

Advanced Studies in Artificial Intelligence
© 2014 Pushpa Publishing House, Allahabad, India
Published Online: March 2014
Available online at http://www.pphmj.com/journals/asai.htm
Volume 1, Number 1, 2014, Pages 27-44

Received: May 29, 2013; Accepted: August 1, 2013
Communicated by Peng-Yeng Yin

TOWARDS TEACHING ARTIFICIAL INTELLIGENCE
USING A MODEL-DRIVEN APPROACH

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer
CIDISI-UTN-FRSF, CONICET, Lavaise 610-3000, Santa Fe, Argentina

Abstract: In computer science, it is quite difficult to teach well an introductory course on AI,
partly because AI lacks a unified methodology, overlaps with many other disciplines, and
involves a wide range of skills from very applied to quite formal. When teaching Artificial
Intelligence, models are the principal artifacts used by professors to communicate concepts.
These models should be used as part of a technical answer of a practical work, with the aim of
narrowing the distance between concepts and their implementation in a programming
language. The model-driven development presents a very promising approach to reduce the
difficulties in the generation of code solutions. This work presents an MDD-based method, a
language to define intelligent agent and a computational tool that gives support to the MDD-
based method.

Keywords and phrases: artificial intelligence, education, intelligent agents, model-driven
development.

1. Introduction

Nowadays, teaching Artificial Intelligence (AI) into systems engineering
or computer science programs is a required subject. Undergraduate courses
of AI cover a wide diversity of topics such as problem solving, knowledge
representation, inference systems and machine learning among others. The
AI course developed at Universidad Tecnológica Nacional - Facultad
Regional Santa Fe, Argentina (UTN-FRSF) focuses on teaching software
agents. The course adopts the definition of software agent proposed by
Russell and Norvig in their traditional AI book [1], where an agent is
everything that perceives its environment through sensors and responds or
acts upon the environment through actuators.

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

28

In the AI course, professors propose a problem as a practical work.
Students must design and develop a software agent that solves the given
problem. To this aim, students must take a decision about which learned
artifact to use for agent developing. These artifacts may include different
types of agents, strategies, techniques and algorithms. For instance, an agent
may use search [1] as its main problem resolution strategy, or it may use
situation calculus [1] or a planning technique [1]. The use of different
techniques helps students to make a comparison in terms of performance and
adequacy of the proposed answer.

Professors should guide students in the definition of agents and in the
evaluation of the different strategies an agent may use as its main decision
mechanism.

However, professors must face several challenges in the education of AI.
It has been pointed out that in computer science it is quite difficult to teach
well an introductory course on AI, partly because AI lacks a unified
methodology, overlaps with many other disciplines, and involves a wide
range of skills from very applied to quite formal [2]. There are three levels of
abstraction to take into account: (i) conceptual modeling, expressing
concepts and structures; (ii) program description, which focuses on aspects
such as visibility, modularity, encapsulation; and (iii) implementation code,
which focuses on programming and execution [3]. These different levels are
usually time-consuming and entail intensive programming tasks. In addition,
they require students to focus on the implementation details, which are not
relevant to the conceptual problem itself, instead of directing their attention
to the fundamental concepts of agents. Hence, when designing an AI course,
the teacher must decide how much time, focus and effort are given to each of
these different levels. A good balance among them is needed [3].

There are two important issues to take into account when teaching AI.
On the one hand, teachers need to make the relations between theory, model
and design of artifacts [4], and to narrow the gap between the concepts taught
in class and the practices developed in the laboratory.

On the other hand, teachers need to take into account that students have

Towards Teaching Artificial Intelligence ... 29

already gone through different stages in which they have had to work and
learn different techniques, paradigms, programming languages, algorithms,
etc. Students must learn to design solutions based on the problem domain
from a conceptual point of view and to exercise their abstraction capabilities
in solving engineering problems, which is an essential skill that every
information systems engineer should have.

