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In this work a kinematics for laminated beams enriched with a refined formulation ZigZag (RZT), origi-
nally presented by Tessler et al. in 2007, introduced in a hierarchical one dimensional type ‘‘p” finite ele-
ment is presented. The finite element employs Lagrange polynomials for the approximation of the
degrees of freedom of the ends (nodes) and orthogonal Gram-Schmidt polynomials to the internal
degrees of freedoms. This finite element allows a very low discretization, is free of shear locking and
behaves very well when the analysis of laminated composites with accurate determination of local stres-
ses and strains at laminar level is necessary.
This element has been validated in the analysis of laminated beams with various sequences of symmet-

ric and asymmetric stacking, studying in each case its accuracy and stability.
� 2016 Elsevier Ltd. All rights reserved.
1. Introduction and review

Laminated composite beams are basic components for several
structural engineering applications, due to their excellent mechan-
ical properties, namely high specific strength and stiffness, long
fatigue life, wear resistance and enhanced design freedom on a
micro- and macro-mechanical level. The behavior of laminated
beams is governed by a wide number of parameters due to their
complex behavior. Moreover, specific problems arise such as
delamination and complex damage and failure mechanisms that
need a proper modeling for an accurate appraisal of the study of
their mechanics. In particular, as it is shown by Carrera [1–2], a
slope discontinuity on the displacement field occurs at the inter-
face between two perfectly bonded layers because of the trans-
verse anisotropy, i.e. the difference in layer-wise transverse shear
and normal moduli. This is known as the ZigZag (ZZ) phenomenon.

Considering theses aspects a number of theories have been pro-
posed for the analysis of composite laminates. Theories used for
the through –thickness variation of the state variables (unknowns
are of displacement type) can be classified as: equivalent single
layer models (ESL), layer-wise models (LW) and zigzag models
(ZZ). The well-described unified formulation, initially presented
by Carrera [3] and extended by Demasi [4–8], describes precisely
and clearly the models, types and class of these theories.

In the ESL theories the assumed displacements vary continu-
ously across the laminate thickness and the number of unknowns
is independent of the number of layers. ESL models include mainly
three major categories, i.e., the classical theory (CT), the first-order
theory (FDT), and the higher-order theory (HOT). The CT known as
Euler–Bernoulli beam theory is the simplest one and is inaccurate
for reasonably thick laminated beams and/or for highly anisotropic
composite beams. The inaccuracy is due to neglecting the trans-
verse shear strains in the laminate. The FDT by Timoshenko [9]
considers constant transverse shear strain distribution through
the beam thickness and, thus, a shear correction factor has to be
incorporated to adjust the transverse shear stiffness. The accuracy
of FDT solutions depend on the shear correction factor which can-
not in general be determined a priori apart from very special cases
[10]. Moreover, FDT produces piecewise constant transverse shear
stresses that violate the interlaminar continuity (IC) conditions and
the traction-free conditions at the top and bottom surfaces. To
overcome these shortcomings and to avoid the use of shear correc-
tion factors, a number of high-order theories with different shear
strain shape functions were introduced. In general, the cross sec-
tion is allowed to deform in any form by including higher order
terms in the axiomatic expansion of the displacement field along
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the beam direction (x-axis) as a suitable smooth function of trans-
verse direction (z-axis). In this sense different shape functions have
been proposed such as polynomial [11–14], trigonometric [15–18],
exponential [19–21] and hyperbolic functions [22,23]. Carrera et al.
[24] discussed a number of refined beam theories which were
obtained expanding the unknown displacement variables over
the beam section axes by adopting Taylor’s polynomials, trigono-
metric series, exponential, hyperbolic and zigzag functions, by
using the Unified Formulation introduced by Carrera [3]. A class
of theories often included into HOT are the advanced higher order
theories, denoted as AHOT, where transverse normal strains are
incorporated by extending the expansion of the transverse dis-
placement. For instance, Vidal et al. [25] proposed the approxima-
tion of the displacement field as a sum of separated functions of
axial and transverse coordinate by adopting the Proper Generalized
Decomposition procedure. HOT gives a continuous variation of the
transverse shear strain across the thickness but shows discontinu-
ity in the shear stress distribution at the layer interfaces (if they are
computed through the constitutive equations) due to different val-
ues of shear rigidity at the adjacent layers. But the actual behavior
of a composite laminate is opposite i.e., the transverse shear stress
must be continuous at the layer interface and the corresponding
strain may be discontinuous [26].

In LW models [27–34] the displacement field within each layer
is prescribed and compatibility conditions are applied between
adjacent layers in the laminate to recover the model of the lami-
nate as a whole. These models provide realistic descriptions of
kinematics at the ply level and they have the capacity to take into
account the zigzag effect. However, LW approaches suffer from an
excessive number of displacement variables in proportion to the
number of layers and hence they are too expensive in terms of
computational cost and hardly appropriate for practical
applications.

ZigZag models include a set of layer independent theories in
which a LW discontinuous function is a priori selected to enrich
the kinematical model in such way that the interface conditions
are met. So, in these theories, the in-plane displacements have
piece-wise variation across the beam thickness and the number
of unknowns results independent of the number of layer. Examples
of ZZ theories are those found in articles published by Murakami
[35], Lee et al. [36], Cho and Paramerter [37], Cho and Averill
[38], Vidal and Polit [39,40].

The research activity about the modeling of laminated struc-
tural members and the corresponding analytical or numerical solu-
tions are numerous. In particular, as this paper is devoted to ZigZag
models a complete and extensive assessment about the subject can
be found in Carrera [1]. Other reference in the topic is the review
paper by Chakrabarti et al. [26]. On the other side, Groh and Wea-
ver [41] present, in the article introduction, a comprehensive over-
view of the different theories that are used for the analysis of
highly heterogeneous laminated beams.

Many ZigZag theories requires C1 continuity for the deflection
field, which is a drawback versus simpler C0 continuous FEM
approximations [42]. Tessler et al. [43–45] developed a refined zig-
zag theory (RZT) that allows the use of C0 continuous interpolation
for all the kinematic variables. The kinematics of RZT is essentially
that of FDT enhanced by a zigzag field which has the property of
vanishing on the top and bottom surface of the laminate.

Along with the development of beam theories, there has been
significant development towards the solution methodologies. Ana-
lytical solutions are applicable for a few particular classes of beam
configuration [46,47]. The development of computational tech-
nologies makes it quite possible to implement numerical methods
for the practical applications. Among these, FEM is most popular
and versatile method for investigating the structural behavior of
arbitrary shaped components. In this context Oñate et al. [42]
developed a simple 2-noded beam element based on the RZT the-
ory, where shear locking is avoided using reduced integration on
selected terms of the shear stiffness matrix. The classical version
or h version of FEM was used in this paper, where the accuracy
of the solution is achieved by refinement of finite element mesh.

