ1(g(2 l))y(1 l)y1y12 + ξχ112(g(3 l))y12y(1 l)y1

+ ξ 2χ1(g(2 l))χ112(g(3 l))y12y1y(1 l).

Hence, we need

y1y12y(1 l) � χ12(g1)y12y1y(1 l) + λ112y(1 l);

y1y(1 l)y12 � λ112χ(1 l)(g1)y(1 l) + λ112(1 − ξ 2)y(3 l)y12;

y(1 l)y1y12 � λ112y(1 l);

y12y(1 l)y1 � −3ξ 2λ112χ(1 l)(g2)y(3 l)y2y1 + λ112(1 − ξ)y(2 l)y1;

y12y1y(1 l) � −3ξ 2λ112χ(1 l)(g12)y(3 l)y2y1 + λ112(1 − ξ 2)y(1 l)

+ λ112(1 − ξ)χ(1 l)(g1)y(2 l)y1 + λ112(1 − ξ 2)χ(3 l)(g12)y(3 l)y12.

Using the above identities,

Y1 �
(
ξ 2χ1(g(3 l))χ112(g(2 l))χ12(g1)+ ξ 2χ1(g(2 l))χ112(g(3 l))

)
y12y1y(1 l)

+ λ112(ξ
2 − ξ)χ1(g(3 l))y(1 l) + λ112(ξ

2 − ξ)χ(3 l)(g2)y(3 l)y12

− 3ξ 2λ112χ(3 l)(g2)y(3 l)y2y1 + λ112(ξ − ξ 2)y(2 l)y1

� −3(1 + ξ)λ112χ(3 l)(g2)y(3 l)y2y1 + λ112(ξ − ξ 2)χ1(g(3 l))y(1 l)

+ λ112(ξ
2 − ξ)y(2 l)y1 + λ112(ξ − ξ 2)χ(3 l)(g2)y(3 l)y12

+ λ112(ξ
2 − ξ)χ1(g(3 l))y(1 l) + λ112(ξ

2 − ξ)χ(3 l)(g2)y(3 l)y12
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− 3ξ 2λ112χ(3 l)(g2)y(3 l)y2y1 + λ112(ξ − ξ 2)y(2 l)y1

= −3(1 + ξ + ξ 2)λ112χ(3 l)(g2)y(3 l)y2y1

+ λ112((ξ
2 − ξ)+ (ξ − ξ 2))χ(3 l)(g2)y(3 l)y12

+ λ112((ξ
2 − ξ)+ (ξ − ξ 2))y(2 l)y1

+ λ112χ1(g(3 l))((ξ − ξ 2)+ (ξ 2 − ξ))y(1 l) = 0.

Now we turn to (G3′.2): we have, for q ≥ 3,

X1XqXl + X1XlXq + XlX1Xq + XqXlX1 + XqX1Xl

= Y2g(2 l)g(q+1 l) ⊗ x(q+1 l)x(2 l),

for

Y2 = ξ 2χ1(g(2 l))
2χ(1 l)(g(q+1 l))y1y(1q)y(1 l) + ξ 2χ1(g(2 l))

2y1y(1 l)y(1q)

+ ξχ1(g(2 l))y(1 l)y1y(1q) + χ112(g(q+1 l))χ(3 l)(g(q+1 l))y(1q)y(1 l)y1

+ ξχ1(g(2 l))χ112(g(q+1 l))χ(3 l)(g(q+1 l))y(1q)y1y(1 l)

and thus we need

y1y(1q)y(1 l) � χ(1q)(g1)y(1q)y1y(1 l) + λ112(1 − ξ 2)y(3q)y(1 l);

y1y(1 l)y(1q) � λ112(1 − ξ 2)χ(1 l)(g1)χ(3q)(g(1 l))y(3q)y(1 l)

+ λ112(1 − ξ 2)y(3 l)y(1q);

y(1 l)y1y(1q) � λ112(1 − ξ 2)χ(3q)(g(1 l))y(3q)y(1 l);

y(1q)y(1 l)y1 � −3ξ 2λ112χ(1 l)(g(2q))y(3 l)y(2q)y1 + 3λ112χ1(g(3q))y(3q)y(2 l)y1;

y(1q)y1y(1 l) � −3ξ 2λ112χ(1 l)(g(1q))y(3 l)y(2q)y1 − 3λ112χ(3q)(g12)y(3q)y(1 l)

+ 3λ112χ(1 l)(g1)χ1(g(3q))y(3q)y(2 l)y1 + λ112(1 − ξ 2)χ(3 l)(g(1q))y(3 l)y(1q).

That is,

Y2 � −3λ112(1 + ξ + ξ 2)χ(3 l)(g2)χ12(g(3q))y(3 l)y(2q)y1

+ 3λ112(1 + ξ + ξ 2)ξχ(3 l)(g(q+1 l))χ1(g(3q))y(3q)y(2 l)y1

+ λ112(ξ − ξ 2)χ(3 l)(g2)(1 − χ112(g(3 l)))y(3 l)y(1q)

− 3λ112χ(3q)(g(1 l))χ1(g(2 l))(1 + ξ + ξ 2)y(3q)y(1 l) � 0.
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For (G3′.3), we have, for q ≥ 3,

X2XqXl + X2XlXq + XlX2Xq + XqXlX2 + XqX2Xl = Y3g(3 l)g(q+1 l) ⊗ x(q+1 l)x(3 l),

for

Y3 = χ12(g(3 l))
2χ(1q)(gq+1 l)y12y(1q)y(1 l) + ξ 2χ12(g(3 l))

2y12y(1 l)y(1q)

+ ξχ12(g(3 l))y(1 l)y12y(1q) + ξχ112(g(q+1 l))χ(2q)(gq+1 l)y(1q)y(1 l)y12

+ ξ 2χ12(g(3 l))χ(2q)(gq+1 l)χ112(g(q+1 l))y(1q)y12y(1 l).

Hence, we need

y12y(1q)y(1 l) � χ(1q)(g12)y(1q)y12y(1 l) − 3λ112ξχ(3q)(g2)y(3q)y2y(1 l)

+ λ112(1 − ξ)y(2q)y(1 l);

y12y(1 l)y(1q) � χ(1 l)(g12)y(1 l)y12y(1q)

− 3λ112ξχ(3 l)(g2)y(3 l)y2y(1q)

+ λ112(1 − ξ)y(2 l)y(1q);

y(1 l)y12y(1q) � −3λ112ξχ(3q)(g122)χ(3q)(g(q+1 l))χ2(g(3 l))y(3q)y2y(1 l)

+ λ112(1 − ξ)χ(2q)(g(1 l))y(2q)y(1 l);

y(1q)y(1 l)y12 � −3λ112ξ
2χ(1 l)(g(2q))y(3 l)y(2q)y12

+ 3λ112χ1(g(3q))y(3q)y(2 l)y12;

y(1q)y12y(1 l) � −3λ112ξ
2χ(1 l)(g(3q))χ(1 l)(g122)y(3 l)y(2q)y12

+ 3λ112ξχ1(g(3q))χ(3 l)(g12)y(3q)y(2 l)y12

− 3ξ 2λ112χ(1 l)(g2)χ(3 l)(g(1q))χ2(g(1q))y(3 l)y2y(1q)

+ λ112(1 − ξ)χ(2 l)(g(1q))y(2 l)y(1q)

− 3ξ 2λ112χ(1 l)(g2)χ(3q)(g(1q))χ2(g(1 l))(1 − ξ 2)y(3q)y2y(1 l)

+ 3λ112ξ
2χ(3q)(g1)y(2q)y(1 l).

We have used that, by q-Jacobi (2.2) and Remark 5.12 we have

[y(1q),y(2 l)]c = [y1, [y(1q),y(2 l)]c]c + χ(2 l)(g(2q))[y(1 l),y(2q)]c
− χ(2q)(g1)(1 − ξ)y(2q)y(1 l)
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= [y1, [y(1q),y(2 l)]c]c − 3λ122ξ
2χ(2 l)(g(3q))y(3 l)y(3q)

− χ(2q)(g1)(1 − ξ)y(2q)y(1 l)

and thus, combining Lemmas 5.1 and 5.11 (3):

λ112[y(1q),y(2 l)]c = −3λ112λ122ξ
2χ(2 l)(g(3q))y(3 l)y(3q)

− λ112χ(2q)(g1)(1 − ξ)y(2q)y(1 l). (5.9)

Hence,

Y3 � −3λ112χ122(g(q+1 l))χ(3q)(gq+1 l)(1 + ξ + ξ 2)y(3q)y2y(1 l)

+ 3λ112(1 + ξ + ξ 2)χ2(g(3 l))χ(1q)(g(q+1 l))y(2q)y(1 l)

− 3λ112(1 + ξ + ξ 2)y(3 l)y2y(1q)

+ λ112((1 − ξ 2)− (1 − ξ 2))χ2(g(3 l))y(2 l)y(1q)

− 3λ112(1 + ξ + ξ 2)χ1(g(3q))y(3 l)y(2q)y12

+ 3λ112(1 + ξ + ξ 2)χ1(g(3q))χ(2q)(gq+1 l)y(3q)y(2 l)y12 � 0.

Finally, for (G3′.4), we have, for 3 ≤ p < q,

XpXqXl + XpXlXq + XlXpXq + XqXlXp + XqXpXl

= Y4g(p+1 l)g(q+1 l) ⊗ x(q+1 l)x(p+1 l),

Y4 = χ(1 l)(g(p+1 l))
2χ(1 l)(g(q+1 l))y(1p)y(1q)y(1 l)

+ χ(1 l)(g(p+1 l))
2y(1p)y(1 l)y(1q) + χ(1 l)(g(p+1 l))y(1 l)y(1p)y(1q)

+ χ(1 l)(g(q+1 l))χ(1p)(g(q+1 l))y(1q)y(1 l)y(1p)

+ χ(1 l)(g(p+1 l))χ(1 l)(g(q+1 l))χ(1p)(g(q+1 l))y(1q)y(1p)y(1 l).