For these reasons, we consider important the use of model-driven
development (MDD) approaches [5] in AI teaching, so that students focus
specifically on modeling the problem and learning the basic concepts of AI,
leaving out some implementation details that may lead students to deviate
from learning the AI concepts. The MDD approach is a recent technique of
software engineering in which models are the main design artifacts and form
the primary basis for generating (semi) automatically specifications of
executable code. The MDD approach has been identified as a source of
benefits in different areas of software engineering [6-9]. This paradigm shift
has impacted not only the way how to implement software systems, but it is
also changing the way software engineering is being taught [3, 10, 11]. In
particular, we consider that the use of this approach in AI teaching will
reduce the complexity and cut-down the time necessary to develop a practical
work, while allows students focus on concepts.

Therefore, in this work, we propose an integrated solution for teaching
AI composed of a method, a language and a tool.

The Model-Driven Teaching of Artificial Intelligence (MDT-AI) method
is an MDD-based method to teach AI. To support the method, we defined the
Agent Conceptual Modeling Language (ACML), which enables the
definition of agent models using the concepts taught in the AI subject. In
addition, we developed an Integrated Development Environment for
Modeling and Executing Intelligent Agents (IDEM-IA) that supports the
MDT-AI method. IDEM-IA provides functionalities to support the
development of agents from a conceptual point of view through a graphical
editor and a set of model-to-code transformations for the automatic
generation of source code from agent models.

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

30

This work is structured as follows. Section 2 describes the MDT-AI
method and the ACML language. Section 3 presents the tool IDEM-IA.
Section 4 shows an example of its use in class. Section 5 presents an
evaluation of the method. Finally, Section 6 presents the conclusions and
future work.

2. Model-Driven Teaching of Artificial Intelligence

A key task in the teaching of AI is to make students learn the conceptual
elements of software agents and how these elements relate with each other.
Working with conceptual models of software agents is a key point to reach
this task. To this aim, we defined the Model-Driven Teaching of Artificial
Intelligence (MDT-AI) method. MDT-AI enables students to separate the
conceptual definition of an agent such as its state, strategy, action, perception
and environment, from its technological specification in a given
programming language.

The development process of the MDT-AI method consists of two phases:
conceptual modeling of software agents and generation of agent
specifications. Following, we describe these phases.

2.1. Conceptual modeling of software agents

In order to define conceptual agent models, we defined the Agent
Conceptual Modeling Language (ACML). This language was specifically
defined to represent the concepts taught in the AI subject so as to facilitate
the students learning. ACML allows students to seamlessly represent the
definition of the components of a software agent using the concepts learned
in class. Through the use of this language, it is possible to narrow the gap
between the concepts taught in class and the practices developed in the
laboratory.

Figure 1 shows the metamodel of ACML. This metamodel defines the
domain of agents with a simple vocabulary like the one used in class. An
Agent is associated with a Goal, a Strategy and a State. An Agent receives a
set of Perceptions from the Environment and executes a set of Actions on
such Environment. The Environment represents the thing with which Agent

Towards Teaching Artificial Intelligence ... 31

interacts. Both the Agent and the Environment have a given State that is
represented through a DataStructure. All these elements are a part of the
AgentModel, which represents the complete solution.

Figure 1. ACML metamodel.

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

32

The Agent uses a Strategy which defines the AI strategy used by
agent to make a decision. There are four strategies: Search, Planning,
SituationCalculus and Reactive. Search can be split into DepthFirstSearch,
BreathFirstSearch, AStarSearch, GreedySearch, UniformCostSearch or
BidirectionalSearch, each one representing different non-informed and
informed search algorithms according to [1].

2.2. Generation of agent specifications

This phase entails the generation of agent specifications in a given
programming language. Figure 2 shows the technology-independent
transformation pattern to be used in the generation of executable code. To
this aim, the pattern is composed of a set of model-to-code transformation
rules. Basically, the rules take an ACML model representing an agent and its
environment and generate the technology-dependent code which can then be
executed to validate the solution proposed by students.