Unlike the h FEM version, in the p version of FEM the mesh
remains constant while the degree of the interpolation polynomial
is gradually increased to the desired accuracy [48]. The degrees of
freedom of a p element are constituted by the degrees of freedom
of the one-dimensional element ends (nodes) and the amplitudes
of the shape functions within the element. The p-version is charac-
terized by being more robust than the version h [49], in other
words the performance of the p-version is much less sensitive to
input data tan the h-version. For example, the p version allows
proper treatment of elements with high slenderness, as it is free
of shear locking. This is especially important in the analysis of lam-
inated composite beams, where a more rigorous stress analysis at
laminar and inter-laminar level is necessary. Several demonstra-
tive examples and theoretical proofs of the advantages of the
p-version FEM can be found in the literature [48,50–54]. Recall that
the advantages of the p version are not limited to the greater con-
vergence rate. In fact, with h methods, the accuracy of the solution
is determined by executing several analyses with different meshes,
an expensive and time-consuming process, both because of the
computational cost and because of the operator time required to
define the different models. In p-convergent approximations, the
number of finite elements is determined by the geometry and is
small [55].

In this paper a hierarchical one-dimensional finite element,
based on the ZigZag refined theory by Tessler et al. [43–45] is pro-
posed. This finite element has two end nodes and four degrees of
freedom per node. To approximate the kinematics variables of this
formulation Lagrange polynomials as local support functions are
used, and orthogonal polynomials generated by means of recur-
rence Gram-Schmidt expressions [58–59] are employed as func-
tions of hierarchical enrichment [60–63]. It is necessary to
emphasize here that one of the main novelty of the proposed
model is the obtaining of a hierarchical finite element within the
framework of a Zig-Zag theory, considering local support functions
of C0 type and achieving a robust finite element free of shear lock-
ing. Besides, the developed formulation is appropriated for the
analysis of symmetric and non-symmetric laminated beams in a
general and unified way, since all mechanical coupling are consid-
ered. Another important and salient feature of the developed
model is the capacity it has for its application to the delamination
study as will be seen in Section 8.

The proposed finite element has been computationally imple-
mented. To verify the results, the order of the approximation can
be selectively increased. This operation is carried out very effi-
ciently because it is not necessary to generate a new mesh and
because the new linear stiffness matrix contains the preceding
one. It is demonstrated that the proposed hierarchical finite ele-
ment is free of shear locking and, in order to assess its accuracy
and stability, it has been applied to the analysis of laminated
beams with symmetrical and non-symmetrical stacking sequence
with different boundary conditions.

2. Formulation of the mechanical problem

Let us consider a laminated beam of total thickness h and
length L as shown in Fig. 1. The Cartesian coordinate system
(x; y; z) is taken such that the x� y plane (z ¼ 0) coincides
with the midplane of the beam, the y axis is along the
width (b) of the beam; resulting in a beam domain
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Fig. 1. Multilayered composite beam geometry.
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V ¼ ½0 6 x 6 L� � ½�b=2 6 y 6 b=2� � ½�h=2 6 z 6 h=2�. The dis-
placement vector is u ¼ ðu;v ;wÞ and the displacement compo-
nents along each coordinate axis are designed by u;v ;w. The
laminated beam is composed of Nl layers of different linearly elas-
tic materials, being each layer orthotropic in the beam axes. The
integer k, used as superscript or subscript, denotes the layer num-
ber from the bottom to the top of the beam; thus the kth layer cor-
responds to zk�1 6 z 6 zk and its thickness is hk.

The one dimensional constitutive equations of the kth layer of
an orthotropic material are given by

rxx

sxz

� �ðkÞ
¼

�C11 0
0 �C55

" #ðkÞ
exx
cxz

� �ðkÞ
; i:e: rðkÞ ¼ �CðkÞ eðkÞ ð1Þ

where r ðkÞ is stress vector, eðkÞ is the strain vector, and the constitu-
tive one-dimensional laws are given by the elastic stiffness matrix
�CðkÞ for the kth layer.

Taking into account the classical assumption of negligible trans-

verse normal stress ðrðkÞ
zz ¼ rðkÞ

yy ¼ 0Þ, the longitudinal modulus is
expressed from the three dimensional constitutive laws by

�CðkÞ
11 ¼ CðkÞ

11 � 2ðCðkÞ
12 Þ

2
=ðCðkÞ

23 þ CðkÞ
33 Þ ð2Þ

where Cij are orthotropic three-dimensional elastic moduli [56].
The transverse shear stress modulus is given by

�CðkÞ
55 ¼ CðkÞ

55 ¼ GðkÞ
xz ð3Þ

The general weak form of the boundary value problem for the
beam shown in Fig. 1, considering Eq. (1) and a virtual displace-
ment vector du, is given by the classical virtual work expressionZ
V
ðdeðkÞÞTrðkÞðuÞdV �

Z
V
ðduÞTgdV �

Z
@VF

ðduÞTFd@V ¼ 0 ð4Þ

where g and F are, respectively, the prescribed body and surface

forces applied on @V , deðkÞ ¼ rsðkÞðduÞ is the virtual strain, rs

denotes symmetric gradient and ð�ÞT denotes the corresponding
transpose.

Substituting Eq. (1) into the weak form of the boundary value
problem, Eq. (4) results:Z
V
ðdeðkÞÞT �CðkÞ eðkÞ dV �

Z
V
ðduÞTgdV �

Z
@VF

ðduÞTFd@V ¼ 0 ð5Þ

Eq. (5) will be used in Section 4 as the starting point for the pro-
posed hierarchical finite element approximations.

3. Bases of the refined zigzag theory

The kinematics of the refined zigzag theory (RZT) proposed by
Tessler et al. [43–45] are essentially those of FDT enhanced by an
axial zigzag displacement function �uðkÞðx; zÞ (Fig. 2), which results
of a zig-zag field wðxÞ multiplied by a piecewise continuous trans-
verse function /ðkÞðzÞ, as follows

uðkÞðx; zÞ ¼ u0ðxÞ � zhðxÞ þ �uðkÞðx; zÞ
wðx; zÞ ¼ w0ðxÞ

ð6Þ

where

�uðkÞðx; zÞ ¼ /ðkÞðzÞwðxÞ ð7Þ
The key attributes of RZT are, first, the zigzag function vanishes

at the top and bottom surfaces of the beam and does not require
full shear-stress continuity across the laminated-beam depth. Sec-
ond, all boundary conditions, including the fully clamped condi-
tion, can be modeled adequately. And third, the theory requires
only C0-continuous kinematics for finite element modeling. Over-
all, the theory appears as a natural extension of Timoshenko theory
to laminated composite beams.

Within each layer the zigzag function, depicted in Fig. 1(a), is
expressed as

/ðkÞ ¼ 1
2

1� fðkÞ
� �

�/ðk�1Þ þ 1
2

1þ fðkÞ
� �

�/ðkÞ ð8Þ

where �/ðk�1Þ and �/ðkÞ are the zigzag function values of ðk� 1Þ
and ðkÞ interfaces respectively, being �/ð0Þ ¼ �/ðNlÞ ¼ 0, and fðkÞ ¼
2ðz� zðk�1ÞÞ=hðkÞ � 1.