Hence, we need

y(1p)y(1q)y(1 l) � χ(1q)(g(1p))y(1q)y(1p)y(1 l)

− 3ξ 2λ112χ(1q)(g(2p))y(3q)y(2p)y(1 l) + 3λ112χ1(g(3p))y(3p)y(2q)y(1 l);

y(1p)y(1 l)y(1q) � χ(1 l)(g(1p))y(1 l)y(1p)y(1q)

− 3ξ 2λ112χ(1 l)(g(2p))y(3 l)y(2p)y(1q) + 3λ112χ1(g(3p))y(3p)y(2 l)y(1q);
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y(1 l)y(1p)y(1q) � −3ξ 2λ112χ(1q)(g(2p))χ(3q)(g(1 l))χ(2p)(g(1 l))y(3q)y(2p)y(1 l)

+ 3λ112χ1(g(3p))χ(3p)(g(1 l))χ(2q)(g(1 l))y(3p)y(2q)y(1 l);

y(1q)y(1 l)y(1p) � −3ξ 2λ112χ(1 l)(g(2q))y(3 l)y(2q)y(1p)

+ 3λ112χ1(g(3q))y(3q)y(2 l)y(1p);

y(1q)y(1p)y(1 l) � −3ξ 2λ112χ(1 l)(g(2q))χ(1 l)(g(1p))y(3 l)y(2q)y(1p)

+ 3λ112χ1(g(3q))χ(1 l)(g(1p))y(3q)y(2 l)y(1p)

− 3ξ 2λ112χ(1 l)(g(2p))χ(3 l)(g(1q))χ(2p)(g(1q))y(3 l)y(2p)y(1q)

− 3ξ 2λ112χ(1 l)(g(2p))χ(3q)(g(1q))(1 − ξ 2)χ(2p)(g(1 l))y(3q)y(2p)y(1 l)

+ 3λ112χ1(g(3p))χ(3p)(g(1q))χ(2 l)(g(1q))y(3p)y(2 l)y(1q)

− 3λ112χ1(g(3p))χ(3p)(g(1q))χ(2q)(g1)(1 − ξ)y(3p)y(2q)y(1 l).

Thus, we get to

Y4 � −3λ112ξ
2χ(1 l)(g

2
(p+1 l)g(q+1 l))χ(1q)(g(2p))(1 + ξ + ξ 2)y(3q)y(2p)y(1 l)

+ 3λ112χ1(g(2p))χ(1 l)(g(q+1 l)g
2
(p+1 l))(1 + ξ + ξ 2)y(3p)y(2q)y(1 l)

− 3λ112χ1(g(2 l))χ(1 l)(g(p+1 l))(1 + ξ + ξ 2)y(3 l)y(2p)y(1q)

+ 3λ112χ1(g(3p))χ(1 l)(g(p+1 l))
2(1 + ξ + ξ 2)y(3p)y(2 l)y(1q)

− 3λ112χ1(g(2 l))χ(1p)(g(q+1 l))(1 + ξ + ξ 2)y(3 l)y(2q)y(1p)

+ 3λ112χ(1 l)(g(q+1 l))χ(1p)(g(q+1 l))χ1(g(3q))(1 + ξ + ξ 2)y(3q)y(2 l)y(1p)

� 0,

which establishes the lemma. �

Lemma 5.14. We have [yi,y3
(k l)]c = 0 for every 1 ≤ i ≤ θ , 1 ≤ k ≤ l ≤ θ . �

Proof. We show this by induction on l − k. If l − k = 0, it is straightforward that

[yi,y3
k ]c = 0 for | k− i |> 1 by (5.1). This is also clear if k = i. If k = i+ 1, say i = 1,k = 2,

we get:

[y1,y
3
2 ]c = y12y

2
2 + χ2(g1)y2y12y2 + χ2(g1)

2y2
2y12

= χ2(g12)y2y12y2 + λ122(1 + ξ)y2 + χ2(g1)
2(1 + ξ)y2

2y12

= λ122(1 + ξ + ξ 2)y2 + χ2(g1)
2(1 + ξ + ξ 2)y2

2y12 = 0.
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Case i = k + 1 is analogous. Fix k and assume [yi,y3
(k p)]c = 0 for every k ≤ p ≤ l, every

1 ≤ k ≤ l ≤ θ . It follows from Proposition 5.13 that

ρ([yi,y3
(k l)]c) = [yi,y3

(k l)]c ⊗ 1 + gig
3
(k l) ⊗ [xi,x3

(k l)]c
+
∑
k≤p<l

Cp[yi,y3
(k p)]cg3

(p+1 l) ⊗ x3
(p+1 l)

+
∑
k≤p<l

Cpγ
3
p y

3
(k p)gig

3
(p+1 l) ⊗ [xi,x3

(p+1 l)]c,

for Cp as in 1.7 and γp = χ(k p)(gi). By induction, we have [yi,y3
(k p)]c = 0 for every k ≤ p < l

while [xi,x3
(k l)]c = [xi,x3

(p+1 l)]c = 0 for every k ≤ p < l by [8, Proposition 4.1]. That is,

ρ([yi,y3
(k l)]c) = [yi,y3

(k l)]c ⊗ 1,

that is [yi,y3
(k l)]c ∈ Ãco H̃ = k. Set k � s := [yi,y3

(k l)]c. Now,

s = gi[yi,y3
(k l)]cg−1

i = ξχ(k l)(gi)
3[yi,y3

(k l)]c.

Hence s = 0 if χ(k l)(gi)3 = ξ 2. On the other hand,

s = g3
(k l)[yi,y3

(k l)]cg−3
(k l) = χi(g(k l))

3[yi,y3
(k l)]c

and thus s = 0 if χi(g(k l))3 = 1. But we cannot have both χi(g(k l))3 = 1 and χ(k l)(gi)3 = ξ 2

as it contradicts 1 = χ(k l)(gi)3χi(g(k l))3. Therefore s = 0 and the lemma follows. �

The following shows 3.12 for j = 1 and thus 3.11 in general.

Theorem 5.15. Let A = A(λ,μ) be the algebra quotient of T (V) by

yij = 0, i < j − 1 ∈ I; yiij = λiij, i, j ∈ I, |j − i| = 1; (5.10)

y3
(k l) = μ(k l), k ≤ l ∈ I, (5.11)

for families of scalars λ = (λiij)i,j and μ = (μ(k l))k,l satisfying 5.2 and

μ(k l) = 0 if χ3
(k l) = ε. (5.12)

Then A ∈ CleftH. In particular,

Cleft′ H = {A(λ,μ)|λ as in (5.2),μ as in (5.12)}. �
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Proof. By [8], X = coHH̃ is the polynomial algebra in the variables

xkl := g−3
(k l)x

3
(k l), 1 ≤ k ≤ l ≤ θ .

We will show that the H̃-colinear algebra maps f : X → Ã generated by

xkl �→ ykl − gkl,

for ykl := g−3
(k l)y

3
(k l) and gkl := μ(k l)g

−3
(k l) are also H̃-linear, whenwe consider the right adjoint

action · : X ⊗ H̃ → X and the Miyashita–Ulbrich action ↼: Ã ⊗ H̃ → Ã. We have, for

h ∈ H :

f (xkl · h) = χ(k l)(h)
3(ykl − gkl) = f (xkl) ↼ h,

as χ(k l)(gi)3μ(k l) = μ(k l) by 5.12. Also, by [8, Proposition 4.1]

xkl · xi = (1 − χ(k l)(gi)
3χi(g(k l))

3)xklxi = 0.

On the other hand, (ykl −gkl) ↼ xi = 0, by Lemma 5.14. Then, the theorem follows by [16,

Theorem 8], see also [5, Theorem 3.3]. �

5.2 Liftings

Let L̃ = L̃(λ) be the quotient of T(V)#H by the relations

aij = 0, i < j − 1; aiij = λiij(1 − giij), |j − i| = 1 (5.13)

for some family of scalars λ = (λiij) satisfying 5.2 and normalized by

λiij = 0 if giij = 1. (5.14)

Here, we rename the basis {x1, . . . ,xθ } of V by {a1, . . . ,aθ }.

Remark 5.16. Observe that normalization 5.14 is not necessary when θ ≥ 3. Take, for

simplicity, i = 1, j = 2. Then, we have ξ 2 = χ112(g3)χ3(g112). �

Recall the definition of the distinguished pre-Nichols algebra B̃(V) from p. 4 and

the bosonization H̃ = B̃(V)#H .
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Proposition 5.17. Let λ = (λiij) satisfy 5.2 and 5.14. Then

(1) L̃(λ) = L(Ã(λ), Ã(λ)); hence L̃(λ) is a cocycle deformation of H̃.

(2) L̃(λ) is a pointed Hopf algebra with gr L̃ = H̃. �

Proof. Follows directly from Proposition 3.3 (c); see also the case N = 2 in

Proposition 4.8. �

Let δ : Ã(λ) → L̃(λ)⊗ Ã(λ) be the coaction. We have

δ(y(kl)) = a(kl) ⊗ 1 + g(kl) ⊗ y(kl) + (1 − ξ 2)
∑
k≤p<l

a(kp)g(p+1l) ⊗ y(p+1l).

We proceed to describe the algebra L(A(λ,μ),H). As H is obtained from H̃ as

a quotient of an ideal not generated exclusively by (skew-)primitive elements, we thus

need to prepare the setting accordingly, cf. (the proof of) Proposition 3.3 (a).

For each m ≥ 1, consider the m-adic approximation B̂m(V) to B(V). This is the

quotient of T(V) by relations (1.3) and (1.4) together with

x3
(k l), 1 ≤ l − k <m. (5.15)

Thus, we obtain a family of cleft objects Am(λ,μm) for Hm = B̂m(V)#H given by the

quotient of T (V) by relations (5.1) for each together with

y3
(k l) − μ(k l), 1 ≤ l − k <m.

Here, λ = (λiij)i,j satisfies 5.2 and μm = (μ(k l))k≤l satisfies 5.12.

Now, fix λ,μm and set Am = Am(λ,μm). Let Lm(λ,μm) := L(Am,Hm). Notice that

L0 = L̃. We keep the name δ : Am → Lm ⊗ Am for the coaction at each level. Thus,

Hm+1 = Hm/Im+1 is such that Im+1 is generated by skew primitive elements [2, Remark

6.10]. Hence, by Proposition 3.3, Lm+1 is the quotient of Lm by the ideal generated by

a3
(k l) − σ(k l) − μ(k l)(1 − g3

(k,l)), (5.16)

where, according to 3.7, the deforming elements σ(k l) are defined by:

a3
(k l) ⊗ 1 − δ(y(k l))

3 = σ(k l) ⊗ 1. (5.17)

We give a description of these elements in Proposition 5.22.
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In this way, we obtain a description of the full algebra L = L(A(λ,μ),H) in the

final step of this procedure. We further normalize μ by

μ(k l) = 0 if g3
(k l) = 1. (5.18)

We illustrate this situation in the following two examples.

Example 5.18. L1 is the quotient of T (V) by relations (5.13) and

a3
k = μ(k)(1 − g3

k).

In particular, σ(k k) = 0, k ∈ I. �

Proof. Let m = 0. The elements y3
k , generating I1, satisfy:

δ(yk)
3 = a3

k ⊗ 1 + g3
k ⊗ y3

k .

Hence u(k) = 0 and the statement follows. �

The following example contains the spirit of our computations ahead.