Figure 2. Technology-independent transformation pattern.

3. Tool Support

In order to support the MDT-AI method, we developed the Integrated
Development Environment for Modeling and Implementing Software Agents
(IDEM-IA). IDEM-IA1 supports both the conceptual modeling of software

1http://code.google.com/p/idemia

Towards Teaching Artificial Intelligence ... 33

agents as well as the generation of executable code. The generated code is
based on FAIA2, which is a framework for developing intelligent agents.
Following, we describe both IDEM-IA and FAIA tools.

3.1. Integrated Development Environment for Modeling and
Implementing Software Agents (IDEM-IA)

IDEM-IA was developed with the aim of providing a pedagogical tool to
seamlessly guide students in an intuitive way in the development of software
agents taking into account the following requirements: (1) support the
definition of conceptual models of software agents with the concepts taught
in class; (2) support the generation of Java3 code from conceptual models of
agents making use of the extension points of the FAIA framework; (3)
provide extension mechanisms to add new AI strategies; (4) allow the
addition of new functionalities and transformation machines to generate
executable code in other programming languages. To support these
requirements, the tool is based on the Eclipse platform [12] since this
platform is widely used by software developers, it is extensible, and open
source.

Figure 3 shows the architecture of IDEM-IA. The lower layer is the
Eclipse platform. This platform is extensible by means of the addition of new
modules known as plug-ins, which provide new functionality. The Eclipse
Modeling Framework (EMF) [13] layer supports the definition of the
metamodel of ACML, and provides to the upper layers the functionality
necessary to manipulate the model instances of the ACML language. In
addition, EMF is the basis to provide interoperability with other tools and
applications of the Eclipse platform.

The following layer is composed of three frameworks: GMF, JET, and
FAIA. The Graphical Modeling Framework (GMF) [14] is used to generate
graphical editors. It provides the tools necessary for the generation of
graphical components and the execution infrastructure necessary for the

2http://code.google.com/p/faia
3http://www.java.com

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

34

generation of the graphical editor of the ACML language. The Java Emitter
Templates framework (JET) [15] provides the support to generate Java code
from a conceptual model of an agent. The generated Java code makes use of
the extension points provided by the FAIA framework.

Figure 3. Architecture of IDEM-IA.

Finally, the upper layer of the architecture contains the main logic of
IDEM-IA which has the plug-ins developed to support the requirements that
motivated the development of this tool. This layer is composed of the plug-in
for modeling software agents and the plug-in for generating Java code. The
former defines the graphical editor for the conceptual development of
software agents. This editor provides the graphical components of the
concepts defined in the metamodel of the ACML language. The latter is used
to perform the transformation of model to code using the services provided
by the JET framework. The final result of these transformations is a set of
classes extending the classes provided by FAIA.

With IDEM-IA, students can design agents with a familiar vocabulary
representing the concepts taught in class. Agent models created with this tool
not only allow the student to easily communicate their design solution to the
professor, but it is also a bridge to fill the gap between the theoretical and the
practical classes of AI. It is important to mention that, at the moment, the
code generated by IDEM-IA is not the definitive agent solution since the
student has to complete the generated code with specific implementation
details in order to get a fully executable agent. Despite this, IDEM-IA is an
important tool for students so that they can reduce the implementation time
of their projects.

Towards Teaching Artificial Intelligence ... 35

Figure 4 shows a project in IDEM-IA where there is an agent
representing the classical Pac-Man. The package area shows the project,
packages, files and folders related to a java project. At the bottom of this
figure, we can observe the Model package with two files: pacman.idemia and
pacman.idemia_diagram. The Tool bar area shows the available tools to edit
an agent diagram. These elements correspond to the ACML language
elements such as Goal, Agent, Environment, among others. The Edition area
is the panel where the student develops its agent model. Finally, the
Properties area allows students to modify the properties of the agent model
such as the name of an agent, pre and post conditions of an action, etc. To
generate the model, the elements in tool bar must be drag and drop in the
edition area.