The zigzag slope d/ðkÞ=dz, is denoted by bðkÞ and it is computed
from Eq. (8) as

bðkÞ ¼
�/ðkÞ � �/ðk�1Þ

hðkÞ ð9Þ

In this theory the zigzag slope bðkÞ is defined by the difference

between the transverse shear rigidity of a layer GðkÞ
xz , and the effec-

tive transverse shear rigidity G of the entire layup,

bðkÞ ¼ G

GðkÞ
xz

� 1 ð10Þ

being

G ¼ A
Z Z

A

dA

GðkÞ
xz

" #�1

¼ h
XNl

k¼1

hðkÞ

GðkÞ
xz

" #�1

ð11Þ

Introducing Eqs. (9) and (10) into Eq. (8) the expression for the
zigzag function for the RZT is obtained,

�/ðkÞ ¼ bðkÞhðkÞ þ �/ðk�1Þ and /ðkÞ

¼ hðkÞbðkÞ

2
ðfðkÞ � 1Þ þ

Xk

i¼1

hðiÞbðiÞ ð12Þ
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Fig. 2. Schematic representation of the RZT. Thickness distribution of: (a) zigzag function, (b) zigzag displacement, and (c) axial displacement.
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Note that RZT theory does not enforce the continuity of the
transverse shear stress across the section. This is consistent with
kinematic freedom inherent in the lower order kinematic approx-
imation of the underlying beam theory. The reader can obtain a
more detailed description of the RZT in Tessler et al. [43–45] and
Oñate et al. [42].

4. Hierarchical finite beam element for the refined zigzag theory

4.1. Shape functions

The unknown functions u0;w; h and w in Eq. (6) are discretized
using one finite element according to the hierarchical version of
FEM (p-FEM). The natural coordinate n ¼ 2x=L� 1 is used along
the length of the beam, so node 1 corresponds to n ¼ �1 (x ¼ 0)
and node 2 corresponds to n ¼ 1 (x ¼ L). The proposed one –
dimensional approximation is given by

ðu0;w; h;wÞ ¼
Xnu ;nw ;nh ;nw

i¼1

NiðnÞðcu0i ; cwi ; c
h
i ; c

w
i Þ ð13Þ

where n�; � ¼ u0;w; h;w are the number of shape functions; c�i are
the generalized unknowns displacements used to approximate each
kinematic variable and NiðnÞ are the shape functions.

These shape functions, NiðnÞ, are polynomials expressions and
they can be classified in two groups [57], namely: nodal modes
for i ¼ 1;2 and internal modes for i ¼ 3; . . . ;n�.

The nodal modes are the classical support local Lagrange poly-
nomials, i.e.:

NiðnÞ ¼ 1
2
ð1þ nniÞ; i ¼ 1;2 ð14Þ

where ni is the local coordinate of the i� th node.
The internal modes are purely local and vanish at the ends of

the element (beam). This feature is highly significant since these
functions only give additional freedom to the interior of the ele-
ment. The employment of orthogonal polynomials generated by
the Gram-Schmidt recurrence expressions are proposed in this
work [58–60]. The first internal mode is obtained as a simpler
and lower degree polynomial that satisfies that hierarchical modes
contribute only to the internal components of the displacement
field of the element, and do not therefore affect to these compo-
nents at the end nodes. So the first hierarchical (internal) mode
results:

N3ðnÞ ¼ �1þ n2 ð15Þ

This basis polynomial satisfies N3ðnÞjn¼�1 ¼ N3ðnÞjn¼1 ¼ 0 as
required.

The remaining hierarchical modes are obtained by the Gram-
Schmidt procedure, starting from the basis polynomial (Eq. (15)),
as follows

N4ðnÞ ¼ ðn� B4ÞN3ðnÞ; ð16Þ

NkðnÞ ¼ ðn� BkÞNk�1ðnÞ � CkNk�2ðnÞ for k ¼ 5; . . . ;nð�Þ ð17Þ
where

Bk ¼
R 1
�1 nðNk�1ðnÞÞ2dnR 1
�1 ðNk�1ðnÞÞ2dn

; for k ¼ 4; . . . ;n� ð18Þ

Ck ¼
R 1
�1 nNk�1ðnÞNk�2ðnÞdnR 1

�1 ðNk�2ðnÞÞ2dn
; for k ¼ 5; . . . ;n� ð19Þ

The coefficients of the polynomials are recomputed so that
result orthonormal polynomials:Z 1

�1
ðNkðnÞÞ2dn ¼ 1 ð20Þ

The application of this procedure ensures that higher-order
polynomials (hierarchical modes) satisfy, automatically, the same
conditions as the basis polynomial.

Taking into account the features of the nodal and internal
modes, the first two generalized displacement unknowns are the
values of the kinematic variables at the end nodes, i.e.:ca1 ¼ a1

and ca2 ¼ a2, being a ¼ u0;w; h;w; namely cu1 ¼ u0ðn ¼ �1Þ ¼ u01;

cu2 ¼ u0ðn ¼ 1Þ ¼ u02, cw1 ¼ wðn ¼ �1Þ ¼ w01; cw2 ¼ wðn ¼ 1Þ ¼ w02,
ch1 ¼ hðn ¼ �1Þ ¼ h1; ch2 ¼ hðn ¼ 1Þ ¼ h2, cw1 ¼ wðn ¼ �1Þ ¼ w1; c

w
2 ¼

wðn ¼ 1Þ ¼ w2.
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The shape functions Ni, as stated above, are the same for all
kinematics variables, however it is possible to use different
number of approximation functions for each variable
(nu0 ;nw; nh;nw). Finally, Eq. (13) is now written in a matrix form,
as follows

u ¼

u0

w

h

w

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

Nu0c
u0

Nwcw

Nhch

Nwcw

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð21Þ

where

Na ¼ ½N1;N2; . . . ;Nna � ð22Þ

ca ¼ ca1 ca2 . . . cana
� �T

; a ¼ u0;w; h;w ð23Þ
Note that the dimensions of Na depends on the number of shape

functions for each kinematic variable (nu0 ;nw;nh;nw).

4.2. Expression of strains and stress

The strains for the laminated beam (Fig. 1), considering the RZT
theory (Fig. 2) given by Eqs. (6) and (7) are:

eðkÞxx ¼ du0

dx
� z

dh
dx

þ /ðkÞ dw
dx

ð24Þ

cðkÞxz ¼ dw
dx

� hþ bðkÞw ð25Þ

where Eq. (24) contains the axial elongations (du0=dx), the pseudo-
curvature (dh=dx) and the derivative of the function zigzag ampli-
tude (dw=dx); and in Eq. (25) dw=dx� h is the average transverse
shear stress of Timoshenko beam theory and bðkÞ is constant across
each layer.

Eqs. (24) and (25) can be written as

eðkÞxx ¼ SðkÞp ep; cðkÞxz ¼ SðkÞt et ð26Þ

where

SðkÞp ¼ ½1;�z;/ðkÞ�; ep ¼ du0

dx
;
dh
dx

;
dw
dx

� �T
ð27Þ

SðkÞt ¼ ½1;�1;bðkÞ�; et ¼ dw
dx

; h;w

� �T
ð28Þ

In Eqs. (27) and (28) ep and et are, respectively, the generalized
in-plane and transverse shear strain vectors, respectively.