Example 5.19. L2 is the quotient of T (V) by relations (5.13) and

a3
k = μ(k)(1 − g3

k), 1 ≤ k ≤ θ ;

a3
kk+1 = μ(kk+1)(1 − g3

kg
3
k+1)− μ(k+1)μ(k)(1 − ξ)3χk(gk+1)

3(1 − g3
k)g

3
k+1

− λkk+1k+1λkkk+1ξ
2(1 − g2

kgk+1)gkg
2
k+1 1 ≤ k < θ . �

Proof. Set m = 1. We have already described L1 in Example 5.18. We need to compute

the elements u(k,k+1), k < θ . It will be enough to understand δ(y12)
3. Set

A = a12 ⊗ 1, B = g12 ⊗ y12, C = a1g2 ⊗ y2,

so that δ(y12) = A+ B+ (1− ξ 2)C. As before, we focus on the terms in which a factor λ∗∗∗
may appear. These are related with two possible facts:

(1) Fact A: a1 appears to the left of a12, that is:

CAB, CBA, BCA, CAA, ACA, CAC, CCA.
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(2) Fact B: y12 appears to the left of y2, that is:

ABC, BAC, BCA, BCB, BBC, BCC, CBC.

We have

CAB = a1g2a12g12 ⊗ y2y12 = χ12(g2)a1a12g122 ⊗ y2y12

� λ112ξ
2(1 − g122)g122 ⊗ y2y12;

CBA� λ112(1 − g122)g122 ⊗ y2y12;

BCA = χ1(g2)a1a12g122 ⊗ y2y12 + λ122ξ
2a1a12g122 ⊗ 1

� λ112ξ(1 − g112)g122 ⊗ y2y12 + λ122ξa12a1g122 ⊗ 1

+ λ122λ112ξ
2(1 − g112)g122 ⊗ 1;

CAA = χ12(g1)
2a1a

2
12g2 ⊗ y2 � λ112(1 + ξ)a12(1 − g112)⊗ y2;

ACA = χ12(g2)a12a1a12g2 ⊗ y2 � λ112ξ
2a12(1 − g112)⊗ y2;

CAC = χ112(g2)a1a12a1g
2
2 ⊗ y2

2 � λ112a1(1 − g112)g
2
2 ⊗ y2

2 ;

CCA = χ112(g2)χ12(g2)a
2
1a12g

2
2 ⊗ y2

2 � λ112(ξ + ξ 2)a1(1 − g112)g
2
2 ⊗ y2

2 .

On the other hand, we get

ABC = χ1(g12)a12a1g122 ⊗ y12y2 � λ122ξ
2a12a1g122 ⊗ 1;

BAC � λ122a12a1g122 ⊗ 1;

BCB = χ1(g12)a1g122g12 ⊗ y12y2y12 � λ122ξ
2a1g122g12 ⊗ y2;

BBC = χ1(g12)
2a1g122g12 ⊗ y2

12y2 � λ122(1 + ξ)a1g122g12 ⊗ y12;

BCC = χ1(g122)χ1(g12)a
2
1g122g2 ⊗ y12y

2
2 � λ122(ξ + ξ 2)a2

1g122g2 ⊗ y2;

CBC = λ122a
2
1g122g2 ⊗ y2.

Hence,

CAB+ CBA+ BCA� λ122ξa12a1g122 ⊗ 1 + λ122λ112ξ
2(1 − g112)g122 ⊗ 1
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and CAA+ ACA� 0, CAC + CCA� 0. Also, we have

ABC + BAC � (1 + ξ 2)λ122a12a1g122 ⊗ 1;

BCB+ BBC � 0, BCC + CBC � 0.

Therefore,

δ(y12)
3 = a3

12 ⊗ 1 + g3
12 ⊗ y3

12 + (1 − ξ)3χ1(g2)
3a3

1g
3
2 ⊗ y3

2

+ λ122λ112ξ
2(1 − g112)g122 ⊗ 1

= a3
12 ⊗ 1 + g3

12 ⊗ y3
12 + μ(2)μ(1)(1 − ξ)3χ1(g2)

3(1 − g3
1)g

3
2 ⊗ 1

+ λ122λ112ξ
2(1 − g112)g122 ⊗ 1.

In particular, as μ1χ1(g2)
3 = 1,

u(1,2) = −μ(2)μ(1)(1 − ξ)3(1 − g3
1)g

3
2 − ξ 2λ122λ112(1 − g2

1g2)g1g
2
2.

The statement follows. �

Remark 5.20. When θ = 2, thenL2 as in Example 5.19 is a lifting of typeA2. It coincides

with the liftings found in [11] for this type. �

5.3 The deforming elements

The expressions for both σ(i) := σ(i i) and σ(i i+1) follow from Examples 5.18 and 5.19.

Namely,

σ(i) = 0, i ∈ I,

σ(i i+1) = −μ(i+1)μ(i)(1 − ξ)3χi(gi+1)
3(1 − g3

i )g
3
i+1

− λii+1i+1λiii+1ξ
2(1 − g2

i gi+1)gig
2
i+1, i < θ ∈ I.

For the general case of σ(i l), i, l ∈ I, we proceed in a similar fashion.

We first define u(i l)(μ) and hil(λ) in k�. We set u(ii) = 0, and, recursively,

u(i l)(μ) = −
∑
i≤p<l

Cpμ(p+1 l)

(
u(i p) + μ(i p)

(
1 − gN(i p)

))
gN(p+1 l). (5.19)

Now, we set hii(λ) = hii+1(λ) = 0 and, for l ≥ i+ 2,

hil(λ) = −9μ(i+2 l)λii+1i+1λiii+1(1 − giii+1)gii+1i+1g
3
(i+2 l). (5.20)
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Next, for i ≤ p < l, we set q = p+1, r = p+2 and consider the following elements

in T(V)#H :

ς
p
i (λ,μ) = λqrr

(
ξ 2a(i p)a(i q)a(i r) + χr(g(1p))a(i p)a(i r)a(i q)

+ a(i r)a(i p)a(i q)
)
. (5.21)

Let us fix sp = −3(1 − ξ 2), p < l − 2, sl−2 = 1, and set

di l(p) = χ(i q)(g(q l)g(r+1 l))χ(i p)(g(r+1 l))sp.

Finally, we consider:

ςil(λ,μ) = −3ξ 2
∑
i≤p<l

μ(p+3 l)χr(g(p+3 l))dil(p)ς
p
i (λ,μ)gqrrg

3
(p+3 l). (5.22)

Recall that g(l+1 l) = 1; also we set μ(l+1 l) := 1.

Remark 5.21. Observe that nor ςp(λ,μ) neither ςil(λ,μ) are expressed in the PBWbasis.

This is an arduous computation that we perform in full generality in Section 5.3, see

Corollary 5.27 for a complete answer. �

Proposition 5.22. Let i, l be as above. Then

σ(i l)(λ,μ) = u(i l)(μ)+ hil(λ)+ ςil(λ,μ). (5.23)

�

See below for a proof. As a result, we have the following.

Theorem 5.23. The Hopf algebra L(A(λ,μ),H) := L(λ,μ) is the quotient of T (V) by
relations (5.13) and

a3
(i l) = μ(i l)(1 − g3

(i l))+ σ(i l)(λ,μ),

for σ(i l)(λ,μ) as in 5.23. �

Proof. Follows by Proposition 3.3 (c), see 5.16. �

See Example 5.25 below for a lifting of a concrete V . Next, we prove

Proposition 5.22:
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Proof. We take i = 1 to ease up the notation, so l ≥ 3. Set

A = a(1 l) ⊗ 1, B = g(1 l) ⊗ y(1 l), Xp = a(1p)g(p+1 l) ⊗ y(p+1 l), 1 ≤ p < l

so δ(y(1 l)) = A+B+ (1−ξ 2)∑1≤p<l Xp. We will also denote Xl := A, by identifying as usual

g(l+1 l) := 1, y(l+1 l) := 1. Finally, set

σp := σ(1p), 1 ≤ p ≤ l. (5.24)

As in Example 5.19, we need to focus on the terms of (A + B + (1 − ξ 2)
∑

Xp)
3 involving

a factor λ∗∗∗, as by [2, Remark 6.10] we have, for Cp as in 1.7:

δ(y3
(1 l)) = a3

(1 l) ⊗ 1 + g3
(1 l) ⊗ y3

(1 l)

+
∑
1≤p<l

Cpa
3
(1p)g

3
(p+1 l) ⊗ y3

(p+1 l)

+ terms involving a factor λ∗∗∗. (5.25)

Combining this with the recursive deformation procedure following [5, Corollary 5.12],

that is we assume y3
(p+1 l) = μ(p+1 l), we obtain

σl = (5.19) − terms involving a factor λ∗∗∗. (5.26)

As in Proposition 5.13, we consider the cases (herewe need to distinguish a factor

A from a factor Xp, identified previously):

(L1) For every p < q, terms XYZ involving X ,Y ,Z ∈ {B,Xp,Xq}, all different, Xp to

the left of Xq.

(L2) For every pair p < q, terms XYZ involving X ,Y ,Z ∈ {Xp,Xq}, not all equal

and with a factor Xp to the left of Xq.

(L3) For every triple p < q < r, terms XYZ involving distinct X ,Y ,Z ∈ {Xp,Xq,Xr}
and with Xp to the left of Xq or Xr or with Xq to the left of Xr .

However, as Example 5.19 illustrates, we also need to consider

(L4) terms ABXp and BAXp, 1 ≤ p < l;

(L5) terms BXpB and BBXp, 1 ≤ p < l; and

(L6) terms BXqXp and XqBXp, 1 ≤ p ≤ q < l.
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Remark 5.24. In cases (L1) and (L2) it is enough to consider q < l, as a factor Xl = A

will not contribute to σl. Case (L3) is different, and we will take this difference into

account: the main difference lays in the fact that the factors Xl—unlike Xp, p < l—are

not multiplied by (1 − ξ 2). Hence commutativity computations follow rather smoothly,

and we only have to recall this in the final expression. �

Claim 5.1. Cases (L4–L6) do not contribute to σl. �

These cases easily follow fromLemmas 5.4 and 5.9. In (L4)wehaveBAXp = ξABXp

and

BAXp + ABXp �

⎧⎨⎩0, p > 1;

3ξ 2λ122χ12(g(1 l))a(1 l)a1g(1 l)g(2 l) ⊗ y2
(3 l), p = 1.

In (L5) we get

BXpB�

⎧⎨⎩0, p > 1;

−3λ122χ12(g(1 l))a1g(2 l)g2
(1 l) ⊗ y2

(3 l)y(1 l), p = 1.

BBXp �

⎧⎨⎩0, p > 1;

3λ122χ12(g(1 l))a1g(2 l)g2
(1 l) ⊗ y2

(3 l)y(1 l), p = 1.

In particular, BXpB+ BBXp � 0. For (L6), as q+ 1 ≥ 3,

BXqXp �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, p > 1;

−3ξλ122χ12(g(1 l))χ1(g(q+1 l))a(1q)a1g(1 l)g(q+1 l)g(2 l)

⊗y(q+1 l)y2
(3 l) p = 1.

XqBXp �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, p > 1;

−3λ122χ12(g(1 l))χ1(g(q+1 l))a(1q)a1g(q+1 l)g(1 l)g(2 l)

⊗y(q+1 l)y2
(3 l), p = 1.

Hence XqBXp = ξBXqXp. In particular, they do not contribute to σl and the claim follows.

We deal with cases (L1–L3) using the identities developed in Section 5.4. We need

to take into account Equation (5.35).