Figure 4. IDEM-IA.

Once the agent model is defined, it is possible to generate the
corresponding Java code. The pacman.idemia_diagram files comprise the
model, so doing right click on this file, the menu shown in Figure 5(a) is

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

36

displayed. From this menu, we can select the option Generate FAIA code in
order to produce the java classes related with the concepts belonging to the
conceptual model. The package corresponds with the open project, in this
case Pacman package, contains the generated classes. Figure 5(b) shows the
Pacman package and the classes. Looking inside this figure, we can
recognize classes related with the elements in the conceptual model shown
in Figure 4. For instance, we can recognize among others that Pacman-
Agent in the conceptual model corresponds to PacmanAgent.java class,
PacmanEnvironment corresponds to PacmanEnvironment.java and fight
action in conceptual model corresponds to fight.java class.

Figure 5. Code generation.

Towards Teaching Artificial Intelligence ... 37

3.2. Framework for developing intelligent agents (FAIA)

In order to support the generation of the agent’s executable code, we
defined a set of rules which generate Java4 code based on the FAIA
framework5.

FAIA is a framework we developed in previous work [16] with the aim
of helping students in the implementation phase of software agents. It was
developed as a practical framework that encloses the most important
concepts of intelligent agents according to the traditional AI book of Russell
and Norvig [1]. It provides a partial design of an agent which helps to avoid
pitfalls in the development of students projects, and at the same time, it is
kind of a guide to students that directs the agent development in the correct
way.

FAIA makes it easier going from theory to implementation in a
programming language. It has been used in the AI course at UTN-FRSF
since 2008 with excellent results. Its use reduced mistakes and necessary re-
work, and at the same time, helped students to: design the software solution,
select the strategy to be used, understand the modular decomposition of an
agent, understand the interaction between agents and environment, finish the
practical work on due time and in full, and finally, show the results in a
suitable graphical way. FAIA also helped professors to: evaluate the results,
base the evaluation on homogeneous design-solutions, evaluate the students
with more complex problems, and correct the practical work quickly.

4. Case Study

In 2011, we proposed students a project taken from a real world case
study of the domain of Collaborative Business Processes [17]. Basically,
students had to develop an agent to carry out the execution of a collaborative
business process where two organizations must agree on a collaborative
demand forecast. The scenario consists in two collaborating organizations.

4http://www.java.com
5http://code.google.com/p/faia

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

38

The organization “TK Computers”, who plays the role of supplier, and
“Computer’s Market”, who plays the role of customer.

The process management of collaborative demand forecast starts with the
client, who asks the supplier for a demand forecast of a product. In order to
provide a response, an employee of the Sales department uses an internal
forecasting system to generate the response. Then the supplier processes the
response and has two options. The supplier may agree and commit to carry
out the demand forecast, or it may refuse the demand forecast and the process
ends with a failure. If the supplier accepts the response, then the client must
send independently the following information: the sale forecast generated by
the client for each of the five point of sales for the considered product, and a
plan for programmed events. With this information, the supplier generates a
demand forecast, which is sent to the client. The supplier must respond to the
client within five days starting from the demand forecast request. If the
supplier does not respond in time, then an exception must be raised, where
the client must send a cancel, and then the process ends.

When the customer updates the forecast and sends it to the supplier, a
new negotiation cycle starts, where the supplier must send a new proposal
and the customer can accept it or update it again. It is assumed that there are
at most five negotiation cycles. Hence, if after five cycles there is no
agreement, then the supplier must send a message pointing out the issues.

Figure 6 shows a student solution for this practical work. In this case,
students developed a search based agent to represent the customer
organization. The environment was interpreted as the supplier organization,
from which to get perception and execute actions.