Substituting Eq. (13) into the generalized strain vectors (Eqs.
(27) and (28)) leads to

ep ¼
u0;x

h;x

w;x

8><
>:

9>=
>; ¼

Nu0 ;xc
u0

Nw;xch

Nw;xcw

8><
>:

9>=
>;; et ¼

w;x

h

w

8><
>:

9>=
>; ¼

Nw;xcw

Nhch

Nwcw

8><
>:

9>=
>; ð29Þ

where a;x denotes differentiation with respect to variable x.
The generalized strain vectors of Eq. (29) can be expressed in

other way, which will be convenient for obtaining the global finite
hierarchical element equation,

ep ¼ Bpc; et ¼ Btc ð30Þ

where c contains all generalized nodal and internal displace-
ment unknowns (see Eq. (23)); and Bp;Bt are, respectively,
the generalized in-plane and transverse shear strain matrices,
given by
c ¼

cu0

cw

ch

cw

8>>>><
>>>>:

9>>>>=
>>>>;
; Bp ¼

Nu0 ;x 0 0 0

0 0 Nh;x 0

0 0 0 Nw;x

2
64

3
75;

Bt ¼
0 Nw;x 0 0

0 0 Nh 0

0 0 0 Nw

2
64

3
75 ð31Þ

Replacing Eq. (29) into Eqs. (1) the following stress expressions
for the kth layer are obtained

rðkÞ
xx ¼ �CðkÞ

11S
ðkÞ
p ep ¼ �CðkÞ

11S
ðkÞ
p Bpc ð32Þ

sðkÞxz ¼ �CðkÞ
55S

ðkÞ
t et ¼ �CðkÞ

55S
ðkÞ
t Btc ð33Þ
4.3. Expression of virtual work

The virtual work expression for a distributed transverse load
qðxÞ, is obtained replacing Eq. (26) into Eq. (5) and integrating
the cross sectional area A, as followsZ
L
½deTpDp ep þ deTt D

tet �dx�
Z
L
dwqdx ¼ 0 ð34Þ

where the generalized constitutive matrices Dp and Dt are given by

Dp ¼
Z Z

A

�CðkÞ
11S

ðkÞT
p SðkÞp dA ¼

Z Z
A

�CðkÞ
11

1 �z /ðkÞ

z2 �z/ðkÞ

sym ð/ðkÞÞ2

2
64

3
75dA ð35Þ

Dt ¼
Z Z

A

�CðkÞ
55S

ðkÞT
t SðkÞt dA ¼

Z Z
A

�CðkÞ
55

1 �1 bðkÞ

1 �bðkÞ

sym ðbðkÞÞ2

2
64

3
75dA ð36Þ

From Eqs. (21) and (29), the virtual displacement and general-
ized strain fields are expressed in terms of the virtual nodal modes
and internal modes of the kinematic variables,

du ¼

Nu0dc
u0

Nwdcw

Nhdch

Nwdcw

8>>><
>>>:

9>>>=
>>>;
; dep ¼ Bpdc; det ¼ Btdc ð37Þ

The discretized equilibrium equations are obtained by substi-
tuting Eqs. (30) and (37) into the virtual work expression (Eq.
(34)). After simplification of the virtual generalized kinetic
unknowns, we obtainZ 1

�1
ðBT

pD
pBp þ BT

t D
tBtÞcdn�

Z 1

�1
Bf q dn ¼ 0 ð38Þ

where Bf ¼ ½01�nu ;Nw;01�nh ;01�nw �T
Expression (38) can be finally expressed in the following classi-

cal matrix equation as:

Kc� f ¼ 0 ð39Þ
The stiffness matrix K is the global matrix for the hierarchical

finite element, and it is given by

K ¼
Z 1

�1
BTDBdn ð40Þ

where

BT ¼ ½BT
p ;B

T
t �; D ¼ Dp 03�3

03�3 Dt

� �
ð41Þ
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The equivalent force vector f results:

f ¼ ½01�nu ; f
w
;01�nh ;01�nw �

T ð42Þ

where f wi ¼ R 1
�1 qNidn, i ¼ 1;nw

The stiffness matrix K in Eq. (40), can be easily expressed as
follows:

K ¼
kuu 0 kuh kuw

kww kwh kww

khh khw

sym kww

2
66664

3
77775 ð43Þ

where their respective components are:

kuuij ¼ Dp
11

4
L2

R 1
�1

dNi
dn

dNj

dn dn; i ¼ 1;nu; j ¼ 1; nu

kuhij ¼ Dp
12

4
L2

R 1
�1

dNi
dn

dNj

dn dn; i ¼ 1;nu; j ¼ 1; nh

kuwij ¼ Dp
13

4
L2

R 1
�1

dNi
dn

dNj

dn dn; i ¼ 1;nu; j ¼ 1; nw

kww
ij ¼ Dt

11
4
L2

R 1
�1

dNi
dn

dNj

dn dn; i ¼ 1;nw; j ¼ 1;nw

kwh
ij ¼ Dt

12
2
L

R 1
�1

dNi
dn Njdn; i ¼ 1; nw; j ¼ 1;nh

kww
ij ¼ Dt

13
2
L

R 1
�1

dNi
dn Njdn; i ¼ 1; nw; j ¼ 1; nw

khhij ¼ Dp
22

4
L2

R 1
�1

dNi
dn

dNj

dn dnþ Dt
22

R 1
�1 NiNjdn; i ¼ 1;nh; j ¼ 1;nh

khwij ¼ Dp
23

4
L2

R 1
�1

dNi
dn

dNj

dn dnþ Dt
23

R 1
�1 NiNjdn; i ¼ 1;nh; j ¼ 1;nw

kwwij ¼ Dp
33

4
L2

R 1
�1

dNi
dn

dNj

dn dnþ Dt
33

R 1
�1 NiNjdn; i ¼ 1;nw; j ¼ 1;nw

ð44Þ
The new hierarchical beam finite element based on RZT Tessler

developments is termed PRZ. Studies of shear locking, convergence
and validations are presented in the next sections.

5. Study shear locking for PRZ element

Shear locking is due to the inability of shear deformable ele-
ments to accurately model the bending within an element under
a state of zero transverse shearing strain. When thin beams are
analyzed by the shear deformable elements, the energy due to
transverse shear strains must vanish. Numerically this is equiva-
lent to requiring the product of the shear stiffness matrix and the
displacement vector be zero. Therefore, in order to obtain a non-
trivial solution, the shear stiffness matrix must be singular. One
way to achieve the singularity of the transverse shear stiffness
matrix is to use an order of numerical integration lower than is
necessary to evaluate the integrals exactly. This procedure, i.e.,
reduced integration of transverse shear stiffnesses has been
adopted by Oñate et al. [42] for overcoming the shear locking prob-
lem in their linear two-noded beam element based on RZT.
P-version of FEM is much less prone of shear locking because of
the increase of the number of terms in the enrichment basis func-
tions, i. e., p-refinement. Moreover, it was theoretically and numer-
ically shown, that the p-version is free of locking effects, if the
polynomial degree is chosen to be moderately high.
F

L

(a) 

L

(0 sinq q π=(b)

Fig. 3. Structural representation of the analyzed beams; (a) Cantilever beam under a
supported beam under uniform load.
In order to show that the new PRZ element is free of shear lock-
ing, the performance of this element in the analysis of a cantilever
beam of length L under an end point load of value F ¼ 1 (Fig. 3a) is
presented. For the clamped end all the nodal degrees of freedoms
at the boundary are fully restrained (u0 ¼ w ¼ h ¼ w ¼ 0 at
x ¼ 0), while for the free end all the nodal degrees of freedoms
are unrestrained. The material properties correspond to that desig-
nated as Composite B in Table 1.