Claim 5.2. Case (L1) contributes to σl with 5.20. �
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We have to analyse terms BXpXq, XpBXq, XpXqB, p < q. Now, if p > 1, as

[y(1 l),y(p+1 l)]c = [y(1 l),y(q+1 l)]c = 0 it follows

Bp,q := BXpXq + XpBXq + XpXqB

= (1 + ξ + ξ 2)χ(1q)(gp+1 l)a(1p)a(1q)g(p+1 l)g(q+1 l)g(1 l)

⊗ y(p+1 l)y(q+1 l)y(1 l) = 0.

If p = 1, then still [y(1 l),y(q+1 l)]c = 0 as q + 1 ≥ 3 and using Lemma 5.4 to compute

[y(1 l),y(2 l)]c we get

B1,q := BXpXq + XpBXq + XpXqB

� −3λ122χ12(g(1 l))χ(1q)(g(1 l))χ(1q)(g(2 l))a1a(1q)g(2 l)g(q+1 l)g(1 l)

⊗ y2
(3 l)y(q+1 l).

Hence, as λ122[y(3 l),y(q+1 l)]c = 0, q > 2:

B1,q �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3ξλ122λ112(1 − g112)g(1 l)g(2 l)g(3 l) ⊗ y3

(3 l), q = 2;

3(1 − ξ)λ122λ112χ12(g(3 l))a(3q)g(1 l)g(2 l)g(q+1 l)

⊗y(q+1 l)y2
(3 l), q ≥ 3.

Notice that in this way B1,2 will contribute to σl, as by the induction process we have

y3
(3 l) = μ(3 l), that is we get a term 5.20.

Claim 5.3. Case (L2) does not contribute to σl. �

We have to deal with terms XpX2
q , XqXpXq, XpXqXp, and X2

pXq. According to (5.35),

we have to distinguish cases

(L2i) p+ 1 < q < l,

(L2ii) p+ 1 = q < l − 1,

(L2iii) p+ 1 = q = l − 1.

In case (L2i), we have

XpX
2
q = χ(1q)(g(q+1 l)g

2
(p+1 l))a(1p)a

2
(1q)g

2
(q+1 l)g(p+1 l) ⊗ y(p+1 l)y

2
(q+1 l)

= χ(1q)(g(q+1 l))χ(1 l)(g(p+1 l))
2a(1p)a

2
(1q)g

2
(q+1 l)g(p+1 l) ⊗ y2

(q+1 l)y(p+1 l)
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which does not contribute to ul. For (L2ii),

XpX
2
q � χ(1q)(g(q+1 l)g(p+1 l))χ(1 l)(g(p+1 l))a(1p)a

2
(1q)g

2
(q+1 l)g(p+1 l)

⊗ y(q+1 l)[y(p+1 l),y(q+1 l)]c
+ χ(1q)(g(q+1 l)g

2
(p+1 l))a(1p)a

2
(1q)g

2
(q+1 l)g(p+1 l)

⊗ [y(p+1 l),y(q+1 l)]cy(q+1 l)

= −3ξ 2λp+1p+2p+2χ(p+2 l)(g(p+3 l))χ(1p+1)(g(p+2 l)g(p+1 l))χ(1 l)(g(p+1 l))

a(1p)a
2
(1p+1)g

2
(p+2 l)g(p+1 l) ⊗ y(p+2 l)y

2
(p+3 l)

− 3ξ 2λp+1p+2p+2χ(p+2 l)(g(p+3 l))χ(1p+1)(g(p+2 l)g
2
(p+1 l))

a(1p)a
2
(1p+1)g

2
(p+2 l)g(p+1 l) ⊗ y2

(p+3 l)y(p+2 l)

and we see that this does not contribute to ul, using Lemma 5.1 to deduce

λp+1p+2p+2[y(p+2 l),y(p+3 l)]c = 0. The same holds for (L2iii), as in this case

XpX
2
q � λl−1ll(1 + ξ 2)χ(1 l−1)(g

2
(l−1 l)gl)a(1 l−2)a

2
(1 l−1)g

2
l g(l−1 l) ⊗ yl.

The same holds for the combinations XqXpXq, XpXqXp, and X2
pXq.

Claim 5.4. If p < 3, then case (L3) does not contribute to σl.

If p ≥ 3, then case (L3) contributes to σl with 5.21. �

Here we deal with terms XpXqXr , XpXrXq, XqXrXp, XrXpXq, XqXpXr , p < q < r ≤ l,

which we denote by Cx,y,z, x,y, z ∈ {p,q, r}. By the computations above and the com-

mutation rule (5.35) we see that we will get a factor contributing to σl if and only

if

q = p+ 1, r = p+ 2,

and p is on the left of q.

Thus, we are left with cases Cp,q,r , Cp,r,q, Cr,p,q, q = p+ 1, r = p+ 2. Set

cp =
⎧⎨⎩−3λp+1p+2p+2χp+2(g(p+3 l))μ(p+3 l), p ≤ l − 3

λp+1p+2p+2, p = l − 2.
(5.27)
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Then, for each of these terms, the corresponding factor in k that arises in the second

tensorand (χ(l+1 l) := ε) is

Cp,q,r ��� cp, Cp,r,q ��� cpχ(r+1 l)(g(p+1 l)), Cr,p,q ��� cp.

Set, with the convention, for the case r = l, g(l+1 l) = 1, χ(l+1 l) = ε,

ωx,y,z = χ(1 z)(g(y+1 l)g(x+1 l))χ(1y)(g(x+1 l)), x,y, z ∈ {p,q, r}. (5.28)

Set also, gp,q,r := g(p+1 l)g(p+2 l)g(p+3 l) and let us set

ap,q,r := a(1p)a(1q)a(1 r), ap,r,q := a(1p)a(1 r)a(1q),

ar,p,q := a(1 r)a(1p)a(1q).
(5.29)

Set (cf. Remark 5.24)

�p =
⎧⎨⎩(1 − ξ 2)3 = 3(ξ − ξ 2), p < l − 2;

(1 − ξ 2)2 = −3ξ 2, p = l − 2.
(5.30)

Hence, the contribution of these terms to σl is

cp�p

(
ωp,q,rap,q,r + ωp,r,qχ(p+3 l)(g(q l))ap,r,q + ωr,p,qar,p,q

)
gp,q,r . (5.31)

Notice that

cpωp,q,r = cpξ
2χ(1q)(g(p+1 l))χ(1q)(g(r+1 l))χ(1p)(g(r+1 l)),

cpωp,r,qχ(p+3 l)(g(q l)) = cpχ(1q)(g(p+1 l))χ(1q)(g(r+1 l))χ(1p)(g(r+1 l))χr(g(1p)),

cpωr,p,q = cpχ(1q)(g(p+1 l))χ(1q)(g(r+1 l))χ(1p)(g(r+1 l)).

Set

d′
p =

⎧⎨⎩−3μ(p+3 l)χ(1q)(gqr)χqqr(g(r+1 l)), p < l − 2;

χ(1q)(g(q l)), p = l − 2,
(5.32)

and dp = λqrrd′
p. Observe that

cpχ(1q)(g(p+1 l))χ(1q)(g(r+1 l))χ(1p)(g(r+1 l)) = dp.
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To see this, we use the identity

μ(p+3 l)λqrrχ(1q)(g(q l))χ(1 r)(g(r+1 l))χ(1p)(g(r+1 l))

= μ(p+3 l)λqrrχ(1p)(g(r+1 l))
3χ(1q)(gqr)χqqr(g(r+1 l))

and μ(p+3 l)λqrrχ(1p)(g(r+1 l))
3 = μ(p+3 l)λqrrχ(r+1 l)(g(1p))−3 = μ(p+3 l).

Hence 5.31 becomes

dp�p

(
ξ 2ap,q,r + χr(g(1p))ap,r,q + ar,p,q

)
gp,q,r = d′

p�pς
pgp,q,r .

Adding all of these terms and reordering the scalars, we get 5.22.

Finally, adding all of these contributions, we obtain σ(i l)(λ,μ) as in 5.23 and the

proposition follows. �

Example 5.25. Set θ = 5, so I = I5 and consider the braiding matrix

q =
⎛⎝ ξ ξ 1 1 1

ξ ξ ξ2 1 1
1 1 ξ 1 1
1 1 ξ2 ξ ξ
1 1 1 ξ ξ

⎞⎠ .

Set G = (Z/3nZ)5, n ≥ 2, so G is an abelian group such that V ∈ H
HYD, H = kG. Indeed,

let gi, i ∈ I, the generators of each cyclic factor. Let q ∈ G
′
3n with qn = ξ . Observe that Ĝ

is generated by ϕi, i ∈ I, with ϕi(gi) = q and ϕi(gj) = 1, i = j ∈ I. A principal realization is

given by ((gi,χi)
)
i∈I
, for χ1 = χ2 = ϕn1 ϕ

n
2 , χ4 = χ5 = ϕn4 ϕ

n
5 , and χ3 = ϕ2n

2 ϕ
n
3 ϕ

2n
4 . In particular

χ112 = χ455 = ε.

Let us choose λ such that all λiij = 0 except λ112, λ455. Choose μ with μ(k l) = 0 for

every 1 ≤ k ≤ l ≤ 5. Then, L(λ,μ) is the algebra generated by � and a1, . . . ,a5 satisfying

aik = 0, | i− k |> 1, a3
(k l) = 0, | k − l |< 4,

aiiij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ112(1 − g2

1g2), i = 1, j = 2,

λ455(1 − g4g2
5), i = 4, j = 5,

0, else,

| i− j |= 1,

a3
(15) = 9λ112λ455

∑
σ∈S3

(−1)|σ |hσ ,1a(3 σ(5))a(2 σ(4))a(1 σ(3))g2
4g5.

The scalars hσ ,1 ∈ k
×, σ ∈ S3, are as in Corollary 5.27 and can be explicitly computed

from the matrix q. �
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Remark 5.26. If θ ≥ 4, then the relations of the Nichols algebra B(V) become deformed

in the lifting L by elements in the group algebra k� ≤ H , as in the case ord(ξ) > 3 of

[2], as Lemma 5.1 only allows a single pair (λkkk+1, λkk+1k+1) to have a non-zero entry. If

θ ≥ 5 the relations may be deformed in higher strata of the coradical filtration, as in

Example 5.25. �

Now, we give a full description of ςpi (λ,μ), cf. 5.21, as a linear combination in

the PBW basis. We set q = p+1, r = p+2 and j = i+1, k = i+2. We consider the action

of S3 on {r,q,p} by

(12)(r) = q, (23)(q) = p.