The agent, CustomerAgent has a Customer-Goal, CustomerAgentState
and Search strategy associated. The CustomerGoal has a variable call state
which is initialized with the string Accept-Proposal. The
CustomerAgentState has five variables: currentState, elapsedTime,
forcastRequestDeliveryTime, negotiationCycle and informDeliveryTime. The
search strategy selected is UniformCostSearch.

Towards Teaching Artificial Intelligence ... 39

The environment Supplier has a SupplierState defined with 6 variables:
states, negotiationCycle, lastActivityTime, informDeliveryTime, currentState
and forecastRequestDeliveryTime.

We can also see the actions that have been defined such as:
GenerateDemandForectasRequest, SendForecastRequestMessage, Failure,
GenerateSaleForecastPOS, among others.

Figure 6. Case study: a collaborative demand forecast scenario.

It has been defined one perception response corresponding to the
supplier response.

Once the conceptual model is finished, the code generation function must
be executed and the classes shown in Figure 7 are generated. But they are not
complete in the sense that they have some methods without code. For
instance, students must complete the execute method of actions. Figure 8
shows the execute method of the GenerateDemandForecastRequest action.

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

40

Figure 7. Case study: code generation.

Figure 8. Example of the execute method of the GenerateDemand-
ForecastRequest action.

Towards Teaching Artificial Intelligence ... 41

5. Evaluation and Students Perception

The condition to promote the previously mentioned AI course are:

• Attending 80% of classes;

• Doing a practical work (AI agent design + implementation) achieving
a score higher than (or equal to) 80 points (over 100);

• Taking a midterm exam, achieving a score higher than (or equal to)
80 points (over 100).

If students do not meet the minimum requirements but they achieve a
score higher than (or equal to) 60 points (over 100), then they reach the
regular condition. In this case, students have to take a final exam in order to
promote the subject. In any other cases, students must retake the course (free
condition). The goal is, of course, to promote the course in the shortest
instance. However, one of the problems that professors have detected in
achieving the goal is that students cannot do the proposed practical work in
full and on time. We have asked students and have discovered that this
problem was mainly caused by the long time needed to learn the use of the
framework, added to the need to learn new concepts of AI and to implement
the answer simultaneously in a short period of time (a term).

Facing this situation, we began working in the design of a computational
tool that would allow students to design a solution to an AI problem by using
AI concepts, while the design becomes a code solution, in an easy way.
During the academic year 2010, IDEM-IA was being developed by
professors of the Artificial Intelligence subject. Students had no opportunity
to use it that year and they solved that term practical work (necessary for
promoting the course) without it. During 2011 and the first quarter of 2012,
IDEM-IA was already incorporated into the study material of the AI course.
This section reports the results achieved. The practical work in 2011 has been
described in case study section. In 2012, the practical work was the
development of a chatbot which simulates an AI student. The goal is that the
chatbot must be capable of chatting with a student and answer questions

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

42

about AI class as, for example: when the midterm exam is, who the teacher
is, when the dead-line for practical work is, among others. The students not
only have to develop the agent but they also have to define the vocabulary
and the questions that the agent can understand.

Last year, the best answer of the practical work was published in a
student congress (40 JAIIO - EST 2011)6 and this year the best answer has
been accepted as well in the same congress that will be held in La Plata -
Argentina on August (41 JAIIO EST 2012)7.

In both 2011 and 2012, all students used the tool with good results. They
manifested that IDEM-IA is an intuitive and easy to use tool, and that helped
them to understand and use the FAIA framework. The generated code has
guided students to a more deeply understanding of the relations and
architecture of the implemented solution, reducing the time needed to learn
the framework.