Beams with different length-to-thickness ratios k (with
k ¼ L=h), from thick to thin beams, are analyzed using 8 (eight)
Gram Schmidt (GS) polynomials for each kinematic variable. To
this study, firstly, the free end deflection is analyzed and the fol-
lowing dimensionless variable is used:

�wjx¼L ¼
w�E

10Fk3
ð45Þ

where �E ¼ 1
Nl

PNl
k¼1E

ðkÞ

Fig. 4 shows the variation of the dimensionless free end deflec-
tion against k. The graph shows that the solution converges as the
length-to-thickness ratio of the beam increases, tending towards a
horizontal asymptote corresponding to the thin beam deflection
with equivalent material properties. It is clear that the proposed
PRZ element is free of shear locking and from k P 60 the solution
tends stably to the corresponding solution for thin beams.

Second, to verify that the PRZ element is free from locking
shear, transverse shear stresses are determined both from the con-
stitutive relations (Eq. (33)) as well as from the equilibrium equa-
tion at the post-processing level i.e.,

sðkÞxz ðzÞ ¼ �
Z z

�h=2

@rðkÞ
xx

@x
dz ð46Þ

The determination is made for a thick beam (k ¼ 5) and for a
thin beam (k ¼ 100), taking two different sections along the beam.
Figs. 5 and 6 show the thickness distribution of shear stresses sxz in
sections located at distances L=20 and 3L=4 from the clamped end.
The transverse shear stresses computed from the constitutive
relations are labeled as ‘‘Present-const”, while the shear stresses
computed from the equilibrium equations are labeled as
‘‘Present-equil”. For comparison purpose two sxz profiles obtained
by Oñate et al. [42] have been included in the figures. One of these
results were obtained using a mesh of 27,000 four-noded plane
stress rectangles (labeled as ‘‘PS”) and the other were obtained
with 100 linear two-noded beam elements and reduced integration
proposed by the mentioned authors (labeled as ‘‘RI”).

An examination of the numerical results presented in these fig-
ures shows that the hierarchical finite element developed with
equal interpolation of all generalized displacements does not expe-
rience shear locking. The element behaves uniformly well for thin
and thick beams. The finite element results are in excellent agree-
ment with those reported in Ref. [42] where reduced integration
has been used. The displacements converge faster than stresses,
which is expected because the rate of convergence of gradients
of the solution is one order less than the rate of convergence of
the solution.
)/x L

L

0q q=
(c)

free end point load, (b) Simple supported beam under sinusoidal load, (c) Simple



Table 1
Material properties of 3-layered symmetric and non-symmetric laminates.

Composite Material Properties

Layer 1 (bottom) Layer 2 (core) Layer 3 (top)

(A) Non-Symmetric laminate hðkÞ [mm] 6.66 6.66 6.66

EðkÞ [MPa] 4.40E + 05 2.19E + 04 2.19E + 05

GðkÞ
xz [MPa] 2.00E + 05 8.80E + 03 8.76E + 04

(B) Symmetric laminate hðkÞ [mm] 6.66 6.66 6.66

EðkÞ [MPa] 2.19E5 2.19E3 2.19E5

GðkÞ
xz [MPa] 8.76E4 8.80E2 8.76E4

(C) Non-symmetric laminate hðkÞ [mm] 2 16 2

EðkÞ [MPa] 7.30E5 7.30E2 2.19E5

GðkÞ
xz [MPa] 2.92E5 2.90E2 8.76E4

(D) Non-symmetric laminate hðkÞ [mm] 6.6666 6.6666 6.6666

EðkÞ [MPa] 2.19E5 5.30E5 7.30E5

GðkÞ
xz [MPa] 8.76E4 2.90E2 2.92E2

λ

x L
w

=

Fig. 4. Free end deflection �w for a laminated cantilever beam (Composite B) for different length – to – thickness ratios.

(a) (b) 

Fig. 5. Symmetric (composite B) cantilever thick beam (k ¼ 5) under end point load. Thickness distribution of shear stress at different sections.
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(b) (a) 

Fig. 6. Symmetric (composite B) cantilever thin beam (k ¼ 100) under end point load. Thickness distribution of shear stress at different sections.
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For very thin beams, very good agreement is found between the
thin- theory values and those from RZT beam theory employing
PRZ elements, showing that the proposed element is not prone to
shear locking.
6. Convergence analysis

Recall that the advantages of the p-version of FEM are not
limited to the greater convergence rate. In fact, with h methods,
the accuracy of the solution is determined by executing several
analyses with different meshes, an expensive and time-
consuming process, both because of the computational cost
and because of the operator time required to define the different
models. In p-convergent approximations, the number of finite
elements is determined by the geometry and is small. Moreover,
to verify the results, the order of the approximation can be
selectively increased. This operation is carried out very
efficiently because it is not necessary to generate a new mesh
and because the new linear stiffness matrices contain the
preceding ones [55].

For the convergence study once again the cantilever beam sub-
jected to a unit load at the free end is analyzed (Fig. 3a). Displace-
ments and stresses at different points of symmetric (Composite B,
Table 1) and arbitrarily laminated (Composite A and C, Table 1)
beams are obtained. For both materials, length-to-thickness ratios,
k ¼ 5;10, are considered. For the different combinations of length-
to-thickness ratios and material properties, convergence studies
are performed by varying the amount of GS orthogonal polynomi-
als of the approximation functions for the four kinematic variables,
from 1 to 10.

Tables 2–5 show, respectively, the variation of the transverse
deflection w and the amplitude of w function at the beam free
end; the maximum normal stress rxx at the clamped end and the
maximum transverse shear stress sxz at the central section of the
beam, as the number of polynomials enrichment (Gram-Schmidt
polynomials) is increased. Also, the transverse deflectionsw, for
symmetric (comp. B) and non-symmetric (comp. C) laminated
beams with length – to – thickness ratio k ¼ 5, are plotted against
the number of GS enrichment polynomials in Fig. 7.

In Tables 2–5 the convergence is quantified through the relative
error given by the following expression
er ¼ t10 � ti
t10

����
���� ð47Þ

where t10 and y ti are the numerical values of the different magni-
tudes obtained employing 10 GS polynomials and i (i ¼ 1; . . . ;10) GS
polynomials, respectively.