Corollary 5.27. If p = i, j, then ςpi (λ,μ) = 0. When p > i+ 2,

ς
p
i (λ,μ) = −3λqrrλqqrχ(i p)(gq)a

3
(i p)gqqr

− 3λqrrλiij
∑
σ∈S3

(−1)|σ |hσ ,ia(k σ(p))a(j σ(q))a(i σ(r)),
(5.33)

for hσ ,i ∈ k, σ ∈ S3, given by

hid,i = ξχqqr(g(i p))χ(i r)(g(j q)), h(12),i = (ξ 2 − 1)χqqr(g(i p))χi(g(k q)),

h(23),i = ξχr(gi)χi(g(j p)), h(13),i = ξ(ξ − 2)χ(k p)(gij),

h(123),i = 2χr(g(i p))χi(g(k p)), h(132),i = ξ 2χ(k q)(g(i r))χ(j p)(gr). �

Proof. First, we show that ςp(λ,μ) equals

λqrrξ
2a(i p)[a(i q),a(i r)]c − λqrrξ

2χr(g(i p))[a(i p),a(i r)]ca(i q). (5.34)

In particular, by Lemma 5.1 and Corollary 5.33, we have λqrrςp(λ,μ) = 0 if p − i < 3.

Hence ς(i i) = ς(i i+1) = 0. Indeed, it follows that

ςp(λ,μ) = λqrrαpχ(i q)(g(i p))a(i r)a(i q)a(i p)

+ λqrr

(
ξ 2χ(i r)(g(i q)g(i p))+ 1 + χr(g(i p))χ(i r)(g(i p))

)
a(i r)[a(i p),a(i q)]c

+ ξ 2λqrra(i p)[a(i q),a(i r)]c
+ λqrr

(
χp+2(g(i p))+ ξ 2χ(i r)(g(i q))

)
[a(i p),a(i r)]ca(i q),
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for αp = 1+ ξ 2χ(i r)(g(i q)g(i p))+χp+2(g(i p))χ(i r)(g(i p)). Notice that αp = 1+ ξχr(gq)χqrr(g(i p))+
ξχqrr(g(i p)) and thus it follows that λqrrαp = 0 as λqrrχqrr = λqrrε, λqrrχr(gq) = λqrrξ and

1 + ξ + ξ 2 = 0. On the other hand, we use λqrrχ(i r)(g(i q)) = λqrrξ
2χr(g(i p)) to simplify the

coefficients of third and fourth summands. As for the second, we have

λqrrχ(i r)(g(i q)g(i p)) = λqrrξ
2χr(g(i p))χ(i r)(g(i p))

= λqrrχr(g(i p))χqr(g(i p)) = λqrr .

Also, λqrrχr(g(i p))χ(i r)(g(i p)) = λqrrξχqrr(g(i p)) = λqrr and thus the coefficient is λqrr(1 + ξ +
ξ 2) = 0. Hence, we have 5.34.

Next we show 5.33, using Proposition 5.37. We have

ςp(λ,μ) = λqrrχq(g(i p))(1 + ξ 2χqrr(g(i p))+ ξ)a(i r)a(i q)a(i p)

− 3ξλqrrλqqrχ(i r)(gq)a
3
(i p)gqqr

− 3ξλqrrλiijχqqr(g(i p))χ(i r)(g(j q))a(k r)a(j q)a(i p)

− 3ξλqrrλiij
(
χqqr(g(i p))χ(k r)(g(j q))χ(j p)(g(i q))

+ ξχ(i r)(g(j p))χr(g(i p))
)
a(k r)a(j p)a(i q)

+ 3ξ 2λqrrλiijχqqr(g(i p))χi(g(k q))a(k q)a(j r)a(i p)

− 3ξ 2λiijλqrr
(
χ(k q)(g(i r))χ(j p)(gr)

− 2χ(i q)(g(j p))

χ(i r)(g(i p))χ(k q)(g(i r))χr(gi)
)
a(k q)a(j p)a(i r)

+ 3ξ 2λqrrλiij
(
χ(k p)(gij)χr(g(i q))

+ ξχi(g(k p))χr(g(i p))
)
a(k p)a(j r)a(i q)

+ 3ξ 2λqrrλiij
(
(1 − ξ 2)χ(k p)(gij)

+ ξχr(g(i p))χi(g(k p))χ(i q)(gr)

+ ξχ(k p)(g(j r))χ(j q)(g(i r))
)
a(k p)a(j q)a(i r).

First, λqrr(1 + ξ 2χqrr(g(i p))+ ξ) = λqrr(1 + ξ 2 + ξ) = 0. Next, observe that

λqrrλiij

(
χqqr(g(i p))χ(k r)(g(j q))χ(j p)(g(i q))+ ξχ(i r)(g(j p))χr(g(i p))

)
= λqrrλiijξ

2χr(gi)χi(g(j p))
(
χq(giij)χ(k p)(giij)+ 1

)
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= λqrrλiijξ
2χr(gi)χi(g(j p))(ξ

2 + 1) = −λqrrλiijχr(gi)χi(g(j p)).

Similarly,

λiijλqrr

(
χ(k q)(g(i r))χ(j p)(gr)+ χ(i r)(g(i p))χ(k q)(g(i r))χr(gi)

− 2χ(i q)(g(j p))
)

= λiijλqrrχ(k q)(g(i r))χ(j p)(gr)
(
1 + ξ − 2ξ

)
= λiijλqrrχ(k q)(g(i r))χ(j p)(gr)(1 − ξ).

Also, we have

λqrrλiij

(
χ(k p)(gij)χr(g(i q))+ ξχi(g(k p))χr(g(i p))

)
= 2λqrrλiijξχr(g(i p))χi(g(k p)).

Finally,

λqrrλiij

(
(1 − ξ 2)χ(k p)(gij)+ ξχr(g(i p))χi(g(k p))χ(i q)(gr)

+ ξχ(k p)(g(j r))χ(j q)(g(i r))
)

= λqrrλiijχ(k p)(gij)(1 − 2ξ 2).

Thus, we have

ςp(λ,μ) = −3ξλqrrλqqrχ(i r)(gq)a
3
(i p)gqqr

− 3ξλqrrλiijχqqr(g(i p))χ(i r)(g(j q))a(k r)a(j q)a(i p)

+ 3ξλqrrλiijχr(gi)χi(g(j p))a(k r)a(j p)a(i q)

− 3(1 − ξ 2)λqrrλiijχqqr(g(i p))χi(g(k q))a(k q)a(j r)a(i p)

− 3ξ 2λiijλqrrχ(k q)(g(i r))χ(j p)(gr)a(k q)a(j p)a(i r)

+ 6λqrrλiijχr(g(i p))χi(g(k p))a(k p)a(j r)a(i q)

− 3ξ(2 − ξ)λqrrλiijχ(k p)(gij)a(k p)a(j q)a(i r).

Hence the lemma follows by defining the scalars hσ ,i appropriately. �

5.4 Technical identities

To compute the elements ς(i l) in 5.22 in the PBWbasis, we need a large series of technical

identities involving commutators. This is the content of this section.
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Lemma 5.28. The following identities hold in L̃.

(1) [a(1 l),a2]c =
⎧⎨⎩λ122(1 − ξ 2)χ2(g3)a3 − λ223(1 − ξ 2)a1g223, l = 3;

λ122(1 − ξ 2)χ2(g(3 l))a(3 l), l ≥ 4.
(2) [a(1 l),ap]c = 0, 3 ≤ p < l − 1.

(3) [a(1 l),a(pk)]c = 0, 3 ≤ p ≤ k < l − 1.

(4) [a(1 l),al−1]c = −λl−1l−1l(1 − ξ 2)a(1 l−2)gl−1l−1l.

(5) [a(1 l),al]c = −λl−1ll(1 − ξ 2)a(1 l−2)gl−1ll. �

Proof. (1) Case l = 3 follows once again mimicking [2, Lemma 1.11] as in Lemma 5.4.

The general case l ≥ 4 follows as in Lemma 5.4: in this situation, if λ223 = 0, then λ122 = 0

by Lemma 5.1 and

[a(1 l),a2]c = −λ223(1 − ξ 2)χ(4 l)(g23)[a1,a(4 l)]cg223 = 0,

using q-Jacobi (2.2). For (2), first we have that

[a(1 l),ap]c = [[a(1p+1),a(p+2 l)]c,ap]c = χp(g(p+2 l))[a(1p+1),ap]ca(p+2 l)

− χ(p+2 l)(g(1p+1))a(p+2 l)[a(1p+1),ap]c.

Now, by (1), λppp+1χppp+1 = λppp+1ε and [a(1p−2),ap]c = 0,

[a(1p+1),ap]c = [a(1p−2), [a(p−1p+1),ap]c]c
= −λppp+1(1 − ξ 2)[a(1p−2),ap−1gppp+1]c
= −λppp+1(1 − ξ 2)

(
a(1p−2)ap−1gppp+1

− χp−1(g(1p−2))ap−1gppp+1a(1p−2)

)
= −λppp+1(1 − ξ 2)a(1p−1)gppp+1,

as λppp+1χ(1p−2)(gppp+1) = λppp+1. In particular, this shows (4) for p = l−1. Now, if p < l−1

we get

[a(1 l),ap]c = −λppp+1(1 − ξ 2)χp(g(p+2 l))
(
a(1p−1)gppp+1a(p+2 l)

− χ(p+2 l)(gp)χ(p+2 l)(g(1p+1))a(p+2 l)a(1p−1)gppp+1

)
= −λppp+1(1 − ξ 2)χp(g(p+2 l))χ(p+2 l)(gppp+1)

[a(1p−1),a(p+2 l)]cgppp+1 = 0.
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(3) follows from (2) by induction. For (5), we get, as λl−1llχl−1ll = λl−1llε,

[a(1 l),al]c = [[a(1 l−2),al−1l]c,al]c = λl−1ll(χ(1 l−2)(gl−1ll)− 1)a1 l−2gl−1ll

and since

λl−1llχ1 l−2(gl−1ll) = λl−1llχ(1 l−2)(gl−1ll)χl−1ll(g(1 l−2)) = λl−1llξ
2,

the lemma follows. �

Remark 5.29. As [a2,a(13)]c = −χ(13)(g2)[a(13),a2]c, we get

[a2,a(13)]c = λ122(1 − ξ)a3 − λ223χ1(g2)(ξ
2 − ξ)a1g223. �

Lemma 5.30. The following identities hold in L̃.

(1) [a(1 l),a(3p)]c = [a(3p),a(1 l)]c = 0, 3 ≤ p < l − 1.

(2) [a(1 l),a(3 l)]c = −λl−1ll(1 − ξ)a(1 l−1)gl−1ll

+3λl−1llχl−1(g(1 l−2))al−1a(1 l−2)gl−1ll.

(3) [a(1 l),a(3 l−1)]c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−λ334(1 − ξ 2)a12g334, l = 4,

3ξ 2λl−1l−1lχ(3 l−2)(g(1 l))

a(3 l−2)a(1 l−2)gl−1l−1l, l ≥ 5.

�

Proof. (1) follows by induction on p and using q-Jacobi (2.2), case p = 3 being Lemma

5.28 (2).