Table 1. Results of IDEM-IA use

Student situation 2010 2011 2012

Attending students 42 41 45

Promoted 20% 61% 85%

Regular 76% 37% 12%

Free 4% 2% 3 %

Table 1 shows in numbers the improvement in promoted students that
have attended Artificial Intelligent courses in 2010, 2011 and 2012. We can
see that in 2010 the attendees students were 42, 20% of which was promoted
the AI course, the 76% was regular and 4% was free. In 2011, on a total of
41 students, 61% was promoted, while only 37% was regular and 2% was
free. As regards 2012, on the 45 students, 85% was promoted, 12% was
regular and 3% was free.

6http://www.40jaiio.org.ar/
7http://www.41jaiio.org.ar/est

Towards Teaching Artificial Intelligence ... 43

6. Conclusions and Future Work

We have presented an educational tool based on a model-driven
methodology in order to teach artificial intelligence in an engineering
discipline. We have described the language used by the tool to define an
agent model. We have emphasized the suitability in the use of this type of
tool that allows students reduce the gap between theory and implementation
solution. Results on the 2010, 2011 and 2012 were shown, highlighting the
achieved improvement. As future work, we are working to adding new
functionalities to provide the development of different type of agents and
make this tool flexible enough to use with different programming languages
and tools.

References

 [1] S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach, 3rd ed.,
Pearson Education, 2010.

 [2] D. Kumar and L. Meeden, A robot laboratory for teaching artificial intelligence,
SIGCSE, 1998, pp. 341-344.

 [3] J. Bennedsen, M. E. Caspersen and M. Kölling, eds., Model-driven programming,
Lecture Notes in Computer Science, Springer, Vol. 4821, 2008.

 [4] M. Baker, The roles of models in artificial intelligence and education research: a
prospective view, Inter. J. Artificial Intelligence in Education 11 (2000), 122-143.

 [5] J. Siegel, Developing in OMG’s model-driven architecture, Technical Report, OMG,
2001.

 [6] J. Koehler, R. Hauser, J. Kuster, K. Ryndina, J. Vanhatalo and M. Wahler, The role of
visual modeling and model transformations in business-driven development,
Electronic Notes in Theoretical Computer Science, Vol. 211, 2008, pp. 5-15.

 [7] Y. Ni and Y. Fan, Model transformation and formal verification for semantic web
services composition, Advances in Engineering Software 41(6) (2010), 879-885.

 [8] P. Bocciarelli and A. Dambrogio, A model-driven method for describing and
predicting the reliability of composite services, Software and Systems Modeling 10(2)
(2010), 265-280.

 [9] H. Zha, W. van der Aalst, J. Wang, L. Wen and J. Sun, Verifying workflow processes:
a transformation-based approach, Software Systems Modelling 10(2) (2011), 253-264.

M. Gutierrez, J. Roa, W. Santana and G. Stegmayer

44

 [10] A. Hamou-Lhadj, A. Gherbi and J. Nandigam, The impact of the model-driven
approach to software engineering on software engineering education, Sixth
International Conference on Information Technology: New Generation, 2009, pp.
719-724.

 [11] J. Bezivin, R. B. France, M. Gogolla, O. Haugen, G. Taentzer and D. Varro, Teaching
modeling: why, when, what? MoDELS Workshop, 2009, pp. 55-62.

 [12] Eclipse platform. [Online]. Available: http://www.eclipse.org

 [13] Eclipse modeling framework. [Online]. Available:
http://www.eclipse.org/modeling /emf

 [14] Graphical modeling framework. [Online]. Available:
http://www.eclipse.org/modeling /gmf

 [15] Java emitter templates. [Online]. Available:
http://www.eclipse.org/modeling/m2t/?project=jet#jet

 [16] J. Roa, M. Pividori, M. Gutierrez and G. Stegmayer, How to develop intelligent agents
in an easy way with FAIA, Ed. EGI Global, 2010.

 [17] P. Villareal, I. Lasarte, J. Roa and O. Chiotti, A modeling approach for collaborative
business processes, Business Process Management Workshops 43 (2010), 318-329.