The analysis of the results showed in Tables 2–5 and Fig. 7
demonstrates that the numerical solutions are convergent for
transverse displacementw, amplitude of zigzag function w and also
for normal (rxx) and transverse shear (sxz) stresses in which the
derivatives of the displacement field components are involved. As
expected, convergence is slower in the case of Composite C (more
heterogeneous material) than for composite B. For 8 GS enrichment
polynomials errors for all considered magnitudes are less than 0.5%
for composites A, B and C, the only exception is the value of the
normal stress rxx for composite C, in this case the error is less than
1.8%. For these reasons, the calculations using eight GS enrichment
polynomials for each kinematic variable, is considered sufficient to
obtain good accuracy.

7. Validation and numerical examples

In this section different problems of laminated beams are solved
to show the accuracy and applicability of the present FE hierarchi-
cal model under static loading. In all the examples presented, both
in this section and in the next, the beams are modeled with a single
finite element with two end nodes, coincident with the ends of the
analyzed beams. The internal or hierarchical nodes depend on the
number of GS polynomials used in each case and are obtained
automatically (see Eqs. (39)–(43)).

7.1. Symmetric and antisymmetric cross-ply laminated beams

In this subsection results obtained for symmetric (0�/90�/0�)
and antisymmetric (0�/90�) cross-ply laminated beams constituted
by orthotropic material are presented. All layers in the laminates

have the same thickness (hðkÞ ¼ h=Nl), and their material properties
are:E1 ¼ 172:4 GPa, E2 ¼ 6:895 GPa, G12 ¼ 3:448 GPa,
G23 ¼ 1:379 GPa, m12 ¼ m23 ¼ 0:25; where subscripts 1 and 2 refer,
respectively, to the fiber direction and to the normal direction.

The symmetric and antisymmetric beams are simply supported
and they are subjected to a sinusoidal load q ¼ q0 sinðpx=LÞ, as



Table 2
Convergence study of three layered symmetric and non-symmetric cantilever thick beams. Relative error for w at x ¼ L for increasing number of GS polynomials.

Composites

A B C

k ¼ L=h 5 10 5 10 5 10

er(%)�wðx ¼ LÞ
1 13.961 19.044 14.390 15.734 17.446 17.104
2 0.576 0.226 1.161 1.019 4.151 3.918
3 0.168 0.102 0.138 0.271 1.088 1.533
4 0.040 0.043 0.010 0.058 0.232 0.585
5 0.008 0.017 0.001 0.009 0.038 0.203
6 0.001 0.006 0.000 0.001 0.005 0.062
7 0.000 0.002 0.000 0.000 0.001 0.016
8 0.000 0.000 0.000 0.000 0.000 0.004
9 0.000 0.000 0.000 0.000 0.000 0.001
10 0.000 0.000 0.000 0.000 0.000 0.000

Table 3
Convergence study of three layered symmetric and non-symmetric cantilever thick beams. Relative error for w at x ¼ L for increasing number of GS polynomials.

Composites

A B C

k ¼ L=h 5 10 5 10 5 10

er(%)�wðx ¼ LÞ
1 100.372 194.748 45.084 95.026 17.446 49.393
2 8.942 2.563 6.516 14.863 4.151 20.340
3 4.214 5.082 0.870 5.662 1.088 7.196
4 1.306 3.913 0.070 1.445 0.232 1.793
5 0.290 2.178 0.004 0.263 0.038 0.324
6 0.049 0.945 0.000 0.036 0.005 0.044
7 0.006 0.348 0.000 0.004 0.001 0.005
8 0.001 0.098 0.000 0.000 0.000 0.000
9 0.000 0.033 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000

Table 4
Convergence study of three layered symmetric and non-symmetric cantilever thick beams. Relative error for ðrxxÞmax at x ¼ 0 for increasing number of GS polynomials.

Composites

A B C

k ¼ L=h 5 10 5 10 5 10

er(%)�ðrxxÞmaxðx ¼ 0Þ
1 99.924 45.979 43.141 42.285 69.413 64.480
2 17.108 12.346 18.176 18.403 50.243 51.041
3 11.051 9.952 7.225 11.445 32.314 40.928
4 6.091 7.484 0.499 5.972 17.253 30.229
5 2.843 5.167 0.499 2.600 7.638 20.146
6 1.139 3.224 0.097 0.963 2.869 11.941
7 0.397 1.785 0.016 0.309 0.933 6.217
8 0.119 0.843 0.002 0.085 0.261 1.752
9 0.027 0.292 0.000 0.018 0.056 0.896
10 0.000 0.000 0.000 0.000 0.000 0.000
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shown in Fig. 3b. For these support conditions only three degrees
of freedoms are restrained: wðx ¼ 0Þ, wðx ¼ LÞ and u0ðx ¼ 0Þ. The
obtained results, expressed in non-dimensional form, are shown
in Tables 6 and 7 for several values of length-to-thickness ratios
(k ¼ L=h). Mid-span deflections and the normal (atðL=2;�h=2Þ)
and transverse shear at sxzð0;�h=4Þ stresses for 0�/90� antisym-
metric laminated beams are presented in Table 6; and mid-span
deflections and the normal (at ðL=2;h=2Þ) and transverse shear at
sxzð0;0Þ stresses for 0�/90�/0� symmetric laminated beams are
depicted in Table 7. Results in Tables 6 and 7 are compared with
the 3D elasticity solution by Pagano [46] and with those published
by Vidal and Polit [40]. Even though the 3D elasticity solution by
Pagano was developed for cylindrical bending of an infinitely wide
plate, the solution is equally applicable to beams under plane
strain. These tables prove again the good performance of the PRZ
p-FEM model for transverse deflections, and for normal and trans-
verse stresses in both cases, symmetric and antisymmetric cross-
ply laminates. Results are in good agreement with respect to the
reference solutions and it is seen from these tables that the ele-
ment performs quite well for thick beams as well as thin beams,
as has been previously remarked (Section 5).

7.2. Three layered thick cantilever beam under end point load, with
non-symmetric material properties

Three-layered thick cantilever beam (Fig. 3a), with mid plane
non-symmetric material properties (Composite C), is considered
in this subsection. In this sandwich laminate the core is eight times
thicker than the face sheets and is three orders of magnitude more
compliant than the bottom face sheet. Figs. 5–10 show different



Table 5
Convergence study of three layered symmetric and non-symmetric cantilever thick beams. Relative error for ðsxzÞmax at x ¼ L=2 for increasing number of GS polynomials.

Composites

A B C

k ¼ L=h 5 10 5 10 5 10

er(%)�ðsxzÞmaxðx ¼ L=2Þ
1 99.991 95.894 33.693 53.549 176.151 35.364
2 8.925 10.899 2.814 8.625 44.083 13.875
3 4.115 3.166 2.422 5.496 9.007 8.638
4 1.797 4.317 0.180 1.336 1.336 4.114
5 0.942 2.105 0.116 1.022 1.243 3.550
6 0.248 1.353 0.005 0.136 0.134 1.063
7 0.119 0.707 0.003 0.103 0.127 1.013
8 0.024 0.458 0.000 0.010 0.009 0.264
9 0.011 0.288 0.000 0.007 0.009 0.256
10 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 7. Transverse free end deflection w for different layer sequence: convergence study for k = 5.