(2) Using q-Jacobi (2.2) and Lemma 5.28 (4–5), we have

[a(1 l),a(3 l)]c = [[a(1 l),al−1]c,al]c + χl−1(g(1 l))al−1[a(1 l),al]c
− χl(gl−1)[a(1 l),al]cal−1 = −λl−1l−1l(1 − ξ 2)[a(1 l−2),al]cgl−1l−1l

− λl−1ll(1 − ξ)a(1 l−1)gl−1ll + 3λl−1llχl−1(g(1 l−2))al−1a(1 l−2)gl−1ll.

(3) Case l = 4 is Lemma 5.28 (1), using q-Jacobi (2.2).

Now, if l ≥ 5, using q-Jacobi (2.2), item (1) and Lemma 5.28 (4) we get

[a(1 l),a(3 l−1)]c = −λl−1l−1l(1 − ξ)χl−1(g(3 l−2))[a(1 l−2),a(3 l−2)]cgl−1l−1l

− λl−1l−1l(1 − ξ 2)2χ(3 l−2)(g(1 l))a(3 l−2)a(1 l−2)gl−1l−1l.
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Hence (3) follows using (2) and λl−1l−1lλl−3l−2l−2 = 0. Also, we use the fact that

λl−1l−1lχl−1(g(3 l−2)) = λl−1l−1lξχ(3 l−2)(gl−1l). �

Lemma 5.31. The following identities hold in L̃.

(1) [a1,a12]c = λ112(1 − g112).

(2) [a1,a(1 l)]c = λ112(1 − ξ 2)a(3 l), l ≥ 3.

(3) [a12,a(13)]c = −3ξ 2λ112χ(13)(g2)a3a2 + λ112(1 − ξ)a23

− 3λ223ξχ1(g2)a2
1g223.

(4) [a(12),a(1 l)]c = −3ξ 2λ112χ(1 l)(g2)a(3 l)a2 + λ112(1 − ξ)a(2 l), l ≥ 4. �

Proof. (1) is by definition. For (2), we have

[a1,a(1 l)]c = [a1, [a12,a(3 l)]c]c = λ112(1 − ξ 2)a(3 l)

− λ112
(
g112a(3 l) − χ(3 l)(g112)a(3 l)g112

) = λ112(1 − ξ 2)a(3 l).

(3) and (4) follow as in Lemma 5.11. In this case, when l = 3 and extra term involving

a2
1g223 arises, which gets killed for bigger l. �

Proposition 5.32. The following identities hold in L̃.

(1) For 3 ≤ p < l − 1:

[a(1p),a(1 l)]c = −3ξ 2λ112χ(1 l)(g(2p))a(3 l)a(2p) + 3λ112χ1(g(3p))a(3p)a(2 l).

(2) For l ≥ 5,

[a(1 l−1),a(1 l)]c = −3ξ 2χ(1 l)(gl−1)λl−1l−1la
2
(1 l−2)gl−1l−1l

− 3ξ 2λ112χ(1 l)(g(2 l−1))a(3 l)a(2 l−1) + 3λ112χ1(g(3 l−1))a(3 l−1)a(2 l).

�

Proof. (1) We use q-Jacobi (2.2) and Lemma 5.30 (1) to get

[a(1p),a(1 l)]c = χ(1 l)(g(3p))[a(12),a(1 l)]ca(3p) − χ(3p)(g12)a(3p)[a(12),a(1 l)]c.
[a(12),a(1 l)]ca(3p) = −3ξ 2λ112χ(1 l)(g2)a(3 l)a2a(3p) + λ112(1 − ξ)a(2 l)a(3p)

= −3ξ 2λ112χ(1 l)(g2)
(
a(3 l)a(2p) + χ(3p)(g2)a(3 l)a(3p)a2

)
+ λ112(1 − ξ)χ(3p)(g(2 l))a(3p)a(2 l),
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as λ112λ223 = 0. We arrive to (1) using λ112λ334 = 0:

a(3p)[a(12),a(1 l)]c = −3ξλ112χ(3 l)(g(2p))a(3 l)a(3p)a2 + λ112(1 − ξ)a(3p)a(2 l).

(2) We have, using q-Jacobi (2.2),

[a(1 l−1),a(1 l)]c = [[a(1 l−2),al−1]c,a(1 l)]c = [a(1 l−2), [al−1,a(1 l)]c]c
+ χ(1 l)(gl−1)

([a(1 l−2),a(1 l)]cal−1 − χl−1(g(1 l)g(1 l−2))al−1[a(1 l−2),a(1 l)]c
)
.

Now, by Lemma 5.28 (4),

[al−1,a(1 l)]c = −χ(1 l)(gl−1)[a(1 l),al−1]c
= λl−1l−1l(1 − ξ 2)χ(1 l)(gl−1)a(1 l−2)gl−1l−1l.

Hence, [a(1 l−2), [al−1,a(1 l)]c]c = −3ξ 2χ(1 l)(gl−1)λl−1l−1la2
(1 l−2)gl−1l−1l.

On the other hand, we have that, by item (1),

χl−1(g(1 l)g(1 l−2))al−1[a(1 l−2),a(1 l)]c
= −3ξ 2λ112χ(1 l)(g(2 l−2))χl−1(g(1 l)g(1 l−2))al−1a(3 l)a(2 l−2)

+ 3λ112χ1(g(3 l−2))χl−1(g(1 l)g(1 l−2))al−1a(3 l−2)a(2 l).

Now, by Lemma 5.28

[a(1 l−2),a(1 l)]cal−1 = −3ξ 2λ112χ(1 l)(g(2 l−2))a(3 l)a(2 l−2)al−1

+ 3λ112χ1(g(3 l−2))a(3 l−2)a(2 l)al−1

= −3ξ 2λ112χ(1 l)(g(2 l−2))a(3 l)a(2 l−1)

− 3ξ 2λ112χ(1 l)(g(2 l−2))χl−1(g(2 l−2))a(3 l)al−1a(2 l−2)

− 3λ112λl−1l−1l(1 − ξ 2)χ1(g(3 l−2))a(3 l−2)a(2 l−2)gl−1l−1l

+ 3λ112χ1(g(3 l−2))χl−1(g(2 l))a(3 l−2)al−1a(2 l)

= −3ξ 2λ112χ(1 l)(g(2 l−2))a(3 l)a(2 l−1)

+ 3ξλ112λl−1l−1l(1 − ξ 2)χ1(g(2 l−2))a(3 l−2)a(2 l−2)gl−1l−1l

− 3ξ 2λ112χ(1 l)(g(2 l−2))χl−1(g(2 l−2))χl−1(g(3 l))al−1a(3 l)a(2 l−2)

− 3λ112λl−1l−1l(1 − ξ 2)χ1(g(3 l−2))a(3 l−2)a(2 l−2)gl−1l−1l
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+ 3λ112χ1(g(3 l−2))χl−1(g(2 l))a(3 l−1)a(2 l)

+ 3λ112χ1(g(3 l−2))χl−1(g(2 l))χl−1(g(3 l−2))al−1a(3 l−2)a(2 l).

Hence, using that χl−1(g112) = 1 and adding up the terms, we get (6). �

Notice that for 0 ≤ p < q < l, Lemmas 5.9 (1) and 5.10 give

[y(p+1 l),y(q+1 l)]c

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, p+ 1 < q < l;

−3λp+1p+2p+2χp+2(g(p+3 l))y2
(p+3 l), p+ 1 = q < l − 1;

λl−1ll, p+ 1 = q = l − 1.

(5.35)

We fix q = p+ 1, r = p+ 2. Some of the identities computed in Lemma 5.31 and

Proposition 5.32 become simpler whenmultiplied by a factor λqrr , using Lemma 5.1. This

will be of great importance in the computations, as ς(i l) is a linear combination of the

elements ςp(λ,μ) in 5.21 and each one of these terms is multiplied by λqrr .

We interpret these identities in the following corollary.

Corollary 5.33. The following identities hold in L̃.

(1) If p < 3, then

λqrr[a(1p),a(1p+1)]c = λqrr[a(1p),a(1p+2)]c = λqrr[a(1p+1),a(1p+2)]c = 0.

(2) If 4 ≤ s = p+ 1,p+ 2, then

λqrr[a(1p),a(1 s)]c = − 3ξ 2λ112λqrrχ(1 s)(g(2p))a(3 s)a(2p)

+ 3λ112λqrrχ1(g(3p))a(3p)a(2 s).

(3) If p ≥ 3, then

λqrr[a(1q),a(1 r)]c = −3λqrrξ
2χ(1 r)(gq)λqqra

2
(1p)gqqr

− 3λqrrξ
2λ112χ(1 r)(g(2q))a(3 r)a(2q)

+ 3λqrrλ112χ1(g(3p))χq(g(2 r))χ(1 r)(gq)a(3q)a(2 r). �
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Proof. (1) follows using that λ233λ112 = λ344λ112 = 0.

(2) follows by Proposition 5.32 (1) using that λqrrλppp+1 = 0 by Lemma 5.1.

(3) is precisely Proposition 5.32 (2). �

In particular, Corollary 5.33 gives

Corollary 5.34. Let p ≥ 3. The following identities hold in L̃.

(1) λqrrλ112[a(3q),a(3 r)]c = −3λqrrλ112λqqrξ 2χ(3 r)(gq)a2
(3p)gqqr .

(2) λqrrλ112[a(3p),a(3 r)]c = λqrrλ112[a(3p),a(3q)]c = 0. �

Corollary 5.35. Let p ≥ 3, s = q, r. The following identities hold in L̃.

(1) λ112λqrr[a(1q),a(3p)]c = λ112λqrr[a(1 r),a(3p)]c = 0.

(2) λ112λqrr[a(1 r),a(3q)]c = 3λ112λqrrξ 2λqqrχ(3p)(g(1 r))a(3p)a(1p)gqqr .

(3) λ112λqrr[a(1q),a(3 r)]c = λ112λqrrχ(3q)(g(1q))(1 − ξ 2)a(3q)a(1 r)

−3λ112λqrrλqqrχ(3p)(g(1q))a(3p)a(1p)gqqr .

(4) λ112λqrr[a(1p),a(3 s)]c = −λ112λqrrχ(3p)(g12)(1 − ξ)a(3p)a(1 r). �

Proof. (1) and (2) follow from Lemma 5.30. Also, q-Jacobi (2.2) and Lemma 5.30 together

with Lemma 5.1 give

λ112λqrr[a(1q),a(3 r)]c = λ112λqrr[a(1q), [a(3q),ar]c]c
= λ112λqrr[[a(1q),a(3q)]c,ar]c

− λ112λqrrχr(g(3q))a(1 r)a(3q) + λ112λqrrχ(3q)(g(1q))a(3q)a(1 r)

= −λ112λqrrχr(g(3q))[a(1 r),a(3q)]c
+ λ112λqrrχ(3q)(g(1q))(1 − ξ 2)a(3q)a(1 r).

Hence now (3) follows using (2). (4) follows by Corollary 5.34 (2), using q-Jacobi. �

Corollary 5.36. Let p ≥ 3. The following identities hold in L̃.

(1) If s = p,q, r, then

λ112λqrr[a(1 s),a(2p)]c = −3ξ 2λ112λ122λqrrχ2(g(3 s))a(3 s)a(3p).
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(2)

λ112λqrr[a(1 r),a(2q)]c = −3ξ 2λ112λ122λqrrχ2(g(3 r))a(3 r)a(3q)

+ 3λ112λqrrξ
2λqqrχ(2p)(g(1 r))a(2p)a(1p)gqqr .

(3)

λ112λqrr[a(1q),a(2 r)]c = 9ξλ112λ122λqqrλqrrχ2(g(3q))χ(3 r)(gq)a
2
(3p)gqqr

+ 3(1 + ξ)λ112λ122λqrrχ(2 r)(g(3q))a(3 r)a(3q)

+ λ112λqrrχ(2q)(g(1q))(1 − ξ 2)a(2q)a(1 r)

− 3λ112λqrrλqqrχ(2p)(g(1q))a(2p)a(1p)gqqr .

(4) If s = q, r, then

λ112λqrr[a(1p),a(2 s)]c = −3ξλ112λ122λqrrχ2(g(2p))a(3 s)a(3p)

− λ112λqrrχ(2p)(g1)(1 − ξ)a(2p)a(1 s). �

Proof. (1) follows by Lemmas 5.1, 5.28 (1) and 5.30 and Corollary 5.33 (1) We use that

λqrrλp−1p−1p = λqrrλp−1pp = 0.

(2) We have, using q-Jacobi (2.2),

λ112λqrr[a(1 r),a(2q)]c = λ112λqrr[a(1 r), [a2,a(3q)]c]c
= λ112λqrr[[a(1 r),a2]c,a(3q)]c + λ112λqrrχ2(g(1 r))

(
a2[a(1 r),a(3q)]c

− χ(3q)(g2)χ(1 r)(g2)[a(1 r),a(3q)]ca2

)
.

Now, by Lemma 5.28 (1) and Corollary 5.34,

λ112λqrr[[a(1 r),a2]c,a(3q)]c
= λ112λ122λqrr(1 − ξ 2)χ2(g(3 r))

(
a(3 r)a(3q) − χ(3q)(g(3 r)g122)a(3q)a(3 r)

)
= −3ξ 2λ112λ122λqrrχ2(g(3 r))a(3 r)a(3q)

− λ112λ122λqrr(1 − ξ 2)ξχ2(g(3 r))χ(3q)(g(3 r))[a(3q),a(3 r)]c
= −3ξ 2λ112λ122λqrrχ2(g(3 r))a(3 r)a(3q)

+ 3λ112λ122λqrrλqqr(1 − ξ 2)χ(2p)(g(3 r))a
2
(3p)gqqr .
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Set s = 3λ112λqrrξ 2λqqrχ(3p)(g(1 r)), by Corollary 5.35 (2),

λ112λqrr
(
a2[a(1 r),a(3q)]c − χ(3q)(g2)χ(1 r)(g2)[a(1 r),a(3q)]ca2

)
= s

(
a2a(3p)a(1p) − χ(3p)(g2)χ(1p)(g2)a(3p)a(1p)a2

)
gqqr

= s(a(2p)a(1p) − λ122(ξ
2 − ξ)χ(1p)(g2)a

2
(3p))gqqr

+ s(χ(3p)(g2)− χ(3p)(g2)χ(1p)(g2)χ2(g(1p)))a(3p)a2a(1p)gqqr

= s(a(2p)a(1p) + λ122(1 − ξ)χ(3p)(g2)a
2
(3p))gqqr ,

using once again Lemma 5.28 (1) and 1 = χ(1p)(g2)χ2(g(1p)). Adding up,

λ112λqrr[a(1 r),a(2q)]c = −3ξ 2λ112λ122λqrrχ2(g(3 r))a(3 r)a(3q)

+ χ2(g(1 r))sa(2p)a(1p)gqqr .

Here we have used that, as χ(3p)(g2)χ(2p)(g12) = χ(3p)(g122)ξ
2 = 1,

λ122(1 − ξ)χ2(g(1 r))χ(3p)(g2)s

= 3λ112λ122λqqrλqrrξ
2(1 − ξ)χ2(g(1 r))χ(3p)(g2)χ(3p)(g(1 r))

= −3λ112λ122λqqrλqrr(1 − ξ 2)χ(3p)(g2)χ(2p)(g12)χ(2p)(g(3 r))

= −3λ112λ122λqqrλqrr(1 − ξ 2)χ(2p)(g(3 r)).

Hence the terms corresponding to a2
(3p)gqqr cancel.

(3) We have, using q-Jacobi,

λ112λqrr[a(1q),a(2 r)]c = λ112λqrr[[a(1q), [a2,a(3 r)]c]c
= λ112λqrr[[a(1q),a2]c,a(3 r)]c − λ112λqrrχ(3 r)(g2)[a(1q),a(3 r)]ca2

+ λ112λqrrχ2(g(1q))a2[a(1q),a(3 r)]c.

Now, by Lemma 5.28, and Corollary 5.34,

λ112λqrr[[a(1q),a2]c,a(3 r)]c = λ112λ122λqrr(1 − ξ 2)χ2(g(3q))[a(3q),a(3 r)]c
+ λ112λ122λqrr(1 − ξ 2)χ2(g(3q))χ(3 r)(g(3q))(1 − ξ)a(3 r)a(3q)

= −3ξ 2(1 − ξ 2)λ112λ122λqqrλqrrχ2(g(3q))χ(3 r)(gq)a
2
(3p)gqqr

+ 3λ112λ122λqrrχ(2 r)(g(3q))a(3 r)a(3q).
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On the other hand, by Corollary 5.35, Lemma 5.28 and Corollary 5.34,

λ112λqrr[a(1q),a(3 r)]ca2 =
= λ112λqrrχ(3q)(g(1q))(1 − ξ 2)a(3q)a(1 r)a2

− 3λ112λqrrλqqrχ(3p)(g(1q))a(3p)a(1p)a2gqqr

= λ112λqrrχ(3q)(g(1q))χ2(g(1 r))(1 − ξ 2)a(3q)a2a(1 r)

+ λ112λ122λqrr(1 − ξ 2)2χ(3q)(g(1q))χ2(g(3 r))a(3q)a(3 r)

− 3λ112λqrrλqqrχ(3p)(g(1q))χ2(g(1p))a(3p)a2a(1p)gqqr

− 3λ112λ122λqrrλqqr(1 − ξ 2)χ(3p)(g(1q))χ2(g(3p))a
2
(3p)gqqr

= λ112λqrrχ(3q)(g(1q))χ2(g(1 r))(1 − ξ 2)a(3q)a2a(1 r)

− 3ξ 2λ112λ122λqrrχ(3q)(g(1q))χ2(g(3 r))χ(3 r)(g(3q))a(3 r)a(3q)

− 3ξ 2λ112λ122λqqrλqrr(1 − ξ 2)2χ(3q)(g(1q))χ2(g(3 r))χ(3 r)(gq)a
2
(3p)gqqr

− 3λ112λqrrλqqrχ(3p)(g(1q))χ2(g(1p))a(3p)a2a(1p)gqqr

− 3λ112λ122λqrrλqqr(1 − ξ 2)χ(3p)(g(1q))χ2(g(3p))a
2
(3p)gqqr

= −3ξ 2λ112λ122λqrrχ(3q)(g(1q))χ2(g(3 r))χ(3 r)(g(3q))a(3 r)a(3q)

+ (1 − ξ 2)λ112λqrrχ(2q)(g(1q))χ2(gr)a(3q)a2a(1 r)

+ 3(1 − ξ)λ112λ122λqqrλqrrχ(3p)(g(1q))χ2(g(3p))a
2
(3p)gqqr

− 3λ112λqrrλqqrχ(3p)(g(1q))χ2(g(1p))a(3p)a2a(1p)gqqr .

Again, by Corollary 5.35,

λ112λqrra2[a(1q),a(3 r)]c = λ112λqrrχ(3q)(g(1q))(1 − ξ 2)a(2q)a(1 r)

+ λ112λqrrχ(3q)(g(1q))χ(3q)(g2)(1 − ξ 2)a(3q)a2a(1 r)

− 3λ112λqrrλqqrχ(3p)(g(1q))a(2p)a(1p)gqqr

− 3λ112λqrrλqqrχ(3p)(g(1q))χ(3p)(g2)a(3p)a2a(1p)gqqr .

Adding up,

λ112λqrr[a(1q),a(2 r)]c = 9ξλ112λ122λqqrλqrrχ2(g(3q))χ(3 r)(gq)a
2
(3p)gqqr

+ 3(1 + ξ)λ112λ122λqrrχ(2 r)(g(3q))a(3 r)a(3q)
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+ λ112λqrrχ(2q)(g(1q))(1 − ξ 2)a(2q)a(1 r)

− 3λ112λqrrλqqrχ(2p)(g(1q))a(2p)a(1p)gqqr .

(4) follows using (1) together with q-Jacobi and Lemma 5.1. �

Next, we order the elements 5.29 in terms of the PBW basis. We have

Proposition 5.37. Assume p ≥ 3. Then

λqrrap,q,r = λqrrξχq(g(1p))a(1 r)a(1q)a(1p) (5.36)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr

− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3ξ 2λqrrλ112χqqr(g(1p))χ(3 r)(g(2q))χ(2p)(g(1q))a(3 r)a(2p)a(1q)

+ 3λqrrλ112χ(3p)(g12)χr(g(1q))a(3p)a(2 r)a(1q)

+ 3λqrrλ112(1 − ξ 2)χ(3p)(g12)a(3p)a(2q)a(1 r)

+ 6λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r).

λqrrap,r,q = λqrrξ
2χqqr(g(1p))a(1 r)a(1q)a(1p) (5.37)

− 3ξ 2λ112λqrrχ(1q)(g(1p))χ(3q)(g(1 r))χr(g1)a(3q)a(2p)a(1 r)

+ 3λ112λqrrχ1(g(3p))χ(1q)(gr)a(3p)a(2q)a(1 r)

− 3ξ 2λ112λqrrχ(1 r)(g(2p))a(3 r)a(2p)a(1q)

+ 3λ112λqrrχ1(g(3p))a(3p)a(2 r)a(1q).

λqrrar,p,q = ξχq(g(1p))λqrra(1 r)a(1q)a(1p) (5.38)

− 3ξ 2λ112λqrrχ(3q)(g(1 r))χ(2p)(gr)a(3q)a(2p)a(1 r)

+ 3λ112λqrrχ(3p)(g(2 r))χ(2q)(g(1 r))a(3p)a(2q)a(1 r).

�

Proof. We will go through the description of λqrrap,q,r step by step, following the iden-

tities in the lemmas. The other two summands are simpler and will be presented in their

final form. Every time there is a monomial that needs to be ordered, we shall highlight it
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on bold letters, for the reader to identify which is the bracket that needs to be computed

for the next step. To do this, we shall use Corollaries 5.33, 5.35, 5.36, and 5.34.