Table 6
Non-dimensional displacements and stresses of antisymmetric 0�/90� cross-ply beam under sinusoidal load for different values of k.

k 4 6 8 10 20 40 100

100wðL=2ÞE2h3
=q0L

4

Present (PRZ) 4.5137 3.4687 3.1006 2.9298 2.7014 2.6442 2.6282
Ref. [40] 4.5438 – – – 2.7036 2.6450 –
Ref. [46] 4.7076 3.5600 3.1504 2.9596 2.7092 2.6462 2.6220

rxxðL=2;�h=2Þ=q0
Present (PRZ) 26.748 61.490 110.27 173.03 696.22 2789.2 17439.7
Ref. [40] 31.8 – – – 703.6 2803.1 –
Ref. [46] 30.0 65.382 114.18 176.95 699.7 2792.6 17443.7

sxzð0;�h=4Þ=q0
Present (PRZ) 2.8396 4.3315 5.8146 7.2926 14.653 29.341 73.378
Ref. [40] 2.843 – – – 14.574 29.174 –
Ref. [46] 2.706 4.2532 5.7528 7.2419 14.620 29.325 73.373
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mechanical responses of this three-layered thick cantilever beam
obtained applying PRZ present approach. Also, these figures
include plane stress results reported in [42], where legend caption
PS denotes these reference solutions obtained with meshes of
27,000 four-noded plane stress quadrilaterals.

Fig. 8 shows the transverse deflection along the beam length.
Fig. 9 shows the distribution of the axial displacements at the
upper (Fig. 9a) and lower (Fig. 9b) surfaces of layer 3 (top layer)
along the beam length. Fig. 10 shows the thickness distribution
for the axial displacement at sections located at distances L=2
(Fig. 10a) and 3L=4 (Fig. 10b) from the clamped end. All displace-
ments along x axis, both transverse and axial, and in the last case
also along the thickness, obtained using 8 GS enrichment functions
for each kinematic variable, are in very good agreement with the
plane stress reference solution. Figs. 11 and 12 show the thickness
distribution for the axial stress rxx at the clamped section and the
center of the beam, respectively. PRZ results agree very well with
those of the reference solution for both sections, namely at x ¼ 0



Table 7
Non-dimensional displacements and stresses of symmetric 0�/90�/0� cross-ply beam under sinusoidal load for different values of k.

k 4 6 8 10 20 40 100

100wðL=2ÞE2h3
=q0L

4

Present (PRZ) 2.8031 1.5898 1.1329 0.9139 0.6134 0.5366 0.5150
Ref. [40] 2.8027 – – – 0.6151 0.5371 –
Ref. [46] 2.8899 1.6345 1.1598 0.9316 0.6185 0.5379 0.5139

rxxðL=2;h=2Þ=q0
Present (PRZ) 16.195 29.968 48.138 71.097 260.59 1017.1 6311.97
Ref. [40] 19.5 – – – 265.4 1024.4 –
Ref. [46] 18.809 32.531 50.704 73.672 263.2 1019.7 6314.58

sxzð0;0Þ=q0
Present (PRZ) 1.4358 2.3890 3.3255 4.2467 8.7530 17.644 44.207
Ref. [40] 1.4202 – – – 8.6988 17.5400 –
Ref. [46] 1.4318 2.3805 3.3167 4.2385 8.7483 17.641 44.206

Fig. 8. Transverse deflection of non-symmetric (composite C) cantilever thick beam
under end point load (k ¼ 5).

(a) 

Fig. 9. Non symmetric (composite C) cantilever thick beam (k ¼ 5) under end point load
(top layer).
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and x ¼ L=2. Fig. 13 shows the thickness distribution for the trans-
verse shear stress sxz at different sections (Fig. 13a, at x ¼ L=4 and
Fig. 13b at x ¼ 3L=4). It is observed that the proposed approach
provide an accurate estimate of the average transverse shear stress,
for each layer, if computed from the constitutive relations
(‘‘Present-const” in Fig. 13); however, the distribution of the shear
stress can be computed from the equilibrium equations (‘‘Present-
equil” in Fig. 13) showing an excellent agreement with the refer-
ence solution.

7.3. Three-layered simple supported thick beam under uniform load

The next example analyzes the behavior of a three layered sim-
ply supported beam (Fig. 3c) under a uniformly distributed load of
unit value (q ¼ 1) and span to thickness ratio k ¼ 5. In this case the
degrees of freedoms u0 and w are restrained at both beam ends
(x ¼ 0; L), unlike the beam shown in Fig. 3b.

The material properties and the thickness for the three layers
are given in Table 1 (Composite D). As composite C, this material
has a non-symmetric layer distribution with respect to the beam
axis. The results obtained employing the proposed PRZ formulation
shown in Figs. 14–16 are compared, in some cases, with solutions
provided by Oñate et al. [42]. As in Section 7.2 results obtained
with PRZ element have been labeled as ‘‘Present” and, for the case
(b) 

. Axial displacements (a) at the upper surface and (b) at the lower surface of layer 3



(a) (b) 

Fig. 10. Non symmetric (composite C) cantilever thick beam (k ¼ 5) under end point load. Thickness distribution of the axial displacement (a) at x ¼ L=2 and (b) at x ¼ 3L=4.

Fig. 11. Non symmetric (composite C) cantilever thick beam (k ¼ 5) under end
point load. Thickness distribution of the axial stress rxx at x ¼ 0.

Fig. 12. Non symmetric (composite C) cantilever thick beam (k ¼ 5) under end
point load. Thickness distribution of the axial stress rxx at x ¼ L=2.

L.G. Nallim et al. / Composite Structures 163 (2017) 168–184 179
that transverse shear stresses sxz they are computed from the con-
stitutive equations (Eq. (1)) and from the equilibrium equation (Eq.
(45)) and labeled, respectively, as ‘‘Present-const” or ‘‘Present-
equil”. At the same time the reference values are labeled as ‘‘PS”
for results from plane stress and ‘‘RI” for results using two-noded
linear beam element with reduced integration.

Fig. 14 shows the distribution of the transverse deflection along
the beam length obtained with PRZ and are compared with RI ref-
erence values, very good agreement is found. Fig. 15 shows the
thickness distribution of the normal axial stress at x ¼ L=4 and at
the mid-section (x ¼ L=2). The accuracy of results obtained by the
present PRZ approach, employing 8 GS orthogonal polynomials, is
noticeable and they are very close to the PS solution. Finally,
Fig. 16 shows the distribution of the shear stress sxz along the
thickness for a section located next to the left support (x ¼ L=20)
and for a section at x ¼ L=4. In this last case the average transverse
shear stress for each layer (obtained from the constitutive equa-
tion) are compared with RI results, showing a very good
agreement.



(a) (b) 

Fig. 13. Non symmetric (composite C) cantilever thick beam (k ¼ 5) under end point load. Thickness distribution of transverse shear stress sxz at a) x ¼ L=4 and b) x ¼ 3L=4.

Fig. 14. Simply supported non-symmetric laminated (Composite D) thick beam.
Vertical deflection w along the beam length.