We shall also reduce some of the scalars, for instance, we consider

λqrrχ(1q)(g(1p))χ(1 r)(g(1p)g(1q)) = λqrrχr(g(1q)).

However, we leave a full reduction to the end.

We have, using Corollary 5.33,

λqrrap,q,r = λqrrχ(1q)(g(1p))χ(1 r)(g(1p)g(1q))a(1 r)a(1q)a(1p)

+ χ(1q)(g(1p))χ(1 r)(g(1p))λqrr[a(1q),a(1 r)]ca(1p)
+ χ(1q)(g(1p))λqrra(1q)[a(1p),a(1 r)]c + λqrr[a(1p),a(1q)]ca(1 r)

= λqrrξχq(g(1p))a(1 r)a(1q)a(1p)

− χ(1q)(g(1p))χ(1 r)(g(1p))3λqrrξ
2χ(1 r)(gq)λqqrχ(1p)(gqqr)a

3
(1p)gqqr

− χ(1q)(g(1p))χ(1 r)(g(1p))3λqrrξ
2λ112χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ χ(1q)(g(1p))χ(1 r)(g(1p))3λqrrλ112χ1(g(3p))χq(g(2 r))χ(1 r)(gq)

a(3q)a(2 r)a(1p)

− χ(1q)(g(1p))λqrr3ξ
2λ112χ(1 r)(g(2p))a(1q)a(3 r)a(2p)

+ χ(1q)(g(1p))λqrr3λ112χ1(g(3p))a(1q)a(3p)a(2 r)

− 3ξ 2λ112λqrrχ(1q)(g(2p))a(3q)a(2p)a(1 r).

Using χ(1q)(g(1p)) = ξχq(g(1p)), and

λqqrχ(1p)(gqqr) = λqqrξ ,

λqqrχ(1q)(g(1p))χ(1 r)(g(1p)) = λqqrξ
2

λqrrλ112χ(1q)(g(1p))χ(1 r)(g(1p)) = λqrrλ112χqqr(g(1p)),

χ1(g(3p))χq(g(2 r))χ(1 r)(gq) = χ1(g(3q)),

χ(1q)(g(1p))χ(1 r)(g(2p)) = ξχqqr(g(1p))χ1(g(1 r)),

this becomes, applying Corollary 5.35,

λqrrap,q,r = λqrrχr(g(1q))a(1 r)a(1q)a(1p)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr
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− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))a(3 r)a(1q)a(2p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))[a(1q),a(3 r)]ca(2p)
+ 3λqrrλ112χ(1q)(g(1p))χ1(g(3p))χ(3p)(g(1q))a(3p)a(1q)a(2 r)

+ 3λqrrλ112χ(1q)(g(1p))χ1(g(3p))[a(1q),a(3p)]ca(2 r)
− 3ξ 2λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r)

= λqrrχr(g(1q))a(1 r)a(1q)a(1p)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr

− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))a(3 r)a(1q)a(2p)

− 3(1 − ξ 2)λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))a(3q)a(1 r)a(2p)

+ 9ξλqrrλ112λqqrχ1(g(1 r))χ(3p)(g(1q))a(3p)a(1p)a(2p)gqqr

+ 3λqrrλ112χ(1q)(g(1p))χ(3p)(g(2q))a(3p)a(1q)a(2 r)

− 3ξ 2λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r).

We have also used

λqqrχqqr(g(1p))χ(2p)(gqqr) = λqqrξ ,χ1(g(3p))χ(3p)(g(1q)) = χ(3p)(g(2q)).

We obtain

λqrrap,q,r = λqrrχr(g(1q))a(1 r)a(1q)a(1p)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr

− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ(2p)(g(1q))a(3 r)a(2p)a(1q)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))a(3 r)[a(1q),a(2p)]c
− 3(1 − ξ 2)λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))χ(2p)(g(1 r))a(3q)a(2p)a(1 r)
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− 3(1 − ξ 2)λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))a(3q)[a(1 r),a(2p)]c
+ 9ξλqrrλ112λqqrχ1(g(1 r))χ(2p)(g(1p))χ(3p)(g(1q))a(3p)a(2p)a(1p)gqqr

+ 9ξλqrrλ112λqqrχ1(g(1 r))χ(3p)(g(1q))a(3p)[a(1p),a(2p)]cgqqr
+ 3λqrrλ112χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(1q))a(3p)a(2 r)a(1q)

+ 3λqrrλ112χ(1q)(g(1p))χ(3p)(g(2q))a(3p)[a(1q),a(2 r)]c
− 3ξ 2λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r).

Observe that χ1(g(1 r))χ(2p)(g(1 r)) = χ(1p)(g(1 r)) and that we can add the two terms

a(3q)a(2p)a(1 r) and the corresponding scalar becomes

− 3(1 − ξ 2)λqrrλ112χqqr(g(1p))χ(3q)(g(1q))χ(1p)(g(1 r))

− 3ξ 2λqrrλ112χ(1q)(g(2p)) = −3λqrrλ112χ(1q)(g(2p))ξ
2×

×
(
(1 − ξ 2)ξχqqr(g(1p))χ(3q)(g(1q))χ(1p)(g(1 r))χ(2p)(g(1q))+ 1

)
= −3λqrrλ112χ(1q)(g(2p))ξ

2
(
(1 − ξ 2)ξ 2 + 1

)
= 6λqrrλ112χ(1q)(g(2p)).

Now, we apply Corollary 5.36:

λqrrap,q,r = λqrrχr(g(1q))a(1 r)a(1q)a(1p)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr

− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ(2p)(g(1q))a(3 r)a(2p)a(1q)

+ 9ξ 2λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ2(g(3q))a(3 r)a(3q)a(3p)

+ 9ξ 2(1 − ξ 2)λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))χ2(g(3 r))a(3q)a(3 r)a(3p)

+ 9ξλqrrλ112λqqrχ1(g(1 r))χ(2p)(g(1p))χ(3p)(g(1q))a(3p)a(2p)a(1p)gqqr

− 27λqrrλ112λ122λqqrχ1(g(1 r))χ(3p)(g(1q))χ2(g(3p))a
3
(3p)gqqr

+ 3λqrrλ112χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(1q))a(3p)a(2 r)a(1q)

+ 27ξλqrrλ112λ122λqqrχ(1q)(g(1p))χ(3p)(g(2q))χ2(g(3q))χ(3 r)(gq)a
3
(3p)gqqr

+ 9(1 + ξ)λqrrλ112λ122χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(3q))a(3p)a(3 r)a(3q)

+ 3λqrrλ112(1 − ξ 2)χ(1q)(g(1p))χ(3p)(g(2q))χ(2q)(g(1q))a(3p)a(2q)a(1 r)
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− 9λqrrλ112λqqrχ(1q)(g(1p))χ(3p)(g(2q))χ(2p)(g(1q))a(3p)a(2p)a(1p)gqqr

+ 6λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r).

Observe that the terms a3
(3p)gqqr have the scalar

27(1 − ξ 2)λqrrλ112λ122λqqrχ(3p)(gq)χq(g1).

On the other hand, the terms a(3p)a(2p)a(1p)gqqr cancel with each other.

We order the terms a(3 ∗)a(3 ∗)a(3 ∗) using Corollary 5.34 and we get

λqrrap,q,r = λqrrχr(g(1q))a(1 r)a(1q)a(1p)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr

− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ(2p)(g(1q))a(3 r)a(2p)a(1q)

+ 9ξ 2λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ2(g(3q))a(3 r)a(3q)a(3p)

+ 9ξ 2(1 − ξ 2)λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))χ2(g(3 r))

χ(3 r)(g(3q))a(3 r)a(3q)a(3p)

+ 9ξ 2(1 − ξ 2)λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))χ2(g(3 r))

[a(3q),a(3 r)]ca(3p)
+ 27(1 − ξ 2)λqrrλ112λ122λqqrχ(3p)(gq)χq(g1)a

3
(3p)gqqr

+ 3λqrrλ112χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(1q))a(3p)a(2 r)a(1q)

+ 9(1 + ξ)λqrrλ112λ122χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(3q))χ(3 r)(g(3p))

χ(3q)(g(3p))a(3 r)a(3q)a(3p)

+ 9(1 + ξ)λqrrλ112λ122χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(3q))χ(3 r)(g(3p))

a(3 r)[a(3p),a(3q)]c
+ 9(1 + ξ)λqrrλ112λ122χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(3q))

[a(3p),a(3 r)]ca(3q)
+ 3λqrrλ112(1 − ξ 2)χ(1q)(g(1p))χ(3p)(g(2q))χ(2q)(g(1q))a(3p)a(2q)a(1 r)

+ 6λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r).
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That is,

λqrrap,q,r = λqrrχr(g(1q))a(1 r)a(1q)a(1p)

− 3ξ 2λqrrλqqrχ(1 r)(gq)a
3
(1p)gqqr

− 3ξ 2λqrrλ112χqqr(g(1p))χ(1 r)(g(2q))a(3 r)a(2q)a(1p)

+ 3λqrrλ112χqqr(g(1p))χ1(g(3q))a(3q)a(2 r)a(1p)

− 3λqrrλ112χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ(2p)(g(1q))a(3 r)a(2p)a(1q)

+ 9ξ 2λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3 r)(g(1q))χ2(g(3q))a(3 r)a(3q)a(3p)

+ 9ξ 2(1 − ξ 2)λqrrλ112λ122χqqr(g(1p))χ1(g(1 r))χ(3q)(g(1q))χ2(g(3 r))

χ(3 r)(g(3q))a(3 r)a(3q)a(3p)

− 27ξ 2(1 − ξ 2)λqrrλ112λ122λqqrχ1(g(1 r))χ(3q)(g(1q))χ2(g(3 r))

χ(3 r)(gq)a
3
(3p)gqqr

+ 27(1 − ξ 2)λqrrλ112λ122λqqrχ(3p)(gq)χq(g1)a
3
(3p)gqqr

+ 3λqrrλ112χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(1q))a(3p)a(2 r)a(1q)

+ 9(1 + ξ)λqrrλ112λ122χ(1q)(g(1p))χ(3p)(g(2q))χ(2 r)(g(3q))χ(3 r)(g(3p))

χ(3q)(g(3p))a(3 r)a(3q)a(3p)

+ 3λqrrλ112(1 − ξ 2)χ(1q)(g(1p))χ(3p)(g(2q))χ(2q)(g(1q))a(3p)a(2q)a(1 r)

+ 6λqrrλ112χ(1q)(g(2p))a(3q)a(2p)a(1 r).

On the one hand, the terms involving a3
(3p)gqqr cancel with each other, and so do

the ones involving a(3 r)a(3q)a(3p). We use

λ112χ1(g(1 r))χ(3 r)(g(1q)) = λ112ξ
2χ(3 r)(g(2q))

λ112χ(1q)(g(1p))χ(3p)(g(2q))χ(2q)(g(1q)) = λ112χ(3p)(g12)

to simplify the scalars and we end up with 5.36.

Similar computations lead to 5.37 and 5.38. �
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