Fig. 15. Simply supported thick beam (Composite D) k ¼ 5. Thickn
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8. Modeling of delamination with the PRZ element

The analysis and numerical modeling of damage and failure in
laminated beams is complex task. One of the most important fail-
ure mechanisms in these kinds of structures is delamination. For
instance Di Sciuva and Gherlone [63] used Hermitian zigzag theory
and sub-laminate approach and analyzed damage interface
increasing the number of variables. Oñate et al. [42] shows that
the two-noded element LRZ element developed by them can repro-
duce the delamination effects in laminated beams without intro-
ducing additional kinematic variables. This section proves that
the PRZ element has the same property. As is it well known, delam-
ination is produced when the mechanical properties of the inter-
face layer are drastically reduced to almost a zero value in
comparison with those of the adjacent layer [64,65]. This delami-
nation model has been applied by Oñate et al. [42] to test the per-
formance of their LRZ into this class of study. Now the mentioned
model is applied to show the capacity of this new PRZ hierarchical
ess distribution of axial stress rxx at a) x ¼ L=4 and b) x ¼ L=2.



Fig. 16. Simply supported thick beam (Composite D) k ¼ 5. Thickness distribution of transverse shear stress sxz at a) x ¼ L=20 and b) x ¼ L=4.

Fig. 17. Delamination study in 2-layered simply-supported thick beam under
sinusoidal load. Evolution of mid span transverse deflection with shear modulus G2

according to Table 9.
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element to consider the loss of overall rigidity of the beam due to
delamination, leading to an increase in displacement field
components.

For this analysis a simply supported beam subjected to a sinu-
soidal distributed load, as shown in Fig. 3b, is adopted. The reasons
for such election are the possibility of comparing with results
obtained by programing the Pagano 3D solution [46], which can
be certainly determined in this case. The thick laminated beam is
made of two layers, with length-to-thickness ratio k ¼ 5. The
remaining geometrical and mechanical properties are given in
Table 8. Delamination between the two layers (bottom and top lay-
ers) is taken into account by introducing a very thin interface layer
(layer 2 in Table 8) with identical initial properties to the top layer.
Next, the transverse shear modulus of the interface layer (G2) is
progressively reduced from Model 1 to Model 12 as shown in
Table 9.

Fig. 17 shows the mid span deflection of the laminated beam for
Models 1 to 12, i.e. as a function of the shear transverse modulus of
the interface, obtained with the present PRZ element and 10 GS
enrichment polynomials. In the same figure results obtained
applying the 3D Pagano solution have been included. Same inter-
esting features are highlighted; first the mid-span deflection does
not significantly change for models 1–5 and them for models 8–
11 and second, as a logical conclusion, the main rigidity global
beam changes occurs when the shear transverse modulus G2 varies
between 8.76E�001 MPa and 8.76E�004 MPa. Results are in good
Table 8
Thickness and layer properties for delamination study in a 2-layered beam. G2 values
are depicted in Table 9.

Layer 1 (bottom) Layer 2 Layer 3 (top)

h[mm] 14 0.01 6
E[Mpa] 0.073E+05 2.19E+05 2.19E+05
G[Mpa] 0.029E+05 Model 8.76E+04

Table 9
Shear modulus G2 in MPa, for the interface layer for delamination analysis.

Model G2 Model

1 8.76E+004 5
2 8.76E+003 6
3 8.76E+002 7
4 8.76E+001 8
agreement with those computed from the 3D Pagano solution. The
differences are less than 6%, and it should be noted that the 3D
deflection, for comparison purpose, was obtained as the weighted
deflection in the thickness beam at x ¼ L=2.

Fig. 18 shows the thickness distribution of the axial stresses rxx,
at x ¼ L=4, for six decreasing values of shear modulus designed by
the corresponding models: 1, 3, 6, 7, 9, 12. The jump of the normal
stresses at the interface layer due to delamination is well captured
by the PRZ element. Theses stresses at the interface layer remains
stationary after a reduction of the material properties of six orders
of magnitude. It is important to note the excellent concordance
G2 Model G2

8.76E+000 9 8.76E�004
8.76E�001 10 8.76E�005
8.76E�002 11 8.76E�006
8.76E�003 12 8.76E�007



Fig. 18. Delamination study in 2-layered simply-supported thick beam under sinusoidal load. Thickness distribution of normal axial stresses at x = L/4 for decreasing shear
modulus G2 form models 1, 3, 6, 7, 9 and 12. (3D obtained after Pagano [46]).

Fig. 19. Delamination study in 2-layered simply-supported thick beam under sinusoidal load. Thickness distribution of normal axial stresses at x = L/4 for decreasing shear
modulus G2 form models 1, 3, 6, 7, 9 and 12. (3D obtained after Pagano [46]).
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with the 3D solution that has been obtained applying the Pagano
solution [46].

Fig. 19 shows the thickness distribution of the transverse shear
stresses sxz, at x ¼ L=4, for the same six decreasing values of shear
modulus designed by the corresponding models: 1, 3, 6, 7, 9, 12.
The shear stresses have been obtained using the present PRZ ele-
ment by integrating the equilibrium equation. This Figure also
includes the corresponding shear stresses obtained by applying
Pagano’s analytical 3D formulation. Note again the noticeable
agreement between the two solutions. Once again the accuracy
of PRZ element to capture the delamination effects is
demonstrated.

9. Conclusions

A hierarchical beam finite element based on the p-version of
FEM, using the kinematics of the Tessler’s refined zigzag theory,
for the analysis of laminated composite beams, has been devel-
oped. Recall that the advantages of the p-version are not limited
to the greater convergence rate. In fact, with h methods, the accu-
racy of the solution is determined by executing several analyses
with different meshes, an expensive and time-consuming process,
both because of the computational cost and because of the opera-
tor time required to define the different models, including de
meshing process. In p-convergent approximations, the number of
finite elements is determined by the geometry and is small. Specif-
ically, all the examples presented in this work require a single hier-
archical finite element for the whole beam to obtain the
mechanical responses, which are very accurate. Moreover, to verify
the results, the order of the approximation (hierarchical modes)
can be selectively increased. This operation is carried out very effi-
ciently because it is not necessary to generate a new mesh and
because the new linear stiffness matrix contains the preceding
one. The convergence study has demonstrated that the element
proposed requires a moderate number of degrees of freedom for
a very good accuracy. Moreover, it can be applied to study thick
and thin beams because no shear locking effects were found. Recall
that this element not only improves the convergence and avoids
the shear locking, but also requires a few hierarchical Gram-
Schmidt polynomials for the same level of accuracy. As a further
matter, to verify the results, the order of the approximation can
be selectively increased. This operation is carried out very effi-
ciently because it is not necessary to generate a new mesh and
because the new linear stiffness matrix contains the preceding
ones. The possibility of this new element to consider delamination
effects has been clearly demonstrated. On the other side, the hier-
archical finite element proposed allows to take into account all
coupling effects in an efficient and unified procedure. For this rea-
son, the developed PRZ element can be applied to the analysis of
laminated beam with functionally graded materials or damage
profile at laminar levels, and it is currently studied by the authors.
